


Chapitre 1 − Calculs et raisonnements

1.1 Synthèse de cours
1.1.1 Identités remarquables

On appelle identité toute égalité entre deux expressions qui est vraie quelles que soient les
valeurs des variables intervenant dans ces expressions. Au lycée, trois identités remarquables sont
à connaître par cœur.

Propriété 1. Pour tous a, b ∈ R, on a que :

(a + b)2 = a2 + 2ab + b2 ; (a − b)2 = a2 − 2ab + b2 ; (a − b)(a + b) = a2 − b2.

1.1.2 Valeur absolue d’un nombre réel

Définition 1. La valeur absolue d’un nombre x ∈ R est la distance, sur un axe gradué
unitaire, entre le point d’origine de l’axe et le point d’abscisse x. Ainsi, on a que :

|x| =
{

x si x ⩾ 0,

−x si x < 0.

Exemples. |6| = 6 et | − 3| = 3.

−4 −3 −2 −1 0 1 2 3 4 5 6 7

|6|| − 3|

1.1.3 Puissances et racine carrée

Propriété 2. Soient m, n ∈ Z ainsi que a, b ∈ R. Alors, on a que :
• am+n = aman ;
• (ab)m = ambm.

• Lorsque a ̸= 0, on a que : a−m = 1
am

et am−n = am

an
.

• Lorsque b ̸= 0, on a que :
(a

b

)m

= am

bm
.

Pour tout a ∈ R, par convention : a0 = 1.
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8 CHAPITRE 1. CALCULS ET RAISONNEMENTS

Définition 2. Soit a un nombre réel positif. On appelle racine carrée de a l’unique réel positif
dont le carré est a. On le note

√
a. Ainsi, pour tout nombre réel a positif, on a que :(√

a
)2 = a.

Exemples. Puisque
√

25 est l’unique nombre réel positif dont le carré est 25, on a que
√

25 = 5.
La liste des premiers carrés parfaits fournit ainsi une liste de racines carrées qu’il est indispensable
d’avoir en mémoire :√

0 = 0 ;√
1 = 1 ;√
4 = 2 ;

√
9 = 3 ;√
16 = 4 ;√

25 = 5 ; ;

√
36 = 6 ;√
49 = 7 ;√
64 = 8 ;

√
81 = 9 ;√

100 = 10 ;√
121 = 11 ;

√
144 = 12 ;√
169 = 13 ;√
196 = 14.

Le plus souvent, la racine carrée d’un nombre réel positif a est un nombre irrationnel. Dans les
calculs, il est indispensable de prendre l’habitude de conserver la notation

√
a et de ne la remplacer

par une valeur approchée qu’en cas d’ultime nécessité.

Propriété 1. Soient a et b deux nombres réels positifs. Alors, on a que :
•

√
a × b =

√
a ×

√
b ;

• Lorsque b ̸= 0, on a aussi :
√

a

b
=

√
a√
b

.

Nous terminons ce paragraphe de rappels par une propriété trop souvent ignorée des lycéens et
dont la méconnaissance est source d’erreurs dans les calculs algébriques.

Propriété 2. Pour tout a ∈ R, on a que :
√

a2 = |a|.

Exemple. Appliquer la racine carrée à l’égalité x2 = 25 conduit à |x| = 5 et non à x = 5. En
particulier, comme vous le savez bien, l’équation x2 = 25 possède deux solutions 5 et −5.

1.1.4 L’implication et l’équivalence logique
L’implication est la relation entre deux propositions correspondant au « si. . . , alors . . . ». Voici
deux exemples d’implication :

• Si la connection internet ne fonctionne pas, alors je ne peux pas vérifier mes mails.
• Si x = 2, alors x2 = 4.

Définition 3. En mathématiques, on écrit P =⇒ Q pour dire que la proposition P implique
la proposition Q. La proposition P est l’hypothèse de l’implication et la proposition Q en est
la conclusion. On dit que l’implication Q =⇒ P est la réciproque de l’implication P =⇒ Q.

Lorsqu’une implication est vraie, il se peut que son implication réciproque ne le soit pas. Par
exemple, l’implication « Il pleut. » =⇒ « Le sol est mouillé. » est vraie mais sa réciproque est
fausse.

1.1. SYNTHÈSE DE COURS 9

Définition 4. En mathématiques, on dit que deux propositions P et Q sont équivalentes
lorsque l’implication P =⇒ Q et sa réciproque Q =⇒ P sont vraies. On écrit alors P ⇐⇒ Q.

Les formulations suivantes ont toutes le même sens, elles permettent de varier un peu le discours :
• P est équivalent à Q ;
• P si, et seulement si, Q ;
• Pour P , il faut et il suffit que Q.

=⇒ ⇐=
condition suffisante condition nécessaire

il suffit il faut
si seulement si

1.1.5 Manipulation des inégalités

Propriété 3. Soient a, b ∈ R.
• Pour tout c ∈ R, on a que :

a < b ⇐⇒ a + c < b + c.

• Pour tout réel c > 0, on a que :

a < b ⇐⇒ a × c < b × c et a < b ⇐⇒ a

c
<

b

c
.

• Pour tout réel c < 0, on a que :

a < b ⇐⇒ a × c > b × c et a < b ⇐⇒ a

c
>

b

c
.

Toutes ces propriétés restent évidemment valables en remplaçant les inégalités strictes < par des
inégalités larges ⩽. L’oubli du troisième point est source d’erreurs fréquentes : on retiendra que
multiplier ou diviser une inégalité membre à membre inverse l’ordre. En particulier, lorsque l’on
divise une inégalité membre à membre par une expression algébrique, il est nécessaire de connaître
le signe de cette expression.

1.1.6 Équations et inéquations du second degré

Définition 5. Soient a, b et c trois nombres réels avec a ̸= 0. On appelle fonction polynôme
de degré 2 toute f définie sur R par f : x → ax2 + bx + c. On parle aussi de fonction trinôme.
On appelle alors discriminant le nombre réel défini par : ∆ = b2 − 4ac.

Dans un repère du plan, la courbe représentative d’une fonction polynôme du second degré est
une parabole. L’orientation de cette parabole est donnée par le signe du coefficient dominant a. Le
signe du discriminant ∆ détermine le nombre de point(s) d’intersection entre la parabole et l’axe
des abscisses, c’est-à-dire le nombre de solution(s) de l’équation ax2 +bx+c = 0. Une telle solution
est appelée une racine du polynôme.
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10 CHAPITRE 1. CALCULS ET RAISONNEMENTS

On a représenté ci-dessous chacun des six cas possibles selon le signe du coefficient dominant a et
du discriminant ∆.

a > 0
∆ > 0

a < 0
∆ > 0

a > 0
∆ = 0

a < 0
∆ = 0

a > 0
∆ < 0

a < 0
∆ < 0

Propriété 4. Soient a, b et c des réels avec a ̸= 0. Considérons l’équation ax2 + bx + c = 0.
• Si ∆ < 0, l’équation n’admet pas de solution réelle.

• Si ∆ = 0, l’équation admet une unique solution : x0 = −b

2a
.

• Si ∆ > 0, l’équation admet deux solutions : x1 = −b −
√

∆
2a

et x2 = −b +
√

∆
2a

.

Lorsque ∆ < 0, cette équation possède deux solutions dans l’ensemble C des nombres complexes. On
ne considèrera jamais ce cas dans cet ouvrage. Rappelons également la connaissance des éventuelles
racines d’une fonction f : x → ax2 + bx + c polynôme de degré 2 donne les formes factorisées :

• Lorsque ∆ = 0, on a que, pour tout x ∈ R : f(x) = a(x − x0)2.
• Lorsque ∆ > 0, on a que, pour tout x ∈ R : f(x) = a(x − x1)(x − x2).

Résolution d’inéquation. En pratique, la résolution d’une inéquation du second degré se ramène
à l’étude du signe d’une fonction polynôme de degré 2. Nous n’énonçons pas le résultat de cours sur
le signe d’une fonction polynôme de degré 2 considérant que ce résultat se retrouve graphiquement
en discutant selon les signes de a et de ∆. Par exemple, dans le cas a < 0 et et ∆ > 0 le graphique
ci-dessus donne (en supposant x1 < x2 par exemple) immédiatement le tableau de signes suivant :

x

ax2 + bx + c

−∞ x1 x2 +∞
− 0 + 0 −

1.1.7 Le raisonnement par l’absurde

Définition 6. Le raisonnement par l’absurde est une méthode logique qui consiste à démontrer
qu’une affirmation est vraie en montrant que son contraire aboutit à une contradiction ou à
une absurdité.

En pratique, on fait l’hypothèse que l’affirmation à démontrer est fausse, et, si cette hypothèse
nous permet d’aboutir à une incohérence, on en conclut que l’affirmation initiale est vraie.

1.2. ÉNONCÉS DES EXERCICES 11

1.1.8 Le raisonnement par récurrence

Propriété 3 (Raisonnement par récurrence). Considérons Pn une propriété dépendante d’un
paramètre n ∈ N. On suppose que :

(i) La propriété est vraie pour un certain entier naturel n0.
(ii) Pour tout entier n ⩾ n0, la propriété Pn implique la propriété Pn+1.

Alors, la propriété Pn est vraie pour tout entier n ⩾ n0.

Lorsque (i) est vérifié, on dit que la propriété est initialisée au rang n0. Lorsque (ii) est vérifié, on
dit que la propriété est héréditaire. La rédaction d’un raisonnement par récurrence doit devenir un
automatisme, cette rédaction doit faire apparaître explicitement les deux étapes − initialisation et
hérédité − du raisonnement. Nous utiliserons le modèle de rédaction suivant :

Pour tout n ⩾ n0, on note Pn la propriété (· · · · · · )
Initialisation : Au rang n = n0, on a (· · · · · · )
Hérédité : Soit un entier n ⩾ n0. Montrons que Pn implique Pn+1.

...
Conclusion : La propriété Pn est donc initialisée au rang n = n0 et héréditaire.

D’après le principe de récurrence, elle est donc vraie pour tout entier n ⩾ n0.

1.2 Énoncés des exercices

Calcul littéral
Exercice 1. Soit x ∈ R. Développer et réduire :

(a)
(

x − 1
2

)2

(b) (x − 1)2(x + 5)
(c) 5(x − 4)2 + 3(x + 1)(x − 3) − 7(3x − 1)2

(d) (x2 + x + 1)2.

Exercice 2. Soient a, b ∈ R. Calculer :
(a) (a + b)3

(b) (a − b)3

(c) (a + b)4

(d) (a − b)4.

Exercice 3. On note x un nombre réel strictement
positif qui vérifie x + 1

x
= 2025. Calculer x2 + 1

x2 .

Exercice 4. Soient x, y ∈ R. Factoriser :
(a) x2 − 5x

(b) 3(x − 1) + (x − 1)(x + 5)

(c) (2x + 5)(x − 7) − (4x + 8)(x − 7)
(d) 7(x + 1)(2x2 + 3) + x(x + 1)(5 − 14x)
(e) x2 − 49
(f) 25x2 − 121y2

(g) (2x − 1)2 − (x + 7)2

(h) 25(3 − x)2 − 16(7x + 5)2

(i) x2 − 6x + 9
(j) 4x2 + 28x + 49
(k) 1 − 16x + 64x2.

Exercice 5. Déterminer l’ensemble de définition
des expressions suivantes puis les réduire sous la
forme d’une seule fraction.

(a) 5 + 1
x − 1

(b) 2
x

− 3
x − 7

(c) 2
x + 3 − 4x

x(x − 1)

(d)
√

x + 1√
x

+ 1
x

(e) 1
x

+ 1
x − 1 + 1

x2 − 1
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Puissances et racines carrées
Exercice 6. Écrire chacun des nombres suivants
sous la forme an avec a, n ∈ Z.

(a) 52 × 54

(b) 64 × 6−9

(c) 38 × 28 × 58

(d) −4 × (−4)7

(e) 23 × 79

143

(f)
(

42

49

)−3

Exercice 7. Écrire chacun des nombres suivants
sous la forme 2a3b5c7d avec a, b, c, d ∈ Z :

• a =
(3

4

)−2
×

(1
8

)5

• b = (23 × 54)3

(22 × 72)4

• c = 32 × 9−4 × 62

12−3 × 24

• d = 812 + 812 + 812 + 812

Exercice 8. Existe-t-il un nombre entier n ∈ N tel
que 27n + 27n + 27n = 346 ? Si oui, le déterminer.

Exercice 9. Écrire chacun des nombres suivants
sous la forme a

√
2 ou sous la forme a

√
5 avec a ∈ N.

(a)
√

50
(b)

√
8

(c)
√

128
(d)

√
72

(e)
√

18
(f)

√
125

(g)
√

320
(h)

√
98

Exercice 10. Écrire les nombres suivants sous la
forme a

√
b avec a ∈ Z et b ∈ N.

• A =
√

12 − 4
√

3 + 4
√

75
• B = 2

√
90 − 5

√
40 + 7

√
10

• C = 7
√

32 − 9
√

50 + 3
√

8

Exercice 11. Sans utiliser de calculatrice, calculer
astucieusement les nombres suivants :

(a)
√

132 + 132 + 132 + 132

(b)
√

50 +
√

18√
32

(c)

√
5 +

√
11 +

√
19 +

√
29 +

√
49

(d)

√√√√
31 +

√
21 +

√
13 +

√
7 +

√
3 +

√
1

(e)
√

75 −
√

50√
3 −

√
2

(f)
√

262 − 242

(g)
√

29 + 29

Exercice 12. On considère un rectangle ABCD tel
que AB =

√
12 et AC =

√
27. Calculer les valeurs

exactes et simplifiées de son aire et de son périmètre.

Exercice 13 (Quantité conjuguée). On dit que des
quantités du type a+b et a−b sont conjuguées l’une
de l’autre. Par exemple, on dira que

√
2 − 3 est la

quantité conjuguée de
√

2 + 3.
1. (a) Montrer que (

√
2+3)(

√
2−3) est entier.

(b) En déduire une écriture sans racine car-
rée au dénominateur du nombre suivant :

A = 1√
2 + 3

.

2. Écrire sans radical au dénominateur chacun
des nombres suivants :

• B = 3√
6 +

√
5

• C = 5
2 −

√
3

• D =
√

6√
2 +

√
3

• E = 1
1 +

√
3 +

√
5

.

Exercice 14. Calculer :

8 − 2
√

15√
3 −

√
5

+ 8 + 2
√

15√
3 +

√
5

Exercice 15. Prouver que :
√

2 −
√

3 +
√

2 +
√

3 =
√

6.

Valeur absolue
Exercice 16. Dans chacun des cas suivants, trouver
l’ensemble des x ∈ R vérifiant la condition donnée.

(a) |x| ⩽ 2
(b) |x − 1| < 9
(c) |x + 5| ⩽ 7
(d) |x − 2| ⩽ −3

Exercice 17. Résoudre dans R les équations et les
inéquations suivantes.

(a) |2x + 5| = 7
(b) |7 − 5x| = |3x + 1|
(c) |x + 2| = |x − 2|

1.2. ÉNONCÉS DES EXERCICES 13

(d) |x − 5| + 4(x − 2) ⩽ 3|2x − 7|
(e) |x + 1| ⩾ |x − 1|
(f) |x + 2| ⩾ 2|x + 3|

Polynômes et équations
Exercice 18. Résoudre dans R les équations et les
inéquations suivantes.

(a) x2 + 2x − 3 = 0
(b) 5x2 + 7x + 18 = 0.
(c) (x + 3)(2x2 − 10x + 15) = 0
(d) −3x2 + 9x + 30 < 0
(e) −x2 − 5x + 7 ⩾ x + 1
(f) (x + 3)(2x2 + 9x − 5) < 0

(g) x + 3
2x2 + 9x − 5 ⩾ 0

Exercice 19. Dans un carré de côté 10 centimètres,
on a colorié une bande de largeur x centimètres et
un carré de côté x centimètres centré comme comme
sur la figure suivante.

Déterminer les valeurs de x pour lesquelles l’aire de
la partie coloriée est strictement inférieure à l’aire
de la partie non coloriée.

Exercice 20. L’objectif de l’exercice est de résoudre
dans R l’équation suivante :

(E) : x3 − x2 − 14x + 24 = 0.

1. Vérifier que 2 est une solution de (E).
2. Trouver trois nombres réels a, b et c tels que,

pour tout x ∈ R :

x3 − x2 − 14x + 24 = (x − 2)(ax2 + bx + c).

3. Résoudre l’équation (E).

Exercice 21. L’objectif de l’exercice est de résoudre
dans R l’équation suivante :

(E) : x4 − 5x3 + 4x2 + 5x + 1 = 0.

1. Vérifier que 0 n’est pas solution de (E).

2. Soit x ∈ R∗. On pose y = x − 1
x

.

(a) Montrer que x est solution de (E) si, et
seulement si, y2 − 5y + 2 = 0.

(b) Résoudre l’équation y2 − 5y + 2 = 0.
3. Résoudre (E).

Exercice 22. Trouver la forme factorisée de chacun
des polynômes suivants. On pourra commencer par
chercher une racine évidente.

1. P (x) = 2x3 − 3x2 − x + 2
2. Q(x) = x3 − 2x2 + x − 2
3. R(x) = x3 − x2 − 4x + 4
4. S(x) = x4 − 8x2 + 16

Exercice 23. Soient a, b, c ∈ R tels que a ̸= 0. On
rappelle que la forme « canonique » d’un polynôme
du second degré P : x → ax2 + bx + c est donnée
par :

P (x) = a
(

x + b

2a

)2
− b2 − 4ac

4a
.

Trouver la forme canonique des polynômes suivants.
1. P1(x) = x2 − 8x + 16
2. P2(x) = x2 + 12x + 10
3. P3(x) = −2x2 + 10x + 25
4. P4(x) = 4x2 + 5x + 3

Les raisonnements
Exercice 24. En raisonnant par l’absurde, montrer
que l’équation

x4 − 7x3 + 4x2 + 5x − 2 = 0

ne possède pas de solution parmi les nombres entiers.

Exercice 25. Par l’absurde, démontrer que 1
3 n’est

pas décimal. On rappelle qu’un nombre d est décimal
s’il existe a ∈ Z et n ∈ N tels que d = a

10n .

Exercice 26. On souhaite démontrer par l’absurde
que le nombre

√
2 est irrationnel.

1. On suppose que
√

2 est rationnel. Il existe
ainsi deux nombres a ∈ N et b ∈ N∗ premiers
entre eux tels que :

√
2 = a

b
.

(a) En élevant cette égalité au carré, mon-
trer que a2 est un nombre pair.

(b) En déduire que a est un nombre pair. Il
existe donc k ∈ N tel que a = 2k .
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Puissances et racines carrées
Exercice 6. Écrire chacun des nombres suivants
sous la forme an avec a, n ∈ Z.

(a) 52 × 54

(b) 64 × 6−9

(c) 38 × 28 × 58

(d) −4 × (−4)7

(e) 23 × 79

143

(f)
(

42

49

)−3

Exercice 7. Écrire chacun des nombres suivants
sous la forme 2a3b5c7d avec a, b, c, d ∈ Z :

• a =
(3

4

)−2
×

(1
8

)5

• b = (23 × 54)3

(22 × 72)4

• c = 32 × 9−4 × 62

12−3 × 24

• d = 812 + 812 + 812 + 812

Exercice 8. Existe-t-il un nombre entier n ∈ N tel
que 27n + 27n + 27n = 346 ? Si oui, le déterminer.

Exercice 9. Écrire chacun des nombres suivants
sous la forme a

√
2 ou sous la forme a

√
5 avec a ∈ N.

(a)
√

50
(b)

√
8

(c)
√

128
(d)

√
72

(e)
√

18
(f)

√
125

(g)
√

320
(h)

√
98

Exercice 10. Écrire les nombres suivants sous la
forme a

√
b avec a ∈ Z et b ∈ N.

• A =
√

12 − 4
√

3 + 4
√

75
• B = 2

√
90 − 5

√
40 + 7

√
10

• C = 7
√

32 − 9
√

50 + 3
√

8

Exercice 11. Sans utiliser de calculatrice, calculer
astucieusement les nombres suivants :

(a)
√

132 + 132 + 132 + 132

(b)
√

50 +
√

18√
32

(c)

√
5 +

√
11 +

√
19 +

√
29 +

√
49

(d)

√√√√
31 +

√
21 +

√
13 +

√
7 +

√
3 +

√
1

(e)
√

75 −
√

50√
3 −

√
2

(f)
√

262 − 242

(g)
√

29 + 29

Exercice 12. On considère un rectangle ABCD tel
que AB =

√
12 et AC =

√
27. Calculer les valeurs

exactes et simplifiées de son aire et de son périmètre.

Exercice 13 (Quantité conjuguée). On dit que des
quantités du type a+b et a−b sont conjuguées l’une
de l’autre. Par exemple, on dira que

√
2 − 3 est la

quantité conjuguée de
√

2 + 3.
1. (a) Montrer que (

√
2+3)(

√
2−3) est entier.

(b) En déduire une écriture sans racine car-
rée au dénominateur du nombre suivant :

A = 1√
2 + 3

.

2. Écrire sans radical au dénominateur chacun
des nombres suivants :

• B = 3√
6 +

√
5

• C = 5
2 −

√
3

• D =
√

6√
2 +

√
3

• E = 1
1 +

√
3 +

√
5

.

Exercice 14. Calculer :

8 − 2
√

15√
3 −

√
5

+ 8 + 2
√

15√
3 +

√
5

Exercice 15. Prouver que :
√

2 −
√

3 +
√

2 +
√

3 =
√

6.

Valeur absolue
Exercice 16. Dans chacun des cas suivants, trouver
l’ensemble des x ∈ R vérifiant la condition donnée.

(a) |x| ⩽ 2
(b) |x − 1| < 9
(c) |x + 5| ⩽ 7
(d) |x − 2| ⩽ −3

Exercice 17. Résoudre dans R les équations et les
inéquations suivantes.

(a) |2x + 5| = 7
(b) |7 − 5x| = |3x + 1|
(c) |x + 2| = |x − 2|

1.2. ÉNONCÉS DES EXERCICES 13

(d) |x − 5| + 4(x − 2) ⩽ 3|2x − 7|
(e) |x + 1| ⩾ |x − 1|
(f) |x + 2| ⩾ 2|x + 3|

Polynômes et équations
Exercice 18. Résoudre dans R les équations et les
inéquations suivantes.

(a) x2 + 2x − 3 = 0
(b) 5x2 + 7x + 18 = 0.
(c) (x + 3)(2x2 − 10x + 15) = 0
(d) −3x2 + 9x + 30 < 0
(e) −x2 − 5x + 7 ⩾ x + 1
(f) (x + 3)(2x2 + 9x − 5) < 0

(g) x + 3
2x2 + 9x − 5 ⩾ 0

Exercice 19. Dans un carré de côté 10 centimètres,
on a colorié une bande de largeur x centimètres et
un carré de côté x centimètres centré comme comme
sur la figure suivante.

Déterminer les valeurs de x pour lesquelles l’aire de
la partie coloriée est strictement inférieure à l’aire
de la partie non coloriée.

Exercice 20. L’objectif de l’exercice est de résoudre
dans R l’équation suivante :

(E) : x3 − x2 − 14x + 24 = 0.

1. Vérifier que 2 est une solution de (E).
2. Trouver trois nombres réels a, b et c tels que,

pour tout x ∈ R :

x3 − x2 − 14x + 24 = (x − 2)(ax2 + bx + c).

3. Résoudre l’équation (E).

Exercice 21. L’objectif de l’exercice est de résoudre
dans R l’équation suivante :

(E) : x4 − 5x3 + 4x2 + 5x + 1 = 0.

1. Vérifier que 0 n’est pas solution de (E).

2. Soit x ∈ R∗. On pose y = x − 1
x

.

(a) Montrer que x est solution de (E) si, et
seulement si, y2 − 5y + 2 = 0.

(b) Résoudre l’équation y2 − 5y + 2 = 0.
3. Résoudre (E).

Exercice 22. Trouver la forme factorisée de chacun
des polynômes suivants. On pourra commencer par
chercher une racine évidente.

1. P (x) = 2x3 − 3x2 − x + 2
2. Q(x) = x3 − 2x2 + x − 2
3. R(x) = x3 − x2 − 4x + 4
4. S(x) = x4 − 8x2 + 16

Exercice 23. Soient a, b, c ∈ R tels que a ̸= 0. On
rappelle que la forme « canonique » d’un polynôme
du second degré P : x → ax2 + bx + c est donnée
par :

P (x) = a
(

x + b

2a

)2
− b2 − 4ac

4a
.

Trouver la forme canonique des polynômes suivants.
1. P1(x) = x2 − 8x + 16
2. P2(x) = x2 + 12x + 10
3. P3(x) = −2x2 + 10x + 25
4. P4(x) = 4x2 + 5x + 3

Les raisonnements
Exercice 24. En raisonnant par l’absurde, montrer
que l’équation

x4 − 7x3 + 4x2 + 5x − 2 = 0

ne possède pas de solution parmi les nombres entiers.

Exercice 25. Par l’absurde, démontrer que 1
3 n’est

pas décimal. On rappelle qu’un nombre d est décimal
s’il existe a ∈ Z et n ∈ N tels que d = a

10n .

Exercice 26. On souhaite démontrer par l’absurde
que le nombre

√
2 est irrationnel.

1. On suppose que
√

2 est rationnel. Il existe
ainsi deux nombres a ∈ N et b ∈ N∗ premiers
entre eux tels que :

√
2 = a

b
.

(a) En élevant cette égalité au carré, mon-
trer que a2 est un nombre pair.

(b) En déduire que a est un nombre pair. Il
existe donc k ∈ N tel que a = 2k .
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14 CHAPITRE 1. CALCULS ET RAISONNEMENTS

(c) Montrer qu’alors : b2 = 2k2. En déduire
que b est également un nombre pair.

2. Conclure que
√

2 est un nombre irrationnel.

Exercice 27. Démontrer par récurrence que, pour
tout n ∈ N∗ :

12 + 22 + 32 + · · · + n2 = n(n + 1)(2n + 1)
6 .

Exercice 28. Démontrer par récurrence que, pour
tout n ∈ N∗ :

1 × 2 + 2 × 3 + · · · + n(n + 1) = n(n + 1)(n + 2)
3 .

Exercice 29. Démontrer par récurrence que, pour
tout n ∈ N, le nombre 32n − 2n est divisible par 7.

Exercice 30. Démontrer par récurrence que, pour
tout n ∈ N, le nombre n3 + 5n est multiple de 3.

Exercice 31. Prouver que 2n − 1 ⩾ n pour tout
n ∈ N. On pourra raisonner par récurrence.

Exercice 32. Soit x > 0. Démontrer par récurrence
que, pour tout n ∈ N∗ :

(1 + x)n > 1 + nx.

Le coin du chercheur
Exercice 33 (⋆⋆). Résoudre dans R :

(x + 2)(x + 3)(x + 4)(x + 5)
(x − 2)(x − 3)(x − 4)(x − 5) = 1.

Exercice 34 (⋆⋆). Soient ABC un triangle et H le
point d’intersection de la hauteur issue de A et du
segment [BC]. On note :

a = BC ; b = AC ; c = AB,

ainsi que

s = a + b + c

2 .

L’objectif de l’exercice est de démontrer la formule
de Héron affirmant que l’aire A du triangle est :

A =
√

s(s − a)(s − b)(s − c).

A

B CH a

bc h

1. Justifier que :

AH2 = c2 −
(

c2 + b2 − b2

2a

)2

.

2. Montrer que :

A2 = 1
16(a+c+b)(a+c−b)(b+c−a)(b+a−c).

3. Montrer que

A2 = 1
16(2s − 2c)(2s − 2a)(2s − 2b)(2s).

Et déduire pour conclure la formule de Héron.

1.3 Corrigés des exercices

Exercice 1.
(a) En utilisant la deuxième identité remarquable, on

obtient que :
(

x −
1
2

)2
= x2 + 2 × x ×

1
2

+
(1

2

)2

= x2 + x +
1
4

.

(b) On commence par développer (x − 1)2 avec la
deuxième identité remarquable puis on distribue. On

calcule :

(x − 1)2(x + 5) = (x2 − 2x + 1)(x + 5)

= x3 + 5x2 − 2x2 − 10x + x + 5

= x3 + 3x2 − 9x + 5.

(c) Notons A l’expression à développer. On commence
par développer les produits et carrés :

5(x − 4)2 = 5(x2 − 8x + 16)

= 5x2 − 40x + 80

1.3. CORRIGÉS DES EXERCICES 15

3(x + 1)(x + 3) = 3(x2 + 3x + x + 3)

= 3(x2 + 4x + 3)

= 3x2 + 12x + 9

7(3x − 1)2 = 7(9x2 − 6x + 1)

= 63x2 − 42x + 7.

Ensuite, on calcule :

A =
(

5x2 − 40x + 80
)

+
(

3x2 + 12x + 9
)

−
(

63x2 − 42x + 7
)

= 5x2 + 3x2 − 63x2 − 40x + 12x + 42x

+ 80 + 9 − 7

= −55x2 + 14x + 82.

(d) L’idée est d’utiliser la première identité remarquable
en prenant, par exemple :

a = x2

b = x + 1.

On calcule :

(x2 + x + 1)2 = x4 + 2x2(x + 1) + (x + 1)2

= x4 + 2x3 + 2x2 + x2 + 2x + 1

= x4 + 2x3 + 3x2 + 2x + 1.

Exercice 2.
(a) On calcule :

(a + b)3 = (a + b)(a + b)2

= (a + b)(a2 + 2ab + b2)

= a3 + 2a2b + ab2 + ba2 + 2ab2 + b3

= a3 + 3a2b + 3ab2 + b3.

(b) On calcule :

(a − b)3 = (a − b)(a − b)2

= (a − b)(a2 − 2ab + b2)

= a3 − 2a2b + ab2 − ba2 + 2ab2 − b3

= a3 − 3a2b + 3ab2 − b3.

(c) En utilisant le résultat obtenu à la première question,
on calcule :

(a + b)4 = (a + b)(a + b)3

= (a + b)(a3 + 3a2b + 3ab2 + b3)

= a4 + 3a3b + 3a2b2 + ab3

+ ba3 + 3a2b2 + 3ab3 + b4

= a4 + 4a3b + a2b2 + 4ab3 + b4.

(d) Il est possible de procéder comme précédemment.
Pour changer de méthode, on propose de nous ra-
mener au cas (a + b)4 en remarquant que :

a + b = a − (−b).

et que :

(−b)2 = b2 ; (−b)3 = −b3 ; (−b)4 = b4.

Ainsi, on calcule :

(a + b)4 =
(

a + (−b)
)4

= a4 + 4a3(−b) + a2(−b)2

+ 4a(−b)3 + (−b)4

= a4 − 4a3b + a2b2 − 4ab3 + b4.

Remarque : la technique utilisée en question 4 permettait
évidemment de retrouver (a − b)3 à partir de (a + b)3.

Exercice 3. L’idée clef du calcul est de remarquer que
les termes x2 et 1

x2 sont exactement les deux carrés du
développement de l’identité remarquable

(
x +

1
x

)2
.

Cette observation étant faite, on se lance dans les calculs
et on avise ! Déjà, on voit que :

(
x +

1
x

)2
= x2 + 2 × x ×

1
x

+
( 1

x

)2

= x2 + 2 +
1

x2 .

Et c’est gagné ! En effet :

x2 +
1

x2 =
(

x +
1
x

)2
− 2

= 20252 − 2
= 4100623.

Exercice 4.
(a) On factorise :

x2 − 5x = x × x − 5x

= x(x − 5).

(b) On factorise :

3(x − 1) + (x − 1)(x + 5) = (x − 1)
(

3 + (x + 5)
)

= (x − 1)(x + 8).

(c) On factorise :

(2x + 5)(x − 7) + (4x + 8)(x − 7)

= (x − 7)
(

(2x + 5) − (4x + 8)
)

= (x − 7)(2x + 5 − 4x − 8)
= (x − 7)(−2x − 3).

(d) On factorise :

7(x + 1)(2x2 + 3) + x(x + 1)(5 − 14x)

= (x + 1)
(

7(2x2 + 3) + x(5 − 14x)
)

= (x + 1)(14x2 + 21 + 5x − 14x2)
= (x + 1)(5x + 21).
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14 CHAPITRE 1. CALCULS ET RAISONNEMENTS

(c) Montrer qu’alors : b2 = 2k2. En déduire
que b est également un nombre pair.

2. Conclure que
√

2 est un nombre irrationnel.

Exercice 27. Démontrer par récurrence que, pour
tout n ∈ N∗ :

12 + 22 + 32 + · · · + n2 = n(n + 1)(2n + 1)
6 .

Exercice 28. Démontrer par récurrence que, pour
tout n ∈ N∗ :

1 × 2 + 2 × 3 + · · · + n(n + 1) = n(n + 1)(n + 2)
3 .

Exercice 29. Démontrer par récurrence que, pour
tout n ∈ N, le nombre 32n − 2n est divisible par 7.

Exercice 30. Démontrer par récurrence que, pour
tout n ∈ N, le nombre n3 + 5n est multiple de 3.

Exercice 31. Prouver que 2n − 1 ⩾ n pour tout
n ∈ N. On pourra raisonner par récurrence.

Exercice 32. Soit x > 0. Démontrer par récurrence
que, pour tout n ∈ N∗ :

(1 + x)n > 1 + nx.

Le coin du chercheur
Exercice 33 (⋆⋆). Résoudre dans R :

(x + 2)(x + 3)(x + 4)(x + 5)
(x − 2)(x − 3)(x − 4)(x − 5) = 1.

Exercice 34 (⋆⋆). Soient ABC un triangle et H le
point d’intersection de la hauteur issue de A et du
segment [BC]. On note :

a = BC ; b = AC ; c = AB,

ainsi que

s = a + b + c

2 .

L’objectif de l’exercice est de démontrer la formule
de Héron affirmant que l’aire A du triangle est :

A =
√

s(s − a)(s − b)(s − c).

A

B CH a

bc h

1. Justifier que :

AH2 = c2 −
(

c2 + b2 − b2

2a

)2

.

2. Montrer que :

A2 = 1
16(a+c+b)(a+c−b)(b+c−a)(b+a−c).

3. Montrer que

A2 = 1
16(2s − 2c)(2s − 2a)(2s − 2b)(2s).

Et déduire pour conclure la formule de Héron.

1.3 Corrigés des exercices

Exercice 1.
(a) En utilisant la deuxième identité remarquable, on

obtient que :
(

x −
1
2

)2
= x2 + 2 × x ×

1
2

+
(1

2

)2

= x2 + x +
1
4

.

(b) On commence par développer (x − 1)2 avec la
deuxième identité remarquable puis on distribue. On

calcule :

(x − 1)2(x + 5) = (x2 − 2x + 1)(x + 5)

= x3 + 5x2 − 2x2 − 10x + x + 5

= x3 + 3x2 − 9x + 5.

(c) Notons A l’expression à développer. On commence
par développer les produits et carrés :

5(x − 4)2 = 5(x2 − 8x + 16)

= 5x2 − 40x + 80
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3(x + 1)(x + 3) = 3(x2 + 3x + x + 3)

= 3(x2 + 4x + 3)

= 3x2 + 12x + 9

7(3x − 1)2 = 7(9x2 − 6x + 1)

= 63x2 − 42x + 7.

Ensuite, on calcule :

A =
(

5x2 − 40x + 80
)

+
(

3x2 + 12x + 9
)

−
(

63x2 − 42x + 7
)

= 5x2 + 3x2 − 63x2 − 40x + 12x + 42x

+ 80 + 9 − 7

= −55x2 + 14x + 82.

(d) L’idée est d’utiliser la première identité remarquable
en prenant, par exemple :

a = x2

b = x + 1.

On calcule :

(x2 + x + 1)2 = x4 + 2x2(x + 1) + (x + 1)2

= x4 + 2x3 + 2x2 + x2 + 2x + 1

= x4 + 2x3 + 3x2 + 2x + 1.

Exercice 2.
(a) On calcule :

(a + b)3 = (a + b)(a + b)2

= (a + b)(a2 + 2ab + b2)

= a3 + 2a2b + ab2 + ba2 + 2ab2 + b3

= a3 + 3a2b + 3ab2 + b3.

(b) On calcule :

(a − b)3 = (a − b)(a − b)2

= (a − b)(a2 − 2ab + b2)

= a3 − 2a2b + ab2 − ba2 + 2ab2 − b3

= a3 − 3a2b + 3ab2 − b3.

(c) En utilisant le résultat obtenu à la première question,
on calcule :

(a + b)4 = (a + b)(a + b)3

= (a + b)(a3 + 3a2b + 3ab2 + b3)

= a4 + 3a3b + 3a2b2 + ab3

+ ba3 + 3a2b2 + 3ab3 + b4

= a4 + 4a3b + a2b2 + 4ab3 + b4.

(d) Il est possible de procéder comme précédemment.
Pour changer de méthode, on propose de nous ra-
mener au cas (a + b)4 en remarquant que :

a + b = a − (−b).

et que :

(−b)2 = b2 ; (−b)3 = −b3 ; (−b)4 = b4.

Ainsi, on calcule :

(a + b)4 =
(

a + (−b)
)4

= a4 + 4a3(−b) + a2(−b)2

+ 4a(−b)3 + (−b)4

= a4 − 4a3b + a2b2 − 4ab3 + b4.

Remarque : la technique utilisée en question 4 permettait
évidemment de retrouver (a − b)3 à partir de (a + b)3.

Exercice 3. L’idée clef du calcul est de remarquer que
les termes x2 et 1

x2 sont exactement les deux carrés du
développement de l’identité remarquable

(
x +

1
x

)2
.

Cette observation étant faite, on se lance dans les calculs
et on avise ! Déjà, on voit que :

(
x +

1
x

)2
= x2 + 2 × x ×

1
x

+
( 1

x

)2

= x2 + 2 +
1

x2 .

Et c’est gagné ! En effet :

x2 +
1

x2 =
(

x +
1
x

)2
− 2

= 20252 − 2
= 4100623.

Exercice 4.
(a) On factorise :

x2 − 5x = x × x − 5x

= x(x − 5).

(b) On factorise :

3(x − 1) + (x − 1)(x + 5) = (x − 1)
(

3 + (x + 5)
)

= (x − 1)(x + 8).

(c) On factorise :

(2x + 5)(x − 7) + (4x + 8)(x − 7)

= (x − 7)
(

(2x + 5) − (4x + 8)
)

= (x − 7)(2x + 5 − 4x − 8)
= (x − 7)(−2x − 3).

(d) On factorise :

7(x + 1)(2x2 + 3) + x(x + 1)(5 − 14x)

= (x + 1)
(

7(2x2 + 3) + x(5 − 14x)
)

= (x + 1)(14x2 + 21 + 5x − 14x2)
= (x + 1)(5x + 21). Co

rr
ig

és
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(e) L’idée est d’utiliser la troisième identité remarquable
pour a = x et b = 7. En effet, on calcule alors :

x2 − 49 = x2 − 72

= (x − 7)(x + 7).

(f) De même qu’à la question précédente, avec la troi-
sième identité remarquable, on a que :

25x2 − 121y2 = (5x)2 − (11y)2

= (5x − 11y)(5x + 11y).

(g) En appliquant la troisième identité remarquable pour
les nombres a = 2x − 1 et b = x + 7, on a que :

(2x − 1)2 − (x + 7)2

=
(

(2x − 1) − (x + 7)
)(

(2x − 1) + (x + 7)
)

= (2x − 1 − x − 7)(3x + 6)
= (x − 8)(3x + 6).

(h) En procédant de même qu’à la question précédente,
on calcule :

25(3 − x)2 − 16(7x + 5)2

=
(

5(3 − x)
)2

−
(

4(7x + 5)
)2

=
(

5(3 − x) − 4(7x + 5)
)(

5(3 − x) + 4(7x + 5)
)

= (15 − 5x − 28x − 20)(15 − 5x + 28x + 20)
= (−33x − 5)(17x + 35).

(i) L’idée est de reconnaître la forme développée de la
deuxième identité remarquable pour a = x et b = 3.
En effet, on a que :

x2 − 6x + 9 = x2 − 2 × x × 3 + 32

= (x − 3)2.

(j) Comme à la question précédente, on identifie la
forme développée de la première identité remar-
quable :

4x2 + 28x + 49 = (2x)2 + 2 × 2x × 7 + 72

= (2x + 7)2.

(k) On identifie de nouveau la forme développée de la
deuxième identité remarquable :

1 − 16x + 64x2 = 12 − 2 × 1 × 8x + (8x)2

= (1 − 8x)2.

Exercice 5.
(a) Cette expression est définie lorsque x − 1 ̸= 0. Ainsi,

son ensemble de définition D est :

R \ {1} = ] − ∞; 1[ ∪ ]1; +∞[.

Pour tout x ∈ D, on calcule :

5 +
1

x − 1
=

5(x − 1)
x − 1

+
1

x − 1

=
5(x − 1) + 1

x − 1

=
5x − 4
x − 1

.

(b) Cette expression est définie pour tous les x ∈ R tels
que x ̸= 0 et x − 7 ̸= 0. Son ensemble de définition
est donc :

D = R \ {0; 7}.

Pour tout x ∈ D, on calcule :

2
x

−
3

x − 7
=

2(x − 7)
x(x − 7)

−
3x

x(x − 7)

=
2(x − 7) − 3x

x(x − 7)

=
−x − 14
x(x − 7)

.

Remarque : On ne développe pas le dénominateur.
La forme factorisée permet de voir les valeurs inter-
dites.

(c) Cette expression est définie pour tous les x ∈ R qui
vérifient x+3 ̸= 0 et (x+5)(x−1) ̸= 0. Son ensemble
de définition est donc :

D = R \ {−5; −3; 1}.

Pour tout x ∈ D, on calcule :

2
x + 3

−
4x

(x + 5)(x − 1)

=
2(x + 5)(x − 1)

(x + 3)(x + 5)(x − 1)
−

4x(x + 3)
(x + 3)(x + 5)(x − 1)

=
2(x + 5)(x − 1) − 4x(x + 3)

(x + 3)(x + 5)(x − 1)

=
2(x2 + 4x − 5) − 4x2 − 12x

(x + 3)(x + 5)(x − 1)

=
2x2 + 8x − 10 − 4x2 − 12x

(x + 3)(x + 5)(x − 1)

=
−2x2 − 4x − 10

(x + 3)(x + 5)(x − 1)
.

(d) La racine carrée n’étant définie que pour les nombres
réels positifs, cette expression est définie pour tous
les nombres x ∈ R tels que x ⩾ 0 et x ̸= 0. Son
ensemble de définition est donc :

D = ]0; +∞[.

Pour tout x ∈ D, on calcule :

√
x +

1
√

x
+

1
x

=
x ×

√
x

x
+

√
x

√
x ×

√
x

+
1
x

=
x

√
x

x
+

√
x

x
+

1
x

=
x

√
x +

√
x + 1

x
.

(e) Cette expression algébrique est définie pour tous les
nombres x ∈ R tels que x ̸= 0, que x − 1 ̸= 0 et que

x2 − 1 ̸= 0 ⇐⇒ (x − 1)(x + 1) ̸= 0
⇐⇒ x ̸= 1 et x ̸= −1.
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Son ensemble de définition est D = R \ {−1; 0; 1}.
Pour tout x ∈ D, on calcule :

1
x

+
1

x − 1
+

1
x2 − 1

=
x2 − 1

x(x2 − 1)
+

x(x + 1)
x(x − 1)(x + 1)

+
1

x2 − 1

=
x2 − 1 + x(x + 1) + x

x(x2 − 1)

=
x2 − 1 + x2 + x + x

x(x2 − 1)

=
2x2 + 2x − 1

x(x2 − 1)
.

Exercice 6. On simplifie chaque expression en utilisant
les propriétés des puissances. Au lecteur de s’assurer qu’il
identifie à chaque étape des calculs la propriété utilisée.

(a) On calcule :

52 × 54 = 52+4

= 56.

(b) On calcule :

64 × 6−9 = 64+(−9)

= 6−5.

(c) On calcule :

38 × 28 × 58 = (3 × 2 × 5)8

= 308.

(d) On calcule :

−4 × (−4)7 = (−4)1 × (−4)7

= (−4)8.

(e) On calcule :

23 × 79

143 =
23 × 79

(2 × 7)3

=
23 × 79

23 × 73

= 79−3

= 76.

(f) On calcule :
(

42

49

)−3

=
(

42−9
)−3

=
(

4−7
)−3

= 4−7×(−3)

= 421.

Exercice 7. Comme dans l’exercice précédent, il s’agit
de manipuler habilement les formules sur les puissances.

• On calcule :

a =
3−2

4−2 ×
1
85

= 3−2 × 42 × 8−5

= 3−2 ×
(

22
)2

×
(

23
)−5

= 3−2 × 24 × 2−15

= 2−11 × 3−2

• On calcule :

b =

(
23

)3
×

(
54

)3

(
22

)4
×

(
72

)4

=
29 × 512

28 × 78

= 2 × 512 × 7−8.

• On calcule :

c =
32 ×

(
32

)−4
× (2 × 3)2

(
22 × 3

)−3
× 24

=
32 × 3−8 × 22 × 32

2−6 × 3−3 × 24

=
3−4 × 22

2−2 × 3−3

= 24 × 3−1.

• On calcule :
d = 812 + 812 + 812 + 812

= 4 × 812

= 22 ×
(

23
)12

= 22 × 236

= 238.

Exercice 8. Supposons qu’un tel entier n ∈ N existe.
On commence par calculer :

27n + 27n + 27n =
(

33
)n

+
(

33
)n

+
(

33
)n

= 3 × 33n

= 33n+1.

On cherche ainsi n ∈ N tel que 33n+1 = 346. Cela im-
plique que 3n + 1 = 46. Et finalement, on trouve que
n = 15.

Exercice 9. On utilise ici que
√

a × b =
√

a ×
√

b pour
tous réels a ⩾ 0 et b ⩾ 0. On calcule :

(a)
√

50 =
√

25 × 2 =
√

25 ×
√

2 = 5
√

2
(b)

√
8 =

√
4 × 2 =

√
4 ×

√
2 = 2

√
2

(c)
√

128 =
√

64 × 2 =
√

64 ×
√

2 = 8
√

2
(d)

√
72 =

√
36 × 2 =

√
36 ×

√
2 = 6

√
2

(e)
√

18 =
√

9 × 2 =
√

9 ×
√

2 = 3
√

2
(f)

√
125 =

√
25 × 5 =

√
25 ×

√
5 = 5

√
5

(g)
√

320 =
√

64 × 5 =
√

64 ×
√

5 = 8
√

5
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(e) L’idée est d’utiliser la troisième identité remarquable
pour a = x et b = 7. En effet, on calcule alors :

x2 − 49 = x2 − 72

= (x − 7)(x + 7).

(f) De même qu’à la question précédente, avec la troi-
sième identité remarquable, on a que :

25x2 − 121y2 = (5x)2 − (11y)2

= (5x − 11y)(5x + 11y).

(g) En appliquant la troisième identité remarquable pour
les nombres a = 2x − 1 et b = x + 7, on a que :

(2x − 1)2 − (x + 7)2

=
(

(2x − 1) − (x + 7)
)(

(2x − 1) + (x + 7)
)

= (2x − 1 − x − 7)(3x + 6)
= (x − 8)(3x + 6).

(h) En procédant de même qu’à la question précédente,
on calcule :

25(3 − x)2 − 16(7x + 5)2

=
(

5(3 − x)
)2

−
(

4(7x + 5)
)2

=
(

5(3 − x) − 4(7x + 5)
)(

5(3 − x) + 4(7x + 5)
)

= (15 − 5x − 28x − 20)(15 − 5x + 28x + 20)
= (−33x − 5)(17x + 35).

(i) L’idée est de reconnaître la forme développée de la
deuxième identité remarquable pour a = x et b = 3.
En effet, on a que :

x2 − 6x + 9 = x2 − 2 × x × 3 + 32

= (x − 3)2.

(j) Comme à la question précédente, on identifie la
forme développée de la première identité remar-
quable :

4x2 + 28x + 49 = (2x)2 + 2 × 2x × 7 + 72

= (2x + 7)2.

(k) On identifie de nouveau la forme développée de la
deuxième identité remarquable :

1 − 16x + 64x2 = 12 − 2 × 1 × 8x + (8x)2

= (1 − 8x)2.

Exercice 5.
(a) Cette expression est définie lorsque x − 1 ̸= 0. Ainsi,

son ensemble de définition D est :

R \ {1} = ] − ∞; 1[ ∪ ]1; +∞[.

Pour tout x ∈ D, on calcule :

5 +
1

x − 1
=

5(x − 1)
x − 1

+
1

x − 1

=
5(x − 1) + 1

x − 1

=
5x − 4
x − 1

.

(b) Cette expression est définie pour tous les x ∈ R tels
que x ̸= 0 et x − 7 ̸= 0. Son ensemble de définition
est donc :

D = R \ {0; 7}.

Pour tout x ∈ D, on calcule :

2
x

−
3

x − 7
=

2(x − 7)
x(x − 7)

−
3x

x(x − 7)

=
2(x − 7) − 3x

x(x − 7)

=
−x − 14
x(x − 7)

.

Remarque : On ne développe pas le dénominateur.
La forme factorisée permet de voir les valeurs inter-
dites.

(c) Cette expression est définie pour tous les x ∈ R qui
vérifient x+3 ̸= 0 et (x+5)(x−1) ̸= 0. Son ensemble
de définition est donc :

D = R \ {−5; −3; 1}.

Pour tout x ∈ D, on calcule :

2
x + 3

−
4x

(x + 5)(x − 1)

=
2(x + 5)(x − 1)

(x + 3)(x + 5)(x − 1)
−

4x(x + 3)
(x + 3)(x + 5)(x − 1)

=
2(x + 5)(x − 1) − 4x(x + 3)

(x + 3)(x + 5)(x − 1)

=
2(x2 + 4x − 5) − 4x2 − 12x

(x + 3)(x + 5)(x − 1)

=
2x2 + 8x − 10 − 4x2 − 12x

(x + 3)(x + 5)(x − 1)

=
−2x2 − 4x − 10

(x + 3)(x + 5)(x − 1)
.

(d) La racine carrée n’étant définie que pour les nombres
réels positifs, cette expression est définie pour tous
les nombres x ∈ R tels que x ⩾ 0 et x ̸= 0. Son
ensemble de définition est donc :

D = ]0; +∞[.

Pour tout x ∈ D, on calcule :

√
x +

1
√

x
+

1
x

=
x ×

√
x

x
+

√
x

√
x ×

√
x

+
1
x

=
x

√
x

x
+

√
x

x
+

1
x

=
x

√
x +

√
x + 1

x
.

(e) Cette expression algébrique est définie pour tous les
nombres x ∈ R tels que x ̸= 0, que x − 1 ̸= 0 et que

x2 − 1 ̸= 0 ⇐⇒ (x − 1)(x + 1) ̸= 0
⇐⇒ x ̸= 1 et x ̸= −1.
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Son ensemble de définition est D = R \ {−1; 0; 1}.
Pour tout x ∈ D, on calcule :

1
x

+
1

x − 1
+

1
x2 − 1

=
x2 − 1

x(x2 − 1)
+

x(x + 1)
x(x − 1)(x + 1)

+
1

x2 − 1

=
x2 − 1 + x(x + 1) + x

x(x2 − 1)

=
x2 − 1 + x2 + x + x

x(x2 − 1)

=
2x2 + 2x − 1

x(x2 − 1)
.

Exercice 6. On simplifie chaque expression en utilisant
les propriétés des puissances. Au lecteur de s’assurer qu’il
identifie à chaque étape des calculs la propriété utilisée.

(a) On calcule :

52 × 54 = 52+4

= 56.

(b) On calcule :

64 × 6−9 = 64+(−9)

= 6−5.

(c) On calcule :

38 × 28 × 58 = (3 × 2 × 5)8

= 308.

(d) On calcule :

−4 × (−4)7 = (−4)1 × (−4)7

= (−4)8.

(e) On calcule :

23 × 79

143 =
23 × 79

(2 × 7)3

=
23 × 79

23 × 73

= 79−3

= 76.

(f) On calcule :
(

42

49

)−3

=
(

42−9
)−3

=
(

4−7
)−3

= 4−7×(−3)

= 421.

Exercice 7. Comme dans l’exercice précédent, il s’agit
de manipuler habilement les formules sur les puissances.

• On calcule :

a =
3−2

4−2 ×
1
85

= 3−2 × 42 × 8−5

= 3−2 ×
(

22
)2

×
(

23
)−5

= 3−2 × 24 × 2−15

= 2−11 × 3−2

• On calcule :

b =

(
23

)3
×

(
54

)3

(
22

)4
×

(
72

)4

=
29 × 512

28 × 78

= 2 × 512 × 7−8.

• On calcule :

c =
32 ×

(
32

)−4
× (2 × 3)2

(
22 × 3

)−3
× 24

=
32 × 3−8 × 22 × 32

2−6 × 3−3 × 24

=
3−4 × 22

2−2 × 3−3

= 24 × 3−1.

• On calcule :
d = 812 + 812 + 812 + 812

= 4 × 812

= 22 ×
(

23
)12

= 22 × 236

= 238.

Exercice 8. Supposons qu’un tel entier n ∈ N existe.
On commence par calculer :

27n + 27n + 27n =
(

33
)n

+
(

33
)n

+
(

33
)n

= 3 × 33n

= 33n+1.

On cherche ainsi n ∈ N tel que 33n+1 = 346. Cela im-
plique que 3n + 1 = 46. Et finalement, on trouve que
n = 15.

Exercice 9. On utilise ici que
√

a × b =
√

a ×
√

b pour
tous réels a ⩾ 0 et b ⩾ 0. On calcule :

(a)
√

50 =
√

25 × 2 =
√

25 ×
√

2 = 5
√

2
(b)

√
8 =

√
4 × 2 =

√
4 ×

√
2 = 2

√
2

(c)
√

128 =
√

64 × 2 =
√

64 ×
√

2 = 8
√

2
(d)

√
72 =

√
36 × 2 =

√
36 ×

√
2 = 6

√
2

(e)
√

18 =
√

9 × 2 =
√

9 ×
√

2 = 3
√

2
(f)

√
125 =

√
25 × 5 =

√
25 ×

√
5 = 5

√
5

(g)
√

320 =
√

64 × 5 =
√

64 ×
√

5 = 8
√

5
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(h)
√

98 =
√

49 × 2 =
√

49 ×
√

2 = 7
√

2

Exercice 10.
• On remarque que 3, 12 et 75 sont multiples de 3. On

calcule :
A =

√
4 × 3 − 4

√
3 + 4

√
25 × 3

=
√

4 ×
√

3 − 4
√

3 + 4
√

25 ×
√

3

= 2
√

3 − 4
√

3 + 20
√

3

= 18
√

3.

• On remarque que 10, 40 et 90 sont multiples de 10.
On calcule :

B = 2
√

9 × 10 − 5
√

4 × 10 + 7
√

10

= 2
√

×
√

10 − 5
√

4 ×
√

10 + 7
√

10

= 6
√

10 − 10
√

10 + 7
√

10

= 3
√

10.

• On remarque que 8, 32 et 50 sont multiples de 2. On
calcule :

C = 7
√

16 × 2 − 9
√

25 × 2 + 3
√

4 × 2

= 7
√

16 ×
√

2 − 9
√

25 ×
√

2 + 3
√

4 ×
√

2

= 28
√

2 − 45
√

2 + 6
√

2

= −11
√

2.

Exercice 11.
(a) On calcule :√

132 + 132 + 132 + 133 =
√

4 × 132

=
√

4 ×
√

132

= 2 × 13
= 26.

(b) On calcule :
√

50 +
√

18
√

32
=

√
25 × 2 +

√
9 × 2

√16 × 2

=
5
√

2 + 3
√

2
2
√

2

=
8
√

2
2
√

2
= 4.

(c) L’idée est de calculer progressivement en partant de
la racine carrée la plus à l’intérieur de l’expression.
On obtient successivement que :√

49 = 7√
29 +

√
49 =

√
29 + 7 =

√
36 = 6√

19 +
√

29 +
√

49 =
√

19 + 6 =
√

25 = 5√
11 +

√
19 +

√
29 +

√
49 =

√
11 + 5 =

√
16 = 4√

5 +

√
11 +

√
19 +

√
29 +

√
49 =

√
5 + 4 = 3.

(d) On procède comme à la question précédente. Cela
donne successivement :

√
1 = 1√

3 +
√

1 =
√

4 = 2√
7 +

√
3 +

√
1 =

√
7 + 2 =

√
9 = 3√

13 +

√
7 +

√
3 +

√
1 =

√
13 + 3 =

√
16 = 4√

21 +

√
13 +

√
7 +

√
3 +

√
1 =

√
21 + 4 = 5

√√√√
31 +

√
21 +

√
13 +

√
7 +

√
3 +

√
1 =

√
31 + 5.

Ce nombre est donc 6.
(e) On calcule :

√
75 −

√
50

√
3 −

√
2

=
√

25 × 3 −
√

25 × 2
√

3 −
√

2

=
5
√

3 − 5
√

2
√

3 −
√

2

=
5
(√

3 −
√

2
)

√
3 −

√
2

= 5.

(f) On observe que le nombre sous le radical se prête à
l’utilisation de la troisième identité remarquable. On
calcule :√

262 − 242 =
√

(26 − 24)(26 + 24)

=
√

2 × 50

=
√

100
= 10.

(g) En utilisant les propriétés des puissances, on calcule :
√

29 + 29 =
√

2 × 29

=
√

210

=
√(

25
)2

= 25

= 32.

Exercice 12. L’aire AABCD du rectangle ABCD est
égale à :

AABCD = AB × AC

=
√

12 ×
√

27

=
√

3 × 4 ×
√

3 × 9

=
(√

3
)2

×
√

4 ×
√

9

= 18.

Co
rr

ig
és
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18 CHAPITRE 1. CALCULS ET RAISONNEMENTS

(h)
√

98 =
√

49 × 2 =
√

49 ×
√

2 = 7
√

2

Exercice 10.
• On remarque que 3, 12 et 75 sont multiples de 3. On

calcule :
A =

√
4 × 3 − 4

√
3 + 4

√
25 × 3

=
√

4 ×
√

3 − 4
√

3 + 4
√

25 ×
√

3

= 2
√

3 − 4
√

3 + 20
√

3

= 18
√

3.

• On remarque que 10, 40 et 90 sont multiples de 10.
On calcule :

B = 2
√

9 × 10 − 5
√

4 × 10 + 7
√

10

= 2
√

×
√

10 − 5
√

4 ×
√

10 + 7
√

10

= 6
√

10 − 10
√

10 + 7
√

10

= 3
√

10.

• On remarque que 8, 32 et 50 sont multiples de 2. On
calcule :

C = 7
√

16 × 2 − 9
√

25 × 2 + 3
√

4 × 2

= 7
√

16 ×
√

2 − 9
√

25 ×
√

2 + 3
√

4 ×
√

2

= 28
√

2 − 45
√

2 + 6
√

2

= −11
√

2.

Exercice 11.
(a) On calcule :√

132 + 132 + 132 + 133 =
√

4 × 132

=
√

4 ×
√

132

= 2 × 13
= 26.

(b) On calcule :
√

50 +
√

18
√

32
=

√
25 × 2 +

√
9 × 2

√16 × 2

=
5
√

2 + 3
√

2
2
√

2

=
8
√

2
2
√

2
= 4.

(c) L’idée est de calculer progressivement en partant de
la racine carrée la plus à l’intérieur de l’expression.
On obtient successivement que :√

49 = 7√
29 +

√
49 =

√
29 + 7 =

√
36 = 6√

19 +
√

29 +
√

49 =
√

19 + 6 =
√

25 = 5√
11 +

√
19 +

√
29 +

√
49 =

√
11 + 5 =

√
16 = 4√

5 +

√
11 +

√
19 +

√
29 +

√
49 =

√
5 + 4 = 3.

(d) On procède comme à la question précédente. Cela
donne successivement :

√
1 = 1√

3 +
√

1 =
√

4 = 2√
7 +

√
3 +

√
1 =

√
7 + 2 =

√
9 = 3√

13 +

√
7 +

√
3 +

√
1 =

√
13 + 3 =

√
16 = 4√

21 +

√
13 +

√
7 +

√
3 +

√
1 =

√
21 + 4 = 5

√√√√
31 +

√
21 +

√
13 +

√
7 +

√
3 +

√
1 =

√
31 + 5.

Ce nombre est donc 6.
(e) On calcule :

√
75 −

√
50

√
3 −

√
2

=
√

25 × 3 −
√

25 × 2
√

3 −
√

2

=
5
√

3 − 5
√

2
√

3 −
√

2

=
5
(√

3 −
√

2
)

√
3 −

√
2

= 5.

(f) On observe que le nombre sous le radical se prête à
l’utilisation de la troisième identité remarquable. On
calcule :√

262 − 242 =
√

(26 − 24)(26 + 24)

=
√

2 × 50

=
√

100
= 10.

(g) En utilisant les propriétés des puissances, on calcule :
√

29 + 29 =
√

2 × 29

=
√

210

=
√(

25
)2

= 25

= 32.

Exercice 12. L’aire AABCD du rectangle ABCD est
égale à :

AABCD = AB × AC

=
√

12 ×
√

27

=
√

3 × 4 ×
√

3 × 9

=
(√

3
)2

×
√

4 ×
√

9

= 18.

1.3. CORRIGÉS DES EXERCICES 19

Et son périmètre est :

PABCD = 2AB + 2AC

= 2
√

12 + 2
√

27

= 2 × 2
√

3 + 2 × 3
√

3

= 4
√

3 + 6
√

3

= 10
√

3.

Exercice 13.

1. (a) En utilisant la troisième identité remarquable,
on calcule :

(√
2 + 3

)(√
2 − 3

)
=

(√
2
)2

− (3)2

= 2 − 9
= −7.

Ce nombre est entier.
(b) On multiplie le numérateur et le dénominateur

par la quantité conjuguée de
√

2 + 3 :

A =
√

2 − 3
(
√

2 + 3)(
√

2 − 3)

=
√

2 − 3
−7

=
3 −

√
2

7
.

2. On procède à chaque fois de la même manière qu’à
la question précédente en utilisant la quantité conju-
guée du dénominateur.

• On calcule :

B =
3
(√

6 −
√

5
)

(√
6 +

√
5
)(√

6 −
√

5
)

=
3
(√

6 −
√

5
)

(√
6
)2

−
(√

5
)2

=
3(

√
6 −

√
5)

6 − 5
= 3

(√
6 −

√
5
)

.

• On calcule :

C =
5
(

2 +
√

3
)

(
2 −

√
3
)(

2 +
√

3
)

=
5
(

2 +
√

3
)

(2)2 −
(√

3
)2

=
5
(

2 +
√

3
)

4 − 3
= 5

(
2 +

√
3
)

.

• On calcule :

D =

√
6
(√

2 −
√

3
)

(√
2 +

√
3
)(√

2 −
√

3
)

=

√
6
(√

2 −
√

3
)

2 − 3

=
√

12 −
√

18
−1

=
√

18 −
√

12

= 3
√

2 − 2
√

3.

• On procède en deux étapes en commençant par
considérer comme conjugués l’un de l’autre les
nombres :(

1 +
√

3
)

+
√

5 et
(

1 +
√

3
)

−
√

5.

On calcule :

E =
1 +

√
3 −

√
5(

1 +
√

3 +
√

5
)(

1 +
√

3 −
√

5
)

=
1 +

√
3 −

√
5(

1 +
√

3
)2

−
(√

5
)2

=
1 +

√
3 −

√
5

1 + 2
√

3 +
(√

3
)2

− 5

=
1 +

√
3 −

√
5

−1 + 2
√

3
Et ensuite, en utilisant de nouveau la quantité
du dénominateur, on obtient que :

E =

(
1 +

√
3 −

√
5
)(

− 1 − 2
√

3
)

(
− 1 + 2

√
3
)(

− 1 − 2
√

3
)

=
−1 − 2

√
3 −

√
3 − 2

(√
3
)2

+
√

5 + 2
√

15

(−1)2 −
(

2
√

3
)2

=
−7 − 3

√
3 +

√
5 + 2

√
15

−11

=
7 + 3

√
3 −

√
5 − 2

√
15

11
.

Exercice 14. Notons A ce nombre. Avec les expressions
conjuguées des dénominateurs, on calcule déjà que :(

8 − 2
√

15
)(√

3 +
√

5
)

(√
3 −

√
5
)(√

3 +
√

5
) =

8
√

3 + 8
√

5 − 2
√

45 − 2
√

75(√
3
)2

−
(√

5
)2

=
8
√

3 + 8
√

5 − 2
√

45 − 2
√

75
−2

et d’autre part que :(
8 + 2

√
15

)(√
3 −

√
5
)

(√
3 +

√
5
)(√

3 −
√

5
) =

8
√

3 − 8
√

5 + 2
√

45 − 2
√

75(√
3
)2

−
(√

5
)2

=
8
√

3 − 8
√

5 + 2
√

45 − 2
√

75
−2
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(h)
√

98 =
√

49 × 2 =
√

49 ×
√

2 = 7
√

2

Exercice 10.
• On remarque que 3, 12 et 75 sont multiples de 3. On

calcule :
A =

√
4 × 3 − 4

√
3 + 4

√
25 × 3

=
√

4 ×
√

3 − 4
√

3 + 4
√

25 ×
√

3

= 2
√

3 − 4
√

3 + 20
√

3

= 18
√

3.

• On remarque que 10, 40 et 90 sont multiples de 10.
On calcule :

B = 2
√

9 × 10 − 5
√

4 × 10 + 7
√

10

= 2
√

×
√

10 − 5
√

4 ×
√

10 + 7
√

10

= 6
√

10 − 10
√

10 + 7
√

10

= 3
√

10.

• On remarque que 8, 32 et 50 sont multiples de 2. On
calcule :

C = 7
√

16 × 2 − 9
√

25 × 2 + 3
√

4 × 2

= 7
√

16 ×
√

2 − 9
√

25 ×
√

2 + 3
√

4 ×
√

2

= 28
√

2 − 45
√

2 + 6
√

2

= −11
√

2.

Exercice 11.
(a) On calcule :√

132 + 132 + 132 + 133 =
√

4 × 132

=
√

4 ×
√

132

= 2 × 13
= 26.

(b) On calcule :
√

50 +
√

18
√

32
=

√
25 × 2 +

√
9 × 2

√16 × 2

=
5
√

2 + 3
√

2
2
√

2

=
8
√

2
2
√

2
= 4.

(c) L’idée est de calculer progressivement en partant de
la racine carrée la plus à l’intérieur de l’expression.
On obtient successivement que :√

49 = 7√
29 +

√
49 =

√
29 + 7 =

√
36 = 6√

19 +
√

29 +
√

49 =
√

19 + 6 =
√

25 = 5√
11 +

√
19 +

√
29 +

√
49 =

√
11 + 5 =

√
16 = 4√

5 +

√
11 +

√
19 +

√
29 +

√
49 =

√
5 + 4 = 3.

(d) On procède comme à la question précédente. Cela
donne successivement :

√
1 = 1√

3 +
√

1 =
√

4 = 2√
7 +

√
3 +

√
1 =

√
7 + 2 =

√
9 = 3√

13 +

√
7 +

√
3 +

√
1 =

√
13 + 3 =

√
16 = 4√

21 +

√
13 +

√
7 +

√
3 +

√
1 =

√
21 + 4 = 5

√√√√
31 +

√
21 +

√
13 +

√
7 +

√
3 +

√
1 =

√
31 + 5.

Ce nombre est donc 6.
(e) On calcule :

√
75 −

√
50

√
3 −

√
2

=
√

25 × 3 −
√

25 × 2
√

3 −
√

2

=
5
√

3 − 5
√

2
√

3 −
√

2

=
5
(√

3 −
√

2
)

√
3 −

√
2

= 5.

(f) On observe que le nombre sous le radical se prête à
l’utilisation de la troisième identité remarquable. On
calcule :√

262 − 242 =
√

(26 − 24)(26 + 24)

=
√

2 × 50

=
√

100
= 10.

(g) En utilisant les propriétés des puissances, on calcule :
√

29 + 29 =
√

2 × 29

=
√

210

=
√(

25
)2

= 25

= 32.

Exercice 12. L’aire AABCD du rectangle ABCD est
égale à :

AABCD = AB × AC

=
√

12 ×
√

27

=
√

3 × 4 ×
√

3 × 9

=
(√

3
)2

×
√

4 ×
√

9

= 18.
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(h)
√

98 =
√

49 × 2 =
√

49 ×
√

2 = 7
√

2

Exercice 10.
• On remarque que 3, 12 et 75 sont multiples de 3. On

calcule :
A =

√
4 × 3 − 4

√
3 + 4

√
25 × 3

=
√

4 ×
√

3 − 4
√

3 + 4
√

25 ×
√

3

= 2
√

3 − 4
√

3 + 20
√

3

= 18
√

3.

• On remarque que 10, 40 et 90 sont multiples de 10.
On calcule :

B = 2
√

9 × 10 − 5
√

4 × 10 + 7
√

10

= 2
√

×
√

10 − 5
√

4 ×
√

10 + 7
√

10

= 6
√

10 − 10
√

10 + 7
√

10

= 3
√

10.

• On remarque que 8, 32 et 50 sont multiples de 2. On
calcule :

C = 7
√

16 × 2 − 9
√

25 × 2 + 3
√

4 × 2

= 7
√

16 ×
√

2 − 9
√

25 ×
√

2 + 3
√

4 ×
√

2

= 28
√

2 − 45
√

2 + 6
√

2

= −11
√

2.

Exercice 11.
(a) On calcule :√

132 + 132 + 132 + 133 =
√

4 × 132

=
√

4 ×
√

132

= 2 × 13
= 26.

(b) On calcule :
√

50 +
√

18
√

32
=

√
25 × 2 +

√
9 × 2

√16 × 2

=
5
√

2 + 3
√

2
2
√

2

=
8
√

2
2
√

2
= 4.

(c) L’idée est de calculer progressivement en partant de
la racine carrée la plus à l’intérieur de l’expression.
On obtient successivement que :√

49 = 7√
29 +

√
49 =

√
29 + 7 =

√
36 = 6√

19 +
√

29 +
√

49 =
√

19 + 6 =
√

25 = 5√
11 +

√
19 +

√
29 +

√
49 =

√
11 + 5 =

√
16 = 4√

5 +

√
11 +

√
19 +

√
29 +

√
49 =

√
5 + 4 = 3.

(d) On procède comme à la question précédente. Cela
donne successivement :

√
1 = 1√

3 +
√

1 =
√

4 = 2√
7 +

√
3 +

√
1 =

√
7 + 2 =

√
9 = 3√

13 +

√
7 +

√
3 +

√
1 =

√
13 + 3 =

√
16 = 4√

21 +

√
13 +

√
7 +

√
3 +

√
1 =

√
21 + 4 = 5

√√√√
31 +

√
21 +

√
13 +

√
7 +

√
3 +

√
1 =

√
31 + 5.

Ce nombre est donc 6.
(e) On calcule :

√
75 −

√
50

√
3 −

√
2

=
√

25 × 3 −
√

25 × 2
√

3 −
√

2

=
5
√

3 − 5
√

2
√

3 −
√

2

=
5
(√

3 −
√

2
)

√
3 −

√
2

= 5.

(f) On observe que le nombre sous le radical se prête à
l’utilisation de la troisième identité remarquable. On
calcule :√

262 − 242 =
√

(26 − 24)(26 + 24)

=
√

2 × 50

=
√

100
= 10.

(g) En utilisant les propriétés des puissances, on calcule :
√

29 + 29 =
√

2 × 29

=
√

210

=
√(

25
)2

= 25

= 32.

Exercice 12. L’aire AABCD du rectangle ABCD est
égale à :

AABCD = AB × AC

=
√

12 ×
√

27

=
√

3 × 4 ×
√

3 × 9

=
(√

3
)2

×
√

4 ×
√

9

= 18.
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Et son périmètre est :

PABCD = 2AB + 2AC

= 2
√

12 + 2
√

27

= 2 × 2
√

3 + 2 × 3
√

3

= 4
√

3 + 6
√

3

= 10
√

3.

Exercice 13.

1. (a) En utilisant la troisième identité remarquable,
on calcule :

(√
2 + 3

)(√
2 − 3

)
=

(√
2
)2

− (3)2

= 2 − 9
= −7.

Ce nombre est entier.
(b) On multiplie le numérateur et le dénominateur

par la quantité conjuguée de
√

2 + 3 :

A =
√

2 − 3
(
√

2 + 3)(
√

2 − 3)

=
√

2 − 3
−7

=
3 −

√
2

7
.

2. On procède à chaque fois de la même manière qu’à
la question précédente en utilisant la quantité conju-
guée du dénominateur.

• On calcule :

B =
3
(√

6 −
√

5
)

(√
6 +

√
5
)(√

6 −
√

5
)

=
3
(√

6 −
√

5
)

(√
6
)2

−
(√

5
)2

=
3(

√
6 −

√
5)

6 − 5
= 3

(√
6 −

√
5
)

.

• On calcule :

C =
5
(

2 +
√

3
)

(
2 −

√
3
)(

2 +
√

3
)

=
5
(

2 +
√

3
)

(2)2 −
(√

3
)2

=
5
(

2 +
√

3
)

4 − 3
= 5

(
2 +

√
3
)

.

• On calcule :

D =

√
6
(√

2 −
√

3
)

(√
2 +

√
3
)(√

2 −
√

3
)

=

√
6
(√

2 −
√

3
)

2 − 3

=
√

12 −
√

18
−1

=
√

18 −
√

12

= 3
√

2 − 2
√

3.

• On procède en deux étapes en commençant par
considérer comme conjugués l’un de l’autre les
nombres :(

1 +
√

3
)

+
√

5 et
(

1 +
√

3
)

−
√

5.

On calcule :

E =
1 +

√
3 −

√
5(

1 +
√

3 +
√

5
)(

1 +
√

3 −
√

5
)

=
1 +

√
3 −

√
5(

1 +
√

3
)2

−
(√

5
)2

=
1 +

√
3 −

√
5

1 + 2
√

3 +
(√

3
)2

− 5

=
1 +

√
3 −

√
5

−1 + 2
√

3
Et ensuite, en utilisant de nouveau la quantité
du dénominateur, on obtient que :

E =

(
1 +

√
3 −

√
5
)(

− 1 − 2
√

3
)

(
− 1 + 2

√
3
)(

− 1 − 2
√

3
)

=
−1 − 2

√
3 −

√
3 − 2

(√
3
)2

+
√

5 + 2
√

15

(−1)2 −
(

2
√

3
)2

=
−7 − 3

√
3 +

√
5 + 2

√
15

−11

=
7 + 3

√
3 −

√
5 − 2

√
15

11
.

Exercice 14. Notons A ce nombre. Avec les expressions
conjuguées des dénominateurs, on calcule déjà que :(

8 − 2
√

15
)(√

3 +
√

5
)

(√
3 −

√
5
)(√

3 +
√

5
) =

8
√

3 + 8
√

5 − 2
√

45 − 2
√

75(√
3
)2

−
(√

5
)2

=
8
√

3 + 8
√

5 − 2
√

45 − 2
√

75
−2

et d’autre part que :(
8 + 2

√
15

)(√
3 −

√
5
)

(√
3 +

√
5
)(√

3 −
√

5
) =

8
√

3 − 8
√

5 + 2
√

45 − 2
√

75(√
3
)2

−
(√

5
)2

=
8
√

3 − 8
√

5 + 2
√

45 − 2
√

75
−2 Co

rr
ig

és
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En additionant les deux quantités obtenues, on obtient
finalement que :

A =
16

√
3 − 4

√
75

−2
= 2

√
75 − 8

√
3

= 2
√

25 × 3 − 8
√

3

= 10
√

3 − 8
√

3

= 2
√

3.

Exercice 15. L’égalité voulue est une égalité entre deux
nombres réels positifs. Deux nombres réels positifs sont
égaux si, et seulement si, leurs carrés sont égaux. Ainsi,
il suffit de montrer que :

(√
2 −

√
3 +

√
2 +

√
3
)2

= 6.

On calcule :(√
2 −

√
3 +

√
2 +

√
3
)2

=
(√

2 −
√

3
)2

+ 2
√

2 −
√

3 ×
√

2 +
√

3

+
(√

2 +
√

3
)2

= 2 −
√

3 + 2
√(

2 −
√

3
)(

2 +
√

3
)

+ 2 +
√

3

= 4 + 2
√

22 −
(√

3
)2

= 4 + 2
√

1
= 6.

Exercice 16. Soient a ∈ R et un réel r > 0. Puisque la
valeur absolue |x − a| correspond à la distance (sur un
axe gradué unitaire) entre les points d’abscisses x et a,
on voit que l’ensemble des nombres x ∈ R tels que

|x − a| ⩽ r

est l’ensemble des abscisses x des points s’écartant du
point d’abscisse a d’une distance au maximum égale à r.
C’est donc l’intervalle [a − r; a + r].

a a + ra − r

rr

Lorsque l’inégalité large ⩽ est remplacée par une inéga-
lité stricte < l’intervalle est ouvert.
(a) On prend a = 0 et r = 2 dans le raisonnement ci-

dessus. L’ensemble recherché est l’intervalle [0; 2].
(b) On prend a = 1 et r = 9. L’ensemble recherché est

donc l’intervalle ouvert ] − 8; 10[.
(c) On prend a = −5 et r = 7. L’ensemble recherché est

donc l’intervalle ] − 12; 2[.
(d) L’inégalité |x − 2| ⩽ −3 est évidemment impossible.

L’ensemble recherché est l’ensemble vide.

Exercice 17. Dans ce type d’exercice, le bon réflexe est
de faire le nécessaire pour se débarasser des valeurs ab-
solues. On fait des disjonctions de cas selon le signe des
expressions contenues dans les valeurs absolues.
(a) On résout :

2x + 5 > 0 ⇐⇒ x >
−5
2

.

Ainsi, on a que :

|2x + 5| =
{

2x + 5 si x ⩾ −5
2

−(2x + 5) si x < −5
2 .

On en déduit que :

|2x + 5| = 7 ⇐⇒
{

2x + 5 = 7 si x ⩾ −5
2

−2x − 5 = 7 si x < −5
2 .

La première équation 2x + 5 = 7 donne que x = 2 et
on vérifie que 2 ⩾ −5

2 . La deuxième équation donne
que x = −6 et on vérifie que −6 < −5

2 . L’ensemble
des solutions de l’équation est donc :

S = {−6; 2}.

Remarque. On trouve dans la littérature mathématique
l’utilisation de la propriété (qui est claire par définition
de la valeur absolue) donnant que, pour tout réel a ⩾ 0 :

|x| = a ⇐⇒ (x = a ou x = −a).

Son utilisation donne une résolution rapide de l’équation
précédente. Nous avons préféré rédiger la disjonction de
cas en détail car il s’agit de la méthode générale pour
traiter toute équation/inéquation avec des valeurs abso-
lues.
(b) On résout :

7 − 5x > 0 ⇐⇒ x <
7
5

et
3x + 1 > 0 ⇐⇒ x >

−1
3

.

On distingue trois cas que l’on peut présenter sous
la forme du tableau suivant :

x

7 − 5x

3x + 1

−∞ −1
3

7
5 +∞

7 − 5x 7 − 5x 5x − 7

−3x − 1 3x + 1 3x + 1

Premier cas : Lorsque x ∈
]
−∞; −1

3

[
, l’équation

est équivalente à

7 − 5x = −3x − 1 ⇐⇒ −2x = −8

⇐⇒ x =
8
3

.

Ce cas est finalement impossible car 8
3 ̸∈

]
−∞; −1

3

[
.
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Deuxième cas : Lorsque x ∈
[

−1
3 ; 7

5

]
, on obtient

que l’équation est équivalente à

7 − 5x = 3x + 1 ⇐⇒ −8x = −6

⇐⇒ x =
−3
4

.

Ce cas est encore impossible puisque −3
4 ̸∈

[
−1
3 ; 7

5

]
.

Troisième cas : Lorsque x ∈
]

7
5 : +∞

[
, on obtient

que l’équation est équivalente à

5x − 7 = 3x + 1 ⇐⇒ 2x = 8
⇐⇒ x = 4.

Ce cas est valable puisque l’on a bien 4 ∈
]

7
5 : +∞

[
.

En conclusion, l’équation admet une unique solu-
tion. On a que :

S = {4}.

(c) Nous laissons ici le lecteur rédiger la disjonction de
cas et vérifier que S = {0}.

(d) On résout :

x − 5 > 0 ⇐⇒ x > 5

et
2x − 7 > 0 ⇐⇒ x >

7
2

.

On distingue trois cas que l’on présente sous la forme
du tableau suivant :

x

x − 5

2x − 7

−∞ 7
2 5 +∞

5 − x 5 − x x − 5

−2x + 7 2x − 7 2x − 7

Premier cas : Lorsque x ∈
]
−∞; 7

2

[
, l’inéquation

est équivalente à

5 − x + 4(x − 2) ⩽ 3(−2x + 7)
⇐⇒ 5 − x + 4x − 8 ⩽ −6x + 21
⇐⇒ 9x ⩽ 24

⇐⇒ x ⩽
8
3

.

Tous les nombres x ⩽ 8
3 sont bien solutions car ils

appartiennent à l’intervalle
]
−∞; 7

2

[
.

Deuxième cas : Lorsque x ∈
[

7
2 ; 5

]
, on obtient que

l’inéquation est équivalente à

5 − x + 4(x − 2) ⩽ 3(2x − 7)
⇐⇒ 5 − x + 4x − 8 ⩽ 6x − 21
⇐⇒ − 3x ⩽ −18
⇐⇒ x ⩾ 6.

Ce cas n’apporte aucune solution puisque aucun
nombre réel x ⩾ 6 est dans l’intervalle

[
7
2 ; 5

]
.

Troisième cas : Lorsque x ∈ ]5; +∞[, l’inéquation
est équivalente à

x − 5 + 4(x − 2) ⩽ 3(2x − 7)
⇐⇒ x − 5 + 4x − 8 ⩽ 6x − 21
⇐⇒ − x ⩽ −8
⇐⇒ x ⩾ 8.

Tous les nombres x ⩾ 8 sont bien solutions car ils
appartiennent à l’intervalle ]5; +∞[.

En conclusion, on a que l’ensemble des solutions
de l’inéquation est :

S =
]

−∞;
7
2

[
∪ ]5; +∞[ .

(e) On effectue le même raisonnement. Les expressions
changent de signe en x = −1 et x = 1. Le tableau
suivant présente la disjonction de cas :

x

x − 1

x + 1

−∞ −1 1 +∞

−x + 1 −x + 1 x − 1

−x − 1 x + 1 x + 1

Premier cas : Lorsque x ∈ ] − ∞; 1[, l’inéquation est
équivalente à

|x + 1| ⩾ |x − 1| ⇐⇒ −x − 1 ⩾ −x + 1
⇐⇒ −1 ⩾ 1

Ceci est impossible, ce cas n’apporte aucune solution.

Deuxième cas : Lorsque x ∈ [−1; 1], on obtient
alors que :

|x + 1| ⩾ |x − 1| ⇐⇒ x + 1 ⩾ −x + 1
⇐⇒ x ⩾ 0.

Les solutions apportées par ce cas sont les nombres
réels vérifiant x ∈ [−1; 1] ∩ [0; +∞[, donc x ∈ [0; 1].

Troisième cas : Lorsque x ∈ ]1; +∞[, la résolution
de l’inéquation est :

|x + 1| ⩾ |x − 1| ⇐⇒ x + 1 ⩾ x − 1
⇐⇒ 1 ⩾ −1.

Ce qui est toujours vrai, pour tout x ∈ R. Ainsi, tous
les nombres x ∈ ]1; +∞[ sont bien des solutions.

Pour conclure, en combinant les trois cas, l’ensemble
des solutions de l’inéquation est :

S = [0; +∞[.
(f) On procède encore de la même manière. Les expres-

sions changent de signe en x = −3 et x = −2. Le
tableau suivant présente la disjonction de cas :

x

x + 2

x + 3

−∞ −3 −2 +∞

−x − 2 −x − 2 x + 2

−x − 3 x + 3 x + 3
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En additionant les deux quantités obtenues, on obtient
finalement que :

A =
16

√
3 − 4

√
75

−2
= 2

√
75 − 8

√
3

= 2
√

25 × 3 − 8
√

3

= 10
√

3 − 8
√

3

= 2
√

3.

Exercice 15. L’égalité voulue est une égalité entre deux
nombres réels positifs. Deux nombres réels positifs sont
égaux si, et seulement si, leurs carrés sont égaux. Ainsi,
il suffit de montrer que :

(√
2 −

√
3 +

√
2 +

√
3
)2

= 6.

On calcule :(√
2 −

√
3 +

√
2 +

√
3
)2

=
(√

2 −
√

3
)2

+ 2
√

2 −
√

3 ×
√

2 +
√

3

+
(√

2 +
√

3
)2

= 2 −
√

3 + 2
√(

2 −
√

3
)(

2 +
√

3
)

+ 2 +
√

3

= 4 + 2
√

22 −
(√

3
)2

= 4 + 2
√

1
= 6.

Exercice 16. Soient a ∈ R et un réel r > 0. Puisque la
valeur absolue |x − a| correspond à la distance (sur un
axe gradué unitaire) entre les points d’abscisses x et a,
on voit que l’ensemble des nombres x ∈ R tels que

|x − a| ⩽ r

est l’ensemble des abscisses x des points s’écartant du
point d’abscisse a d’une distance au maximum égale à r.
C’est donc l’intervalle [a − r; a + r].

a a + ra − r

rr

Lorsque l’inégalité large ⩽ est remplacée par une inéga-
lité stricte < l’intervalle est ouvert.
(a) On prend a = 0 et r = 2 dans le raisonnement ci-

dessus. L’ensemble recherché est l’intervalle [0; 2].
(b) On prend a = 1 et r = 9. L’ensemble recherché est

donc l’intervalle ouvert ] − 8; 10[.
(c) On prend a = −5 et r = 7. L’ensemble recherché est

donc l’intervalle ] − 12; 2[.
(d) L’inégalité |x − 2| ⩽ −3 est évidemment impossible.

L’ensemble recherché est l’ensemble vide.

Exercice 17. Dans ce type d’exercice, le bon réflexe est
de faire le nécessaire pour se débarasser des valeurs ab-
solues. On fait des disjonctions de cas selon le signe des
expressions contenues dans les valeurs absolues.
(a) On résout :

2x + 5 > 0 ⇐⇒ x >
−5
2

.

Ainsi, on a que :

|2x + 5| =
{

2x + 5 si x ⩾ −5
2

−(2x + 5) si x < −5
2 .

On en déduit que :

|2x + 5| = 7 ⇐⇒
{

2x + 5 = 7 si x ⩾ −5
2

−2x − 5 = 7 si x < −5
2 .

La première équation 2x + 5 = 7 donne que x = 2 et
on vérifie que 2 ⩾ −5

2 . La deuxième équation donne
que x = −6 et on vérifie que −6 < −5

2 . L’ensemble
des solutions de l’équation est donc :

S = {−6; 2}.

Remarque. On trouve dans la littérature mathématique
l’utilisation de la propriété (qui est claire par définition
de la valeur absolue) donnant que, pour tout réel a ⩾ 0 :

|x| = a ⇐⇒ (x = a ou x = −a).

Son utilisation donne une résolution rapide de l’équation
précédente. Nous avons préféré rédiger la disjonction de
cas en détail car il s’agit de la méthode générale pour
traiter toute équation/inéquation avec des valeurs abso-
lues.
(b) On résout :

7 − 5x > 0 ⇐⇒ x <
7
5

et
3x + 1 > 0 ⇐⇒ x >

−1
3

.

On distingue trois cas que l’on peut présenter sous
la forme du tableau suivant :

x

7 − 5x

3x + 1

−∞ −1
3

7
5 +∞

7 − 5x 7 − 5x 5x − 7

−3x − 1 3x + 1 3x + 1

Premier cas : Lorsque x ∈
]
−∞; −1

3

[
, l’équation

est équivalente à

7 − 5x = −3x − 1 ⇐⇒ −2x = −8

⇐⇒ x =
8
3

.

Ce cas est finalement impossible car 8
3 ̸∈

]
−∞; −1

3

[
.
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Deuxième cas : Lorsque x ∈
[

−1
3 ; 7

5

]
, on obtient

que l’équation est équivalente à

7 − 5x = 3x + 1 ⇐⇒ −8x = −6

⇐⇒ x =
−3
4

.

Ce cas est encore impossible puisque −3
4 ̸∈

[
−1
3 ; 7

5

]
.

Troisième cas : Lorsque x ∈
]

7
5 : +∞

[
, on obtient

que l’équation est équivalente à

5x − 7 = 3x + 1 ⇐⇒ 2x = 8
⇐⇒ x = 4.

Ce cas est valable puisque l’on a bien 4 ∈
]

7
5 : +∞

[
.

En conclusion, l’équation admet une unique solu-
tion. On a que :

S = {4}.

(c) Nous laissons ici le lecteur rédiger la disjonction de
cas et vérifier que S = {0}.

(d) On résout :

x − 5 > 0 ⇐⇒ x > 5

et
2x − 7 > 0 ⇐⇒ x >

7
2

.

On distingue trois cas que l’on présente sous la forme
du tableau suivant :

x

x − 5

2x − 7

−∞ 7
2 5 +∞

5 − x 5 − x x − 5

−2x + 7 2x − 7 2x − 7

Premier cas : Lorsque x ∈
]
−∞; 7

2

[
, l’inéquation

est équivalente à

5 − x + 4(x − 2) ⩽ 3(−2x + 7)
⇐⇒ 5 − x + 4x − 8 ⩽ −6x + 21
⇐⇒ 9x ⩽ 24

⇐⇒ x ⩽
8
3

.

Tous les nombres x ⩽ 8
3 sont bien solutions car ils

appartiennent à l’intervalle
]
−∞; 7

2

[
.

Deuxième cas : Lorsque x ∈
[

7
2 ; 5

]
, on obtient que

l’inéquation est équivalente à

5 − x + 4(x − 2) ⩽ 3(2x − 7)
⇐⇒ 5 − x + 4x − 8 ⩽ 6x − 21
⇐⇒ − 3x ⩽ −18
⇐⇒ x ⩾ 6.

Ce cas n’apporte aucune solution puisque aucun
nombre réel x ⩾ 6 est dans l’intervalle

[
7
2 ; 5

]
.

Troisième cas : Lorsque x ∈ ]5; +∞[, l’inéquation
est équivalente à

x − 5 + 4(x − 2) ⩽ 3(2x − 7)
⇐⇒ x − 5 + 4x − 8 ⩽ 6x − 21
⇐⇒ − x ⩽ −8
⇐⇒ x ⩾ 8.

Tous les nombres x ⩾ 8 sont bien solutions car ils
appartiennent à l’intervalle ]5; +∞[.

En conclusion, on a que l’ensemble des solutions
de l’inéquation est :

S =
]

−∞;
7
2

[
∪ ]5; +∞[ .

(e) On effectue le même raisonnement. Les expressions
changent de signe en x = −1 et x = 1. Le tableau
suivant présente la disjonction de cas :

x

x − 1

x + 1

−∞ −1 1 +∞

−x + 1 −x + 1 x − 1

−x − 1 x + 1 x + 1

Premier cas : Lorsque x ∈ ] − ∞; 1[, l’inéquation est
équivalente à

|x + 1| ⩾ |x − 1| ⇐⇒ −x − 1 ⩾ −x + 1
⇐⇒ −1 ⩾ 1

Ceci est impossible, ce cas n’apporte aucune solution.

Deuxième cas : Lorsque x ∈ [−1; 1], on obtient
alors que :

|x + 1| ⩾ |x − 1| ⇐⇒ x + 1 ⩾ −x + 1
⇐⇒ x ⩾ 0.

Les solutions apportées par ce cas sont les nombres
réels vérifiant x ∈ [−1; 1] ∩ [0; +∞[, donc x ∈ [0; 1].

Troisième cas : Lorsque x ∈ ]1; +∞[, la résolution
de l’inéquation est :

|x + 1| ⩾ |x − 1| ⇐⇒ x + 1 ⩾ x − 1
⇐⇒ 1 ⩾ −1.

Ce qui est toujours vrai, pour tout x ∈ R. Ainsi, tous
les nombres x ∈ ]1; +∞[ sont bien des solutions.

Pour conclure, en combinant les trois cas, l’ensemble
des solutions de l’inéquation est :

S = [0; +∞[.
(f) On procède encore de la même manière. Les expres-

sions changent de signe en x = −3 et x = −2. Le
tableau suivant présente la disjonction de cas :

x

x + 2

x + 3

−∞ −3 −2 +∞

−x − 2 −x − 2 x + 2

−x − 3 x + 3 x + 3 Co
rr

ig
és
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Premier cas : Lorsque x ∈ ] − ∞; −3[, l’inéquation
est équivalente à

|x + 2| ⩾ 2|x + 3| ⇐⇒ −x − 2 ≥ 2(−x − 3)
⇐⇒ x ⩾ −4

Les solutions sont les réels x ∈ ] − ∞; −3[ ∩ [−4; ∞[,
ce qui donne x ∈ [−4; −3[
Deuxième cas : Lorsque x ∈ [−3; −2], l’inéquation
est équivalente à

|x + 2| ⩾ 2|x + 3| ⇐⇒ −x − 2 ⩾ 2x + 6

⇐⇒ −
8
3
⩾ x.

Les solutions sont les x ∈ [−3; −2] ∩
]
−∞; −8

3

]
, ce

qui donne x ∈
[
−3; − 8

3

]
.

Troisième cas : Pour x ∈ ] − 2; +∞[, l’inéquation est
équivalente à

|x + 2| ⩾ 2|x + 3| ⇐⇒ x + 2 ⩾ 2x + 6
⇐⇒ −4 ⩾ x.

Comme [−2; +∞[ ∩ ] − ∞; −4] est vide, il n’y a pas
de solution pour ce cas.

En réunissant les solutions obtenues dans les trois
cas, l’ensemble des solutions de l’inéquation est :

S =
[

−4; −
8
3

]
.

Exercice 18.
(a) Une première méthode commence évidemment par

le calcul du discriminant de cette équation :
∆ = 22 − 4 × 1 × (−3)

= 16.

Puisque ∆ > 0, l’équation possède deux solutions
qui sont :

x1 =
−2 +

√
16

2 × 1
et x2 =

−2 −
√

16
2 × 1

= 1 = −3.

Plus habilement, on pouvait remarquer que 1 est une
solution « évidente » de l’équation. Ainsi, le trinôme
se factorise sous la forme :

x2 + 2x − 3 = (x − 1)(x − x2).
En développant l’expression de droite et en égalisant
les termes constants, on retrouve que :

−3 = x2.

Avec un peu d’habitude, cela se fait mentalement. . .
Pour les amateurs de la méthode, il est aussi possible
d’utiliser la somme ou le produit des racines.

(b) On calcule :
∆ = 72 − 4 × 5 × 18

= −311.

Puisque ∆ < 0, l’équation ne possède pas de solution
dans l’ensemble des nombres réels.

(c) Un produit de nombres réels est nul si, et seulement
si, au moins l’un de ses facteurs est nul. L’équation
est donc équivalente à :

x + 3 = 0 ou 2x2 − 10x + 15 = 0.

La première équation donne évidemment que x =
−3. Le discriminant de la seconde est :

∆ = (−10)2 − 4 × 2 × 15
= −20.

Comme ∆ < 0, l’équation 2x2 −10x+15 = 0 n’a pas
de solution dans R. Ainsi, l’unique solution est −3.

(d) On commence par déterminer le tableau de signes de
la fonction P : x → −3x2 +9x+30. Son discriminant
est :

∆ = 92 − 4 × (−3) × 30
= 441.

Comme ∆ > 0, le trinôme P possède deux racines
qui sont :

x1 =
−9 +

√
441

2 × (−3)
et x2 =

−9 −
√

441
2 × (−3)

= −2 = 5.

Puisque a = −3, la parabole est tournée vers le bas
et l’on obtient le tableau de signes suivant :

x

P (x)

−∞ −2 5 +∞

− 0 + 0 −

L’ensemble des solutions est : ] − ∞; −2[ ∪ ]5; +∞[.
(e) Le premier réflexe est de se ramener à l’étude du

signe d’une fonction polynôme P de degré 2. On a :

−x2 − 5x + 7 ⩾ x + 1 ⇐⇒ −x2 − 6x + 6 ⩾ 0.

On calcule :

∆ = (−6)2 − 4 × (−1) × 6
= 60.

Puisque ∆ > 0, le trinôme P possède deux racines
qui sont :

x1 =
6 −

√
60

2 × (−1)
et x2 =

6 +
√

60
2 × (−1)

=
√

15 − 3 =
√

15 + 3.

Puisque a = −3, la parabole est tournée vers le bas
et l’on obtient le tableau de signes suivant :

x

P (x)

−∞ √
15 − 3

√
15 + 3 +∞

− 0 + 0 −

L’ensemble des solutions de notre inéquation est
donc l’intervalle[√

15 − 3;
√

15 + 3
]

.
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(f) On étudie le signe de chacun des facteurs afin de
dresser le tableau de signes de la fonction

f : x −→ (x + 3)(2x2 + 9x − 5).

Il est clair que x + 3 > 0 si, et seulement si, x > −3.
Le discriminant du trinôme est :

∆ = 92 − 4 × 2 × (−5)
= 121.

Puisque ∆ > 0, le trinôme P possède deux racines
qui sont :

x1 =
−9 −

√
121

2 × 2
et x2 =

−9 +
√

121
2 × 2

= −5 =
1
2

.

Puisque a = 2, la parabole est tournée vers le haut
et l’on obtient le tableau de signes suivant :

x

x+3

P (x)

f(x)

−∞ −5 −3 1
2 +∞

− − 0 + +

+ 0 − − 0 +

− 0 + 0 − 0 +

Finalement, l’ensemble des solutions de l’inéquation
est donc :

] − ∞; −5[ ∪
]

− 3;
1
2

[
.

(g) L’étude des signes est identique à celle de la question
précédente. Rappelons que les racines du trinôme
au dénominateur sont des valeurs interdites et que
l’usage est de le signaler par des « doubles barres »
dans le tableau. On obtient :

x

x+3

P (x)

f(x)

−∞ −5 −3 1
2 +∞

− − 0 + +

+ − − +

− + 0 − +

Finalement, l’ensemble des solutions de l’inéquation
est donc :

] − 5; −3] ∪
]1

2
; +∞

[
.

Exercice 19. On commence par remarquer que la
construction de la figure impose que x ∈ [0; 10]. Dans le
cas x = 0, la figure ne comporte que le carré initial. Dans
le cas x = 10, l’intégralité du carré initial est colorié. Ce
sont des cas extrêmes : si l’on préfère exclure ces cas, on
choisit x ∈ ]0; 10[. Ce détail n’a pas grande importance.
Nous prenons x ∈ [0; 10].

10 − 2x

x

x

Exprimons en fonction de x chacune des aires coloriées
et non coloriées. On les note A et A respectivement.

• On remarque (par exemple) que l’aire coloriée est
composée de 4 rectangles de longueur 10 − 2x et
de largeur x ainsi que de 5 carrés de côté x. Ainsi,
on a que :

A = 4x(10 − 2x) + 5x2

= 40x − 8x2 + 5x2

= 40x − 3x2.

• L’aire non coloriée s’obtient par différence de l’aire
totale du carré initial avec l’aire coloriée. Ainsi, on
calcule que :

A = 102 − (40x − 3x2)

= 100 − 40x + 3x2.

On résout donc :

A < A ⇐⇒ 40x − 3x2 < 100 − 40x + 3x2

⇐⇒ 6x2 − 80x + 100 > 0.

Il s’agit d’une inéquation du second degré. On calcule son
discriminant :

∆ = (−80)2 − 4 × 6 × 100
= 4000.

Puisque ∆ > 0, le trinôme possède deux racines que nous
notons α et β pour changer :

α =
80 −

√
4000

2 × 6
et β =

80 +
√

4000
2 × 6

=
20 − 5

√
10

3
=

20 + 5
√

10
3

≃ 1, 4 ≃ 11, 9.

Puisque a = 6, la parabole est tournée vers le haut : le
trinôme prend des valeurs négatives sur [α; β] et positives
sinon. Puisque β ̸∈ [0; 10], on obtient le tableau de signes
suivant.

x

P (x)

0 α 10

+ 0 −

En conclusion, l’aire coloriée est strictement inférieure à
l’aire non coloriée lorsque x ∈ [0; α[.
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22 CHAPITRE 1. CALCULS ET RAISONNEMENTS

Premier cas : Lorsque x ∈ ] − ∞; −3[, l’inéquation
est équivalente à

|x + 2| ⩾ 2|x + 3| ⇐⇒ −x − 2 ≥ 2(−x − 3)
⇐⇒ x ⩾ −4

Les solutions sont les réels x ∈ ] − ∞; −3[ ∩ [−4; ∞[,
ce qui donne x ∈ [−4; −3[
Deuxième cas : Lorsque x ∈ [−3; −2], l’inéquation
est équivalente à

|x + 2| ⩾ 2|x + 3| ⇐⇒ −x − 2 ⩾ 2x + 6

⇐⇒ −
8
3
⩾ x.

Les solutions sont les x ∈ [−3; −2] ∩
]
−∞; −8

3

]
, ce

qui donne x ∈
[
−3; − 8

3

]
.

Troisième cas : Pour x ∈ ] − 2; +∞[, l’inéquation est
équivalente à

|x + 2| ⩾ 2|x + 3| ⇐⇒ x + 2 ⩾ 2x + 6
⇐⇒ −4 ⩾ x.

Comme [−2; +∞[ ∩ ] − ∞; −4] est vide, il n’y a pas
de solution pour ce cas.

En réunissant les solutions obtenues dans les trois
cas, l’ensemble des solutions de l’inéquation est :

S =
[

−4; −
8
3

]
.

Exercice 18.
(a) Une première méthode commence évidemment par

le calcul du discriminant de cette équation :
∆ = 22 − 4 × 1 × (−3)

= 16.

Puisque ∆ > 0, l’équation possède deux solutions
qui sont :

x1 =
−2 +

√
16

2 × 1
et x2 =

−2 −
√

16
2 × 1

= 1 = −3.

Plus habilement, on pouvait remarquer que 1 est une
solution « évidente » de l’équation. Ainsi, le trinôme
se factorise sous la forme :

x2 + 2x − 3 = (x − 1)(x − x2).
En développant l’expression de droite et en égalisant
les termes constants, on retrouve que :

−3 = x2.

Avec un peu d’habitude, cela se fait mentalement. . .
Pour les amateurs de la méthode, il est aussi possible
d’utiliser la somme ou le produit des racines.

(b) On calcule :
∆ = 72 − 4 × 5 × 18

= −311.

Puisque ∆ < 0, l’équation ne possède pas de solution
dans l’ensemble des nombres réels.

(c) Un produit de nombres réels est nul si, et seulement
si, au moins l’un de ses facteurs est nul. L’équation
est donc équivalente à :

x + 3 = 0 ou 2x2 − 10x + 15 = 0.

La première équation donne évidemment que x =
−3. Le discriminant de la seconde est :

∆ = (−10)2 − 4 × 2 × 15
= −20.

Comme ∆ < 0, l’équation 2x2 −10x+15 = 0 n’a pas
de solution dans R. Ainsi, l’unique solution est −3.

(d) On commence par déterminer le tableau de signes de
la fonction P : x → −3x2 +9x+30. Son discriminant
est :

∆ = 92 − 4 × (−3) × 30
= 441.

Comme ∆ > 0, le trinôme P possède deux racines
qui sont :

x1 =
−9 +

√
441

2 × (−3)
et x2 =

−9 −
√

441
2 × (−3)

= −2 = 5.

Puisque a = −3, la parabole est tournée vers le bas
et l’on obtient le tableau de signes suivant :

x

P (x)

−∞ −2 5 +∞

− 0 + 0 −

L’ensemble des solutions est : ] − ∞; −2[ ∪ ]5; +∞[.
(e) Le premier réflexe est de se ramener à l’étude du

signe d’une fonction polynôme P de degré 2. On a :

−x2 − 5x + 7 ⩾ x + 1 ⇐⇒ −x2 − 6x + 6 ⩾ 0.

On calcule :

∆ = (−6)2 − 4 × (−1) × 6
= 60.

Puisque ∆ > 0, le trinôme P possède deux racines
qui sont :

x1 =
6 −

√
60

2 × (−1)
et x2 =

6 +
√

60
2 × (−1)

=
√

15 − 3 =
√

15 + 3.

Puisque a = −3, la parabole est tournée vers le bas
et l’on obtient le tableau de signes suivant :

x

P (x)

−∞ √
15 − 3

√
15 + 3 +∞

− 0 + 0 −

L’ensemble des solutions de notre inéquation est
donc l’intervalle[√

15 − 3;
√

15 + 3
]

.
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(f) On étudie le signe de chacun des facteurs afin de
dresser le tableau de signes de la fonction

f : x −→ (x + 3)(2x2 + 9x − 5).

Il est clair que x + 3 > 0 si, et seulement si, x > −3.
Le discriminant du trinôme est :

∆ = 92 − 4 × 2 × (−5)
= 121.

Puisque ∆ > 0, le trinôme P possède deux racines
qui sont :

x1 =
−9 −

√
121

2 × 2
et x2 =

−9 +
√

121
2 × 2

= −5 =
1
2

.

Puisque a = 2, la parabole est tournée vers le haut
et l’on obtient le tableau de signes suivant :

x

x+3

P (x)

f(x)

−∞ −5 −3 1
2 +∞

− − 0 + +

+ 0 − − 0 +

− 0 + 0 − 0 +

Finalement, l’ensemble des solutions de l’inéquation
est donc :

] − ∞; −5[ ∪
]

− 3;
1
2

[
.

(g) L’étude des signes est identique à celle de la question
précédente. Rappelons que les racines du trinôme
au dénominateur sont des valeurs interdites et que
l’usage est de le signaler par des « doubles barres »
dans le tableau. On obtient :

x

x+3

P (x)

f(x)

−∞ −5 −3 1
2 +∞

− − 0 + +

+ − − +

− + 0 − +

Finalement, l’ensemble des solutions de l’inéquation
est donc :

] − 5; −3] ∪
]1

2
; +∞

[
.

Exercice 19. On commence par remarquer que la
construction de la figure impose que x ∈ [0; 10]. Dans le
cas x = 0, la figure ne comporte que le carré initial. Dans
le cas x = 10, l’intégralité du carré initial est colorié. Ce
sont des cas extrêmes : si l’on préfère exclure ces cas, on
choisit x ∈ ]0; 10[. Ce détail n’a pas grande importance.
Nous prenons x ∈ [0; 10].

10 − 2x

x

x

Exprimons en fonction de x chacune des aires coloriées
et non coloriées. On les note A et A respectivement.

• On remarque (par exemple) que l’aire coloriée est
composée de 4 rectangles de longueur 10 − 2x et
de largeur x ainsi que de 5 carrés de côté x. Ainsi,
on a que :

A = 4x(10 − 2x) + 5x2

= 40x − 8x2 + 5x2

= 40x − 3x2.

• L’aire non coloriée s’obtient par différence de l’aire
totale du carré initial avec l’aire coloriée. Ainsi, on
calcule que :

A = 102 − (40x − 3x2)

= 100 − 40x + 3x2.

On résout donc :

A < A ⇐⇒ 40x − 3x2 < 100 − 40x + 3x2

⇐⇒ 6x2 − 80x + 100 > 0.

Il s’agit d’une inéquation du second degré. On calcule son
discriminant :

∆ = (−80)2 − 4 × 6 × 100
= 4000.

Puisque ∆ > 0, le trinôme possède deux racines que nous
notons α et β pour changer :

α =
80 −

√
4000

2 × 6
et β =

80 +
√

4000
2 × 6

=
20 − 5

√
10

3
=

20 + 5
√

10
3

≃ 1, 4 ≃ 11, 9.

Puisque a = 6, la parabole est tournée vers le haut : le
trinôme prend des valeurs négatives sur [α; β] et positives
sinon. Puisque β ̸∈ [0; 10], on obtient le tableau de signes
suivant.

x

P (x)

0 α 10

+ 0 −

En conclusion, l’aire coloriée est strictement inférieure à
l’aire non coloriée lorsque x ∈ [0; α[. Co

rr
ig

és

9782340-111547_001_320.indd   239782340-111547_001_320.indd   23 08/12/2025   11:4608/12/2025   11:46



24 CHAPITRE 1. CALCULS ET RAISONNEMENTS

Exercice 20.
1. On calcule :

23 − 22 − 14 × 2 + 24 = 8 − 4 − 28 + 24
= 0.

Donc 2 est solution de (E).
2. L’idée est de développer la forme factorisée que

l’énoncé propose afin d’identifier des conditions sur
les coefficients a, b et c permettant d’avoir l’égalité.
Pour tout x ∈ R, on calcule :

(x − 2)(ax2 + bx + c)

= ax3 + bx2 + cx − 2ax2 − 2bx − 2c

= ax3 + (b − 2a)x2 + (c − 2b)x − 2c.

En identifiant les coefficients devant les monômes de
même degré, on conclut que :

x3 − x2 − 14x + 24 = (x − 2)(ax2 + bx + c)

⇐⇒




a = 1
b − 2a = −1
c − 2b = −14
−2c = 24

⇐⇒


a = 1
b = 1
c = −12.

Finalement, pour tout x ∈ R :

x3 − x2 − 14x + 24 = (x − 2)(x2 + x − 12).

3. L’équation (E) est donc maintenant équivalente à
l’équation suivante :

(x − 2)(x2 + x − 12) = 0

⇐⇒ x − 2 = 0 ou x2 − x − 12 = 0.

La première équation donne que x = 2. Le discrimi-
nant de la seconde est :

∆ = 12 − 4 × 1 × 12
= 49.

Puisque ∆ > 0, l’équation possède deux solutions
qui sont :

x1 =
−1 −

√
49

2 × 1
et x2 =

−1 +
√

49
2 × 1

= −4 = 3.

En définitive, on conclut que l’équation (E) admet
trois solutions : −4, 2 et 3.

Remarque : Vous verrez en 1re année qu’un polynôme
de degré n possède au maximum n racines. Vous verrez
aussi que la propriété de factorisation vue pour les po-
lynômes de degré 2 est vraie pour tout polynôme : tout
polynôme admettant α ∈ R pour racine se factorise par
(x − α). Cela justifie la factorisation par (x − 2) dans cet
exercice et donc l’existence des nombres a, b et c.

Exercice 21.
1. On a que :

04 − 5 × 03 + 4 × 02 + 5 × 0 + 1 ̸= 0.

Donc 0 n’est pas solution de (E).
2. (a) Comme 0 n’est pas solution de l’équation (E),

on peut calculer (diviser par x2 est licite) ainsi :
x est solution de (E)

⇐⇒ x4 − 5x3 + 4x2 + 5x + 1 = 0

⇐⇒
x4 − 5x3 + 4x2 + 5x + 1

x2 = 0

⇐⇒ x2 − 5x + 4 +
5
x

+
1

x2 = 0

⇐⇒


x2 +
1

x2


− 5


x −

1
x


+ 4 = 0.

En remarquant alors (comme cela a déjà été
vu dans l’exercice 3) que :

y2 − 2 =


x2 +
1

x2


,

on obtient que :
x est solution de (E)

⇐⇒ (y2 − 2) − 5y + 4 = 0

⇐⇒ y2 − 5y + 2 = 0.

(b) Le discriminant de cette équation est ∆ = 17.
Elle admet donc deux solutions :

y1 =
5 −

√
17

2
et y2 =

5 +
√

17
2

.

3. Compte tenu de l’équivalence obtenue à la question
précédente, on a que :

x solution de (E) ⇐⇒ x +
1
x

= y1 ou x +
1
x

= y2.

Il reste à résoudre ces deux équations. La première
déjà. En multipliant membre à membre par 2x, on
obtient que :

x +
1
x

= y1 ⇐⇒ x +
1
x

=
5 −

√
17

2
⇐⇒ 2x2 + 2 =


5 −

√
17


x

⇐⇒ 2x2 −


5 −
√

17


x + 2 = 0.

On calcule son discriminant :
∆ =


5 −

√
17

2
− 4 × 2 × 2

= 26 − 10
√

17
≃ −15, 2.

Puisque ∆ < 0, cette première équation ne possède
pas de solution réelle. Pour la seconde équation, on
a de la même manière que :

x +
1
x

= y2 ⇐⇒ x +
1
x

=
5 +

√
17

2
⇐⇒ 2x2 + 2 =


5 +

√
17


x

⇐⇒ 2x2 −


5 +
√

17


x + 2 = 0.
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Son discriminant est :

∆ =


5 +
√

17
2

− 4 × 2 × 2

= 26 + 10
√

17

Puisque ∆ > 0, elle admet deux solutions que l’on
note α et β et qui sont égales à :

α =
5 +

√
17 −


2 + 10

√
17

4
et

β =
5 +

√
17 +


2 + 10

√
17

4
.

Pour conclure, l’équation (E) admet exactement
deux solutions réelles : les nombres α et β ci-dessus.

Exercice 22. Nous allons procéder avec la démarche de
l’exercice 20 : factoriser par (x − α) avec α une racine.
N’ayant pas d’indication dans l’énoncé, on commence par
chercher une racine évidente.

1. On trouve que x = 1 est racine car P (1) = 0. Il
existe donc a, b et c des nombres réels tels que,
pour tout x ∈ R :

P (x) = (x − 1)(ax2 + bx + c).

Pour tout x ∈ R, on calcule :

(x − 1)(ax2 + bx + c)

= ax3 + bx2 + cx − ax2 − bx − c

= ax3 + (b − a)x2 + (c − b)x − c

En identifiant les coefficients devant les monômes
de même degré, on obtient que :

2x3 − 3x2 − x + 2 = (x − 1)(ax2 + bx + c)

⇐⇒




a = 2
b − a = −3
c − b = −1
−c = 2

⇐⇒


a = 2
b = −1
c = −2.

Ainsi, pour tout x ∈ R :

P (x) = (x − 1)(2x2 − x − 2).

Il reste à factoriser le polynôme 2x2 − x − 2. Nous
laissons le lecteur vérifier que son discriminant est
égal à ∆ = 17 et que ses deux racines réelles sont :

α =
1 −

√
17

4
et β =

1 +
√

17
4

.

Ainsi, pour tout x ∈ R :

2x2 − x − 2 = 2(x − α)(x − β).

Finalement, nous avons que la forme factorisée du
polynôme P est donnée, pour tout x ∈ R, par :

P (x) = 2(x − 1)(x − α)(x − β).

2. En testant avec les petites valeurs entières, on
trouve que x = 2 est une racine car Q(2) = 0.
Il existe donc des réels a, b et c tels que, pour tout
x ∈ R :

Q(x) = (x − 2)(ax2 + bx + c)

= ax3 + (b − 2a)x2 + (c − 2b)x − 2c.

Et comme

Q(x) = x3 − 2x2 + x − 2,

en identifiant les coefficients devant les monômes
de même degré, on obtient que :




a = 1
b − 2a = −2
c − 2b = 1
−2c = −2

⇐⇒


a = 1
b = 0
c = 1.

Donc, pour tout x ∈ R :

Q(x) = (x − 2)(x2 + 1).

Puisque x2 + 1 n’admet pas de racine réelle, cette
factorisation est la meilleure possible dans R.

3. On trouve que x = 2 est une racine. Il existe donc
des réels a, b et c tels que, pour tout x ∈ R :

R(x) = (x − 2)(ax2 + bx + c)

= ax3 + (b − 2a)x2 + (c − 2b)x − 2c.

Et comme

R(x) = x3 − x2 − 4x + 4,

en identifiant les coefficients devant les monômes
de même degré, on obtient que :


a = 1
b − 2a = −1
c − 2b = −4
−2c = 4

⇐⇒


a = 1
b = 1
c = −2.

Donc, pour tout x ∈ R :

R(x) = (x − 2)(x2 + x − 2).

On laisse le lecteur factoriser x2 + x − 2 et vérifier
que, pour tout x ∈ R :

x2 + x − 2 = (x + 2)(x − 1).

Et finalement, pour tout x ∈ R :

R(x) = (x − 2)(x + 2)(x − 1).

4. On peut voir que x = 2 est racine. Cependant,
il est plus habile de remarquer (par la deuxième
identité remarquable) que, pour tout x ∈ R :

S(x) = (x2 − 4)2.

Et comme

x2 − 4 = (x − 2)(x + 2),

on a finalement que la (meilleure) forme factorisée
du polynôme S(x) est donnée, pour tout x ∈ R,
par :

S(x) = (x − 2)2(x + 2)2.
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Exercice 20.
1. On calcule :

23 − 22 − 14 × 2 + 24 = 8 − 4 − 28 + 24
= 0.

Donc 2 est solution de (E).
2. L’idée est de développer la forme factorisée que

l’énoncé propose afin d’identifier des conditions sur
les coefficients a, b et c permettant d’avoir l’égalité.
Pour tout x ∈ R, on calcule :

(x − 2)(ax2 + bx + c)

= ax3 + bx2 + cx − 2ax2 − 2bx − 2c

= ax3 + (b − 2a)x2 + (c − 2b)x − 2c.

En identifiant les coefficients devant les monômes de
même degré, on conclut que :

x3 − x2 − 14x + 24 = (x − 2)(ax2 + bx + c)

⇐⇒




a = 1
b − 2a = −1
c − 2b = −14
−2c = 24

⇐⇒


a = 1
b = 1
c = −12.

Finalement, pour tout x ∈ R :

x3 − x2 − 14x + 24 = (x − 2)(x2 + x − 12).

3. L’équation (E) est donc maintenant équivalente à
l’équation suivante :

(x − 2)(x2 + x − 12) = 0

⇐⇒ x − 2 = 0 ou x2 − x − 12 = 0.

La première équation donne que x = 2. Le discrimi-
nant de la seconde est :

∆ = 12 − 4 × 1 × 12
= 49.

Puisque ∆ > 0, l’équation possède deux solutions
qui sont :

x1 =
−1 −

√
49

2 × 1
et x2 =

−1 +
√

49
2 × 1

= −4 = 3.

En définitive, on conclut que l’équation (E) admet
trois solutions : −4, 2 et 3.

Remarque : Vous verrez en 1re année qu’un polynôme
de degré n possède au maximum n racines. Vous verrez
aussi que la propriété de factorisation vue pour les po-
lynômes de degré 2 est vraie pour tout polynôme : tout
polynôme admettant α ∈ R pour racine se factorise par
(x − α). Cela justifie la factorisation par (x − 2) dans cet
exercice et donc l’existence des nombres a, b et c.

Exercice 21.
1. On a que :

04 − 5 × 03 + 4 × 02 + 5 × 0 + 1 ̸= 0.

Donc 0 n’est pas solution de (E).
2. (a) Comme 0 n’est pas solution de l’équation (E),

on peut calculer (diviser par x2 est licite) ainsi :
x est solution de (E)

⇐⇒ x4 − 5x3 + 4x2 + 5x + 1 = 0

⇐⇒
x4 − 5x3 + 4x2 + 5x + 1

x2 = 0

⇐⇒ x2 − 5x + 4 +
5
x

+
1

x2 = 0

⇐⇒


x2 +
1

x2


− 5


x −

1
x


+ 4 = 0.

En remarquant alors (comme cela a déjà été
vu dans l’exercice 3) que :

y2 − 2 =


x2 +
1

x2


,

on obtient que :
x est solution de (E)

⇐⇒ (y2 − 2) − 5y + 4 = 0

⇐⇒ y2 − 5y + 2 = 0.

(b) Le discriminant de cette équation est ∆ = 17.
Elle admet donc deux solutions :

y1 =
5 −

√
17

2
et y2 =

5 +
√

17
2

.

3. Compte tenu de l’équivalence obtenue à la question
précédente, on a que :

x solution de (E) ⇐⇒ x +
1
x

= y1 ou x +
1
x

= y2.

Il reste à résoudre ces deux équations. La première
déjà. En multipliant membre à membre par 2x, on
obtient que :

x +
1
x

= y1 ⇐⇒ x +
1
x

=
5 −

√
17

2
⇐⇒ 2x2 + 2 =


5 −

√
17


x

⇐⇒ 2x2 −


5 −
√

17


x + 2 = 0.

On calcule son discriminant :
∆ =


5 −

√
17

2
− 4 × 2 × 2

= 26 − 10
√

17
≃ −15, 2.

Puisque ∆ < 0, cette première équation ne possède
pas de solution réelle. Pour la seconde équation, on
a de la même manière que :

x +
1
x

= y2 ⇐⇒ x +
1
x

=
5 +

√
17

2
⇐⇒ 2x2 + 2 =


5 +

√
17


x

⇐⇒ 2x2 −


5 +
√

17


x + 2 = 0.
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Son discriminant est :

∆ =


5 +
√

17
2

− 4 × 2 × 2

= 26 + 10
√

17

Puisque ∆ > 0, elle admet deux solutions que l’on
note α et β et qui sont égales à :

α =
5 +

√
17 −


2 + 10

√
17

4
et

β =
5 +

√
17 +


2 + 10

√
17

4
.

Pour conclure, l’équation (E) admet exactement
deux solutions réelles : les nombres α et β ci-dessus.

Exercice 22. Nous allons procéder avec la démarche de
l’exercice 20 : factoriser par (x − α) avec α une racine.
N’ayant pas d’indication dans l’énoncé, on commence par
chercher une racine évidente.

1. On trouve que x = 1 est racine car P (1) = 0. Il
existe donc a, b et c des nombres réels tels que,
pour tout x ∈ R :

P (x) = (x − 1)(ax2 + bx + c).

Pour tout x ∈ R, on calcule :

(x − 1)(ax2 + bx + c)

= ax3 + bx2 + cx − ax2 − bx − c

= ax3 + (b − a)x2 + (c − b)x − c

En identifiant les coefficients devant les monômes
de même degré, on obtient que :

2x3 − 3x2 − x + 2 = (x − 1)(ax2 + bx + c)

⇐⇒




a = 2
b − a = −3
c − b = −1
−c = 2

⇐⇒


a = 2
b = −1
c = −2.

Ainsi, pour tout x ∈ R :

P (x) = (x − 1)(2x2 − x − 2).

Il reste à factoriser le polynôme 2x2 − x − 2. Nous
laissons le lecteur vérifier que son discriminant est
égal à ∆ = 17 et que ses deux racines réelles sont :

α =
1 −

√
17

4
et β =

1 +
√

17
4

.

Ainsi, pour tout x ∈ R :

2x2 − x − 2 = 2(x − α)(x − β).

Finalement, nous avons que la forme factorisée du
polynôme P est donnée, pour tout x ∈ R, par :

P (x) = 2(x − 1)(x − α)(x − β).

2. En testant avec les petites valeurs entières, on
trouve que x = 2 est une racine car Q(2) = 0.
Il existe donc des réels a, b et c tels que, pour tout
x ∈ R :

Q(x) = (x − 2)(ax2 + bx + c)

= ax3 + (b − 2a)x2 + (c − 2b)x − 2c.

Et comme

Q(x) = x3 − 2x2 + x − 2,

en identifiant les coefficients devant les monômes
de même degré, on obtient que :




a = 1
b − 2a = −2
c − 2b = 1
−2c = −2

⇐⇒


a = 1
b = 0
c = 1.

Donc, pour tout x ∈ R :

Q(x) = (x − 2)(x2 + 1).

Puisque x2 + 1 n’admet pas de racine réelle, cette
factorisation est la meilleure possible dans R.

3. On trouve que x = 2 est une racine. Il existe donc
des réels a, b et c tels que, pour tout x ∈ R :

R(x) = (x − 2)(ax2 + bx + c)

= ax3 + (b − 2a)x2 + (c − 2b)x − 2c.

Et comme

R(x) = x3 − x2 − 4x + 4,

en identifiant les coefficients devant les monômes
de même degré, on obtient que :


a = 1
b − 2a = −1
c − 2b = −4
−2c = 4

⇐⇒


a = 1
b = 1
c = −2.

Donc, pour tout x ∈ R :

R(x) = (x − 2)(x2 + x − 2).

On laisse le lecteur factoriser x2 + x − 2 et vérifier
que, pour tout x ∈ R :

x2 + x − 2 = (x + 2)(x − 1).

Et finalement, pour tout x ∈ R :

R(x) = (x − 2)(x + 2)(x − 1).

4. On peut voir que x = 2 est racine. Cependant,
il est plus habile de remarquer (par la deuxième
identité remarquable) que, pour tout x ∈ R :

S(x) = (x2 − 4)2.

Et comme

x2 − 4 = (x − 2)(x + 2),

on a finalement que la (meilleure) forme factorisée
du polynôme S(x) est donnée, pour tout x ∈ R,
par :

S(x) = (x − 2)2(x + 2)2. Co
rr

ig
és
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Exercice 23. Une première méthode consiste sim-
plement à utiliser la forme canonique

P (x) = a

(
x +

b

2a

)2
−

b2 − 4ac

4a

rappelée dans l’énoncé. Ce n’est pas la méthode la plus
maligne. Elle nécessite déjà de mémoriser la formule !

1. Avec
a = 1, b = −8, c = 16,

on obtient que :

P1(x) = (x − 4)2.

2. Avec
a = 1, b = 12, c = 10,

on obtient que :

P2(x) = (x + 6)2 − 26.

3. Avec
a = −2, b = 10, c = 25,

on obtient que :

P3(x) = −2
(

x −
5
2

)2
+

75
2

.

4. Avec
a = 4, b = 5, c = 3,

on obtient que :

P4(x) = 4
(

x +
5
8

)2
−

11
8

.

La deuxième méthode consiste à reconnaître dans les
premiers termes « ax2+bx » de l’expression P (x) le début
de l’une des deux premières identités remarquables.

1. On remarque que x2 −8x+16 peut s’écrire comme
une identité remarquable. Pour tout x ∈ R, on a :

P1(x) = x2 − 2 × 4 × x + 42

= (x − 4)2.

2. On commence par voir x2 + 12x comme le début
de l’identité (x + 6)2 = x2 + 12x + 62. Ainsi, on a
que :

x2 + 12x = (x + 6)2 − 36.

Pour tout x ∈ R, on a donc :

P2(x) = x2 + 12x + 10

= (x + 6)2 − 36 + 10

= (x + 6)2 − 26.

3. On commence par factoriser par −2 pour faciliter
la reconnaissance de la deuxième identité remar-
quable. Pour tout x ∈ R, on a que :

P3(x) = −2
(

x2 − 5x
)

+ 25.

Et comme :

x2 − 5x = x2 − 2 ×
5
2

x

=
[

x2 − 2 ×
5
2

x +
(5

2

)2
]

−
(5

2

)2

=
(

x −
5
2

)2
−

25
4

,

il vient, pour tout x ∈ R :

P3(x) = −2
(

x2 − 5x
)

+ 25

= −2
[(

x −
5
2

)2
−

25
4

]
+ 25

= −2
(

x −
5
2

)2
+

75
2

.

4. Comme dans l’exemple précédent, on factorise
d’abord par 4 pour faciliter la reconnaissance de
l’identité remarquable. Ainsi, pour tout x ∈ R, on
calcule :

P4(x) = 4x2 + 5x + 3

= 4
(

x2 +
5
4

x

)
+ 3

= 4
[(

x +
5
8

)2
−

25
64

]
+ 3

= 4
(

x +
5
8

)2
−

13
16

.

Exercice 24. On raisonne par l’absurde. Supposons que
cette équation possède une solution α ∈ Z. Alors, on a
que :

α4 − 7α3 + 4α2 + 5α − 2 = 0

⇐⇒ α4 − 7α3 + 4α2 + 5α = 2

⇐⇒ α(α3 − 7α2 + 4α + 5) = 2.

Mais comme α est un nombre entier, il est évident que
le nombre α3 − 7α2 + 4α + 5 est également entier. Ainsi,
notre dernière égalité

α(α3 − 7α2 + 4α + 5) = 2
implique que α est un diviseur de 2. Et nous savons que
les diviseurs de 2 sont : −2; −1; 1 et 2. Reprenons le fil
du raisonnement : si α est solution entière de l’équation,
alors on a nécessairement que α ∈ {−2; −1; 1; 2}. Il nous
reste à tester chacune de ces quatre possibilités :

• 1 n’est pas solution car
14 − 7 × 13 + 4 × 12 + 5 × 1 − 2 = 1;

• 2 n’est pas solution car
24 − 7 × 23 + 4 × 22 + 5 × 2 − 2 = −16;

• −1 n’est pas solution car
(−1)4 − 7 × (−1)3 + 4 × (−1)2 + 5 × (−1) − 2 = 5;

• −2 n’est pas solution car
(−2)4 − 7 × (−2)3 + 4 × (−2)2 + 5 × (−2) − 2 = 76.

1.3. CORRIGÉS DES EXERCICES 27

L’hypothèse d’existence d’une solution entière à l’équa-
tion conduit ainsi à une absurdité. Cette équation ne
possède donc pas de solution entière.

Exercice 25. On raisonne par l’absurde. Supposons que
le nombre 1

3 soit décimal. Par définition, il existerait des
entiers a ∈ Z et n ∈ N tels que :

1
3

=
a

10n
.

Donc :
10n = 3a,

si bien que 10n serait un nombre divisible par 3. Or, la
décomposition (qui est unique) en facteurs premiers

10n = 2n · 5n

ne comporte pas de 3. Ainsi, le nombre 10n n’est donc
pas divisible par 3 et l’hypothèse faite nous a conduits à
une absurdité. On en conclut que 1

3 n’est pas décimal.

Exercice 26.
1. (a) En élevant les deux côtés de l’égalité au carré,

on obtient :
(√

2
)2

=
(

a

b

)2
,

c’est-à-dire :
2 =

a2

b2

En multipliant cette égalité membre à membre
par b2, on obtient que :

a2 = 2b2

Cette égalité prouve que a2 est un multiple de
2. Autrement dit, il est pair.

(b) Nous allons démontrer par contraposée qu’un
nombre dont le carré est pair est lui-même pair.
Soit x ∈ Z. La propriété à démontrer est :

x2 pair =⇒ x pair

La négation de « être un nombre pair » étant
le fait d’« être un nombre impair », la contra-
posée de notre propriété est :

x impair =⇒ x2 impair .

Supposons donc x impair. Par définition, il
existe alors k ∈ Z tel que x = 2k + 1. Cela
implique que :

x2 = (2k + 1)2

= 4k2 + 4k + 1

= 2(2k2 + 2) + 1
= 2q + 1

en posant q = 2k2 + 2. Ainsi, il existe q ∈ Z
tel que x2 = 2q + 1 et le nombre x2 est impair.
Par contraposée, on a bien l’affirmation voulue.

La question précédente donne que x2 est pair.
Avec la propriété démontrée à l’instant, on
en conclut que a est pair. Dans la suite, on
désigne par k ∈ N l’entier tel que a = 2k.

(c) En substituant a = 2k dans l’égalité 2b2 = a2,
on obtient que :

2b2 = (2k)2

puis que :

2b2 = 4k2

Et enfin que :
b2 = 2k2

Ainsi b2 est pair. L’argument vu à la question
précédente nous donne que b est pair.

2. Supposant par l’absurde la rationnalité de
√

2, nous
avons écrit que

√
2 =

a

b

avec a ∈ Z et b ∈ N∗ des entiers premiers entre eux,
c’est-à-dire la fraction irréductible. Cette hypothèse
nous a conduits à une absurdité. Si a et b sont des
nombres premiers entre eux, ils ne peuvent pas être
pairs (donc divisible par 2) tous les deux. Donc, le
nombre

√
2 est bien irrationnel.

Exercice 27. Nous allons raisonner par récurrence.
Pour tout entier n ∈ N∗, on note Pn la propriété :

12 + 22 + 32 + · · · + n2 =
n(n + 1)(2n + 1)

6
.

Pour simplifier la rédaction du raisonnement, on notera
également :

Sn = 12 + 22 + 32 + · · · + n2.

Initialisation : Au rang n = 1, on a que S1 = 12 d’une
part et, d’autre part, que :

1(1 + 1)(2 × 1 + 1)
6

= 1.

Donc P1 est vraie.
Hérédité : Soit n ∈ N∗. Montrons que Pn implique Pn+1.
On suppose donc que :

Sn =
n(n + 1)(2n + 1)

6
.

Et, on calcule alors :

Sn+1 = Sn + (n + 1)2

=
n(n + 1)(2n + 1)

6
+ (n + 1)2

=
n(n + 1)(2n + 1) + 6(n + 1)2

6

=
(n + 1)

(
n(2n + 1) + 6(n + 1)

)
6

=
(n + 1)(2n2 + 7n + 6)

6
.
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Exercice 23. Une première méthode consiste sim-
plement à utiliser la forme canonique

P (x) = a

(
x +

b

2a

)2
−

b2 − 4ac

4a

rappelée dans l’énoncé. Ce n’est pas la méthode la plus
maligne. Elle nécessite déjà de mémoriser la formule !

1. Avec
a = 1, b = −8, c = 16,

on obtient que :

P1(x) = (x − 4)2.

2. Avec
a = 1, b = 12, c = 10,

on obtient que :

P2(x) = (x + 6)2 − 26.

3. Avec
a = −2, b = 10, c = 25,

on obtient que :

P3(x) = −2
(

x −
5
2

)2
+

75
2

.

4. Avec
a = 4, b = 5, c = 3,

on obtient que :

P4(x) = 4
(

x +
5
8

)2
−

11
8

.

La deuxième méthode consiste à reconnaître dans les
premiers termes « ax2+bx » de l’expression P (x) le début
de l’une des deux premières identités remarquables.

1. On remarque que x2 −8x+16 peut s’écrire comme
une identité remarquable. Pour tout x ∈ R, on a :

P1(x) = x2 − 2 × 4 × x + 42

= (x − 4)2.

2. On commence par voir x2 + 12x comme le début
de l’identité (x + 6)2 = x2 + 12x + 62. Ainsi, on a
que :

x2 + 12x = (x + 6)2 − 36.

Pour tout x ∈ R, on a donc :

P2(x) = x2 + 12x + 10

= (x + 6)2 − 36 + 10

= (x + 6)2 − 26.

3. On commence par factoriser par −2 pour faciliter
la reconnaissance de la deuxième identité remar-
quable. Pour tout x ∈ R, on a que :

P3(x) = −2
(

x2 − 5x
)

+ 25.

Et comme :

x2 − 5x = x2 − 2 ×
5
2

x

=
[

x2 − 2 ×
5
2

x +
(5

2

)2
]

−
(5

2

)2

=
(

x −
5
2

)2
−

25
4

,

il vient, pour tout x ∈ R :

P3(x) = −2
(

x2 − 5x
)

+ 25

= −2
[(

x −
5
2

)2
−

25
4

]
+ 25

= −2
(

x −
5
2

)2
+

75
2

.

4. Comme dans l’exemple précédent, on factorise
d’abord par 4 pour faciliter la reconnaissance de
l’identité remarquable. Ainsi, pour tout x ∈ R, on
calcule :

P4(x) = 4x2 + 5x + 3

= 4
(

x2 +
5
4

x

)
+ 3

= 4
[(

x +
5
8

)2
−

25
64

]
+ 3

= 4
(

x +
5
8

)2
−

13
16

.

Exercice 24. On raisonne par l’absurde. Supposons que
cette équation possède une solution α ∈ Z. Alors, on a
que :

α4 − 7α3 + 4α2 + 5α − 2 = 0

⇐⇒ α4 − 7α3 + 4α2 + 5α = 2

⇐⇒ α(α3 − 7α2 + 4α + 5) = 2.

Mais comme α est un nombre entier, il est évident que
le nombre α3 − 7α2 + 4α + 5 est également entier. Ainsi,
notre dernière égalité

α(α3 − 7α2 + 4α + 5) = 2
implique que α est un diviseur de 2. Et nous savons que
les diviseurs de 2 sont : −2; −1; 1 et 2. Reprenons le fil
du raisonnement : si α est solution entière de l’équation,
alors on a nécessairement que α ∈ {−2; −1; 1; 2}. Il nous
reste à tester chacune de ces quatre possibilités :

• 1 n’est pas solution car
14 − 7 × 13 + 4 × 12 + 5 × 1 − 2 = 1;

• 2 n’est pas solution car
24 − 7 × 23 + 4 × 22 + 5 × 2 − 2 = −16;

• −1 n’est pas solution car
(−1)4 − 7 × (−1)3 + 4 × (−1)2 + 5 × (−1) − 2 = 5;

• −2 n’est pas solution car
(−2)4 − 7 × (−2)3 + 4 × (−2)2 + 5 × (−2) − 2 = 76.

1.3. CORRIGÉS DES EXERCICES 27

L’hypothèse d’existence d’une solution entière à l’équa-
tion conduit ainsi à une absurdité. Cette équation ne
possède donc pas de solution entière.

Exercice 25. On raisonne par l’absurde. Supposons que
le nombre 1

3 soit décimal. Par définition, il existerait des
entiers a ∈ Z et n ∈ N tels que :

1
3

=
a

10n
.

Donc :
10n = 3a,

si bien que 10n serait un nombre divisible par 3. Or, la
décomposition (qui est unique) en facteurs premiers

10n = 2n · 5n

ne comporte pas de 3. Ainsi, le nombre 10n n’est donc
pas divisible par 3 et l’hypothèse faite nous a conduits à
une absurdité. On en conclut que 1

3 n’est pas décimal.

Exercice 26.
1. (a) En élevant les deux côtés de l’égalité au carré,

on obtient :
(√

2
)2

=
(

a

b

)2
,

c’est-à-dire :
2 =

a2

b2

En multipliant cette égalité membre à membre
par b2, on obtient que :

a2 = 2b2

Cette égalité prouve que a2 est un multiple de
2. Autrement dit, il est pair.

(b) Nous allons démontrer par contraposée qu’un
nombre dont le carré est pair est lui-même pair.
Soit x ∈ Z. La propriété à démontrer est :

x2 pair =⇒ x pair

La négation de « être un nombre pair » étant
le fait d’« être un nombre impair », la contra-
posée de notre propriété est :

x impair =⇒ x2 impair .

Supposons donc x impair. Par définition, il
existe alors k ∈ Z tel que x = 2k + 1. Cela
implique que :

x2 = (2k + 1)2

= 4k2 + 4k + 1

= 2(2k2 + 2) + 1
= 2q + 1

en posant q = 2k2 + 2. Ainsi, il existe q ∈ Z
tel que x2 = 2q + 1 et le nombre x2 est impair.
Par contraposée, on a bien l’affirmation voulue.

La question précédente donne que x2 est pair.
Avec la propriété démontrée à l’instant, on
en conclut que a est pair. Dans la suite, on
désigne par k ∈ N l’entier tel que a = 2k.

(c) En substituant a = 2k dans l’égalité 2b2 = a2,
on obtient que :

2b2 = (2k)2

puis que :

2b2 = 4k2

Et enfin que :
b2 = 2k2

Ainsi b2 est pair. L’argument vu à la question
précédente nous donne que b est pair.

2. Supposant par l’absurde la rationnalité de
√

2, nous
avons écrit que

√
2 =

a

b

avec a ∈ Z et b ∈ N∗ des entiers premiers entre eux,
c’est-à-dire la fraction irréductible. Cette hypothèse
nous a conduits à une absurdité. Si a et b sont des
nombres premiers entre eux, ils ne peuvent pas être
pairs (donc divisible par 2) tous les deux. Donc, le
nombre

√
2 est bien irrationnel.

Exercice 27. Nous allons raisonner par récurrence.
Pour tout entier n ∈ N∗, on note Pn la propriété :

12 + 22 + 32 + · · · + n2 =
n(n + 1)(2n + 1)

6
.

Pour simplifier la rédaction du raisonnement, on notera
également :

Sn = 12 + 22 + 32 + · · · + n2.

Initialisation : Au rang n = 1, on a que S1 = 12 d’une
part et, d’autre part, que :

1(1 + 1)(2 × 1 + 1)
6

= 1.

Donc P1 est vraie.
Hérédité : Soit n ∈ N∗. Montrons que Pn implique Pn+1.
On suppose donc que :

Sn =
n(n + 1)(2n + 1)

6
.

Et, on calcule alors :

Sn+1 = Sn + (n + 1)2

=
n(n + 1)(2n + 1)

6
+ (n + 1)2

=
n(n + 1)(2n + 1) + 6(n + 1)2

6

=
(n + 1)

(
n(2n + 1) + 6(n + 1)

)
6

=
(n + 1)(2n2 + 7n + 6)

6
. Co

rr
ig

és
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Comme :

(n + 2)
(

2(n + 1) + 1
)

= (n + 2)(2n + 3)

= 2n2 + 3n + 4n + 6

= 2n2 + 7n + 6,

on conclut que :

Sn+1 =
(n + 1)(n + 2)

(
2(n + 1) + 1

)
6

.

Et cette dernière égalité est exactement la propriété
Pn+1.
Conclusion : On a prouvé que la propriété Pn est vraie
au rang n = 1 et qu’elle est héréditaire. Par le principe
de récurrence, elle est donc vraie pour tout n ∈ N∗.

Exercice 28. Nous allons raisonner par récurrence.
Pour tout entier n ∈ N∗, on note Pn la propriété :

1 × 2 + 2 × 3 + · · · + n(n + 1) =
n(n + 1)(n + 2)

3
.

Pour simplifier la rédaction du raisonnement, on notera
également :

Sn = 1 × 2 + 2 × 3 + · · · + n(n + 1).

Initialisation : Au rang n = 1, on a que S1 = 1 × 2 d’une
part et, d’autre part, que :

1(1 + 1)(1 + 2)
3

= 2.

Donc P1 est vraie.
Hérédité : Soit n ∈ N∗. Montrons que Pn implique Pn+1.
On suppose donc que :

Sn =
n(n + 1)(n + 2)

3
.

Et, on calcule alors :

Sn+1 = Sn + (n + 1)(n + 2)

=
n(n + 1)(n + 2)

3
+ (n + 1)(n + 2)

=
n(n + 1)(n + 2) + 3(n + 1)(n + 2)

3

=
(n + 1)(n + 2)(n + 3)

3
Et cette dernière égalité est exactement la propriété
Pn+1.
Conclusion : On a prouvé que la propriété Pn est vraie
au rang n = 1 et qu’elle est héréditaire. Par le principe
de récurrence, elle est donc vraie pour tout n ∈ N∗.

Exercice 29. On raisonne par récurrence sur n ∈ N. On
note Pn la propriété « 32n − 2n est divisible par 7 ».
Initialisation : Pour n = 0, on a que 32×0 − 20 = 0 est
divisible par 7. Donc P0 est bien vraie.
Hérédité : Soit n ∈ N. Démontrons que Pn implique la
propriété Pn+1. On suppose donc que 32n − 2n est un

nombre divisible par 7, c’est-à-dire qu’il existe k ∈ Z tel
que 32n − 2n = 7k. Alors, on calcule :

32(n+1) − 2n+1 = 32n × 32 − 2n × 2
= (7k + 2n) × 9 − 2n × 2
= 9 × 7k + 9 × 2n − 2 × 2n

= 9 × 7k + 7 × 2n

= 7(9k + 2n).
Et comme 9k + 2n est un nombre entier, la dernière éga-
lité prouve que 32(n+1) − 2n+1 est divisible par 7.
Conclusion : On a prouvé que P0 est vraie et que Pn est
héréditaire. Le principe de récurrence permet de conclure
que la propriété Pn est vraie pour tout n ∈ N.

Exercice 30. On raisonne par récurrence sur n ∈ N. On
note Pn la propriété « n3 + 5n est un multiple de 3 ».
Initialisation : Pour n = 0, on a que 03 + 5 × 0 = 0 est
bien un multiple de 3. C’est 3 × 0. Donc P0 est vraie.
Hérédité : Soit n ∈ N. Démontrons que Pn implique la
propriété Pn+1. On suppose que l’entier n3 + 5n est un
multiple de 3, c’est-à-dire qu’il existe un certain k ∈ Z
pour lequel n3 + 5n = 3k. Alors, on calcule :

(n + 1)3 + 5(n + 1) = n3 + 3n2 + 3n + 1 + 5n + 5

=
(

n3 + 5n
)

+
(

3n2 + 3n + 6
)

= 3k + 3(n2 + n + 2)

= 3(k + n2 + n + 2).

Et comme k + n2 + n + 2 est un entier, cette dernière
égalité prouve que (n + 1)3 + 5(n + 1) est multiple de 3.
Conclusion : On a prouvé que P0 est vraie et que Pn est
héréditaire. Le principe de récurrence permet de conclure
que la propriété Pn est vraie pour tout n ∈ N.

Exercice 31. On raisonne par récurrence sur n ∈ N. On
pose Pn la propriété 2n − 1 ⩾ n.
Initialisation : Au rang n = 0, on a que 20 − 1 = 0 et
donc bien que 20 − 1 ⩾ 0. La propriété P0 est vraie.
Hérédité : Soit n ∈ N. Montrons que Pn implique Pn+1.
On suppose que 2n − 1 ⩾ n. En multipliant cette inéga-
lité membre à membre par 2 puis en lui ajoutant 1, on
obtient que :

2
(

2n − 1
)
⩾ 2n

=⇒ 2n+1 − 2 ⩾ 2n

=⇒ 2n+1 − 1 ⩾ 2n + 1

Étant donné que 2n + 1 ⩾ n + 1, il vient que 2n+1 − 1 ⩾
n + 1. C’est excatement Pn+1.
Conclusion : On a prouvé que P0 est vraie et que Pn est
héréditaire. Le principe de récurrence permet de conclure
que la propriété Pn est vraie pour tout n ∈ N.

Exercice 32. L’inégalité de cet exercice généralise celle
de l’exercice précédent. C’était le cas particulier x = 1.
Pour tout n ∈ N, on pose Pn : (1 + x)n ⩾ 1 + nx.
Initialisation : Pour n = 1, on a (1 + x)1 = 1 + x d’une
part, d’autre part que 1 + 1 × x = 1 + x. Donc, on a bien
que (1 + x)1 ⩾ 1 + 1 × x et que la propriété P1 est vraie.
Hérédité : Soit n ∈ N∗. On démontre que Pn implique la
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propriété Pn+1. En d’autres termes, on va supposer que
l’on a (1 + x)n ≥ 1 + nx et l’on va montrer que :

(1 + x)n+1 ⩾ 1 + (n + 1)x.

En multipliant l’inégalité Pn par 1+x membre à membre,
on obtient que :

(1 + x)k+1 ⩾ (1 + kx)(1 + x).

Comme x > 0 et k ∈ N∗, on a que kx2 > 0. Ainsi, obtient
que :

(1 + kx)(1 + x) = 1 + x + kx + kx2

= 1 + (k + 1)x + kx2

⩾ 1 + (k + 1)x.

Finalement, on a bien :
(1 + x)k+1 ⩾ 1 + (k + 1)x.

Conclusion : On a prouvé que P0 est vraie et que Pn est
héréditaire. Le principe de récurrence permet de conclure
que la propriété Pn est vraie pour tout n ∈ N.

Exercice 33. Commençons par dire que cette équation
n’est définie que sur l’ensemble :

R \ {2; 3; 4; 5}.

On calcule :
(x + 2)(x + 3)(x + 4)(x + 5)
(x − 2)(x − 3)(x − 4)(x − 5)

=
(x + 2)(x + 5)(x + 3)(x + 4)
(x − 2)(x − 5)(x − 3)(x − 4)

=
(x2 + 7x + 10)(x2 + 7x + 12)
(x2 − 7x + 10)(x2 − 7x + 12)

=
a(a + 2)
b(b + 2)

en posant : {
a = x2 + 7x + 10
b = x2 − 7x + 10.

Ainsi, avec ce changement d’inconnues, l’équation est
équivalente à la recherche de a et b vérifiant :

a(a + 2)
b(b + 2)

= 1.

Or :
a(a + 2)
b(b + 2)

= 1 ⇐⇒ a(a + 2) = b(b + 2) =

⇐⇒ a2 + 2a = b2 + 2b

⇐⇒ a2 − b2 + 2(a − b) = 0
⇐⇒ (a − b)(a + b) + 2(a − b) = 0
⇐⇒ (a − b)(a + b + 2) = 0
⇐⇒ a − b = 0 ou a + b + 2 = 0.

On raisonne maintenant en traitant séparément ces deux
équations :

a − b = 0 ⇐⇒ x2 + 7x + 10 −
(

x2 − 7x + 10
)

= 0

⇐⇒ 14x = 0
⇐⇒ x = 0.

Ainsi 0 est une solution de l’équation. On examine le
deuxième cas :

a + b + 2 = 0

⇐⇒ x2 + 7x + 10 +
(

x2 − 7x + 10
)

+ 2 = 0

⇐⇒ 2x2 + 22 = 0

⇐⇒ x2 = −11.

Puisque x2 ⩾ 0 pour tout x ∈ R, ce cas est impossible. En
définition, la seule solution de notre équation est x = 0.

Exercice 34.
1. Le théorème de Pythagore appliqué sur les triangles

rectangles ABH et ACH donne :
BH2 + AH2 = AB2 et CH2 + AH2 = AC2.

Donc, on a que :
BH2 + AH2 = c2 et CH2 + AH2 = b2.

Ensuite :
b2 = CH2 + AH2

=
(

a − BH
)2

+ AH2

= a2 − 2aBH + BH2 + AH2

= a2 − 2aBH + BH2 + c2 − BH2

= a2 − 2aBH + c2.

Donc, on obtient :

BH2 =
c2 + a2 − b2

2a
.

Et finalement :
AH2 = AB2 − BH2

= c2 −
(

c2 + a2 − b2

2a

)2

.

2. On calcule :

A2 =
1
4

× a2 × h2

=
1
4

a2c2 −
1
16

(
c2 + a2 − b2

)2

=
1
16

(
(2ac)2 − (c2 + a2 − b2)2

)

=
1
16

(
2ac + c2 + a2 − b2

)(
2ac − c2 − a2 + b2

)

=
1
16

(
(a + c)2 − b2

)(
b2 − (a − c)2

)

=
1
16

(a + c + b)(a + c − b)(b + c − a)(b + a − c).

3. On calcule :

A2 =
1
16

(a + c + b)(a + c − b)(b + c − a)(b + a − c)

= 2s(2s − 2b)(2s − 2a)(2s − 2c)
= s(s − b)(s − a)(s − c).

Et finalement, en prenant la racine dans cette égalité,
on en déduit la formule de Héron :

A =
√

s(s − a)(s − b)(s − c).
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Comme :

(n + 2)
(

2(n + 1) + 1
)

= (n + 2)(2n + 3)

= 2n2 + 3n + 4n + 6

= 2n2 + 7n + 6,

on conclut que :

Sn+1 =
(n + 1)(n + 2)

(
2(n + 1) + 1

)
6

.

Et cette dernière égalité est exactement la propriété
Pn+1.
Conclusion : On a prouvé que la propriété Pn est vraie
au rang n = 1 et qu’elle est héréditaire. Par le principe
de récurrence, elle est donc vraie pour tout n ∈ N∗.

Exercice 28. Nous allons raisonner par récurrence.
Pour tout entier n ∈ N∗, on note Pn la propriété :

1 × 2 + 2 × 3 + · · · + n(n + 1) =
n(n + 1)(n + 2)

3
.

Pour simplifier la rédaction du raisonnement, on notera
également :

Sn = 1 × 2 + 2 × 3 + · · · + n(n + 1).

Initialisation : Au rang n = 1, on a que S1 = 1 × 2 d’une
part et, d’autre part, que :

1(1 + 1)(1 + 2)
3

= 2.

Donc P1 est vraie.
Hérédité : Soit n ∈ N∗. Montrons que Pn implique Pn+1.
On suppose donc que :

Sn =
n(n + 1)(n + 2)

3
.

Et, on calcule alors :

Sn+1 = Sn + (n + 1)(n + 2)

=
n(n + 1)(n + 2)

3
+ (n + 1)(n + 2)

=
n(n + 1)(n + 2) + 3(n + 1)(n + 2)

3

=
(n + 1)(n + 2)(n + 3)

3
Et cette dernière égalité est exactement la propriété
Pn+1.
Conclusion : On a prouvé que la propriété Pn est vraie
au rang n = 1 et qu’elle est héréditaire. Par le principe
de récurrence, elle est donc vraie pour tout n ∈ N∗.

Exercice 29. On raisonne par récurrence sur n ∈ N. On
note Pn la propriété « 32n − 2n est divisible par 7 ».
Initialisation : Pour n = 0, on a que 32×0 − 20 = 0 est
divisible par 7. Donc P0 est bien vraie.
Hérédité : Soit n ∈ N. Démontrons que Pn implique la
propriété Pn+1. On suppose donc que 32n − 2n est un

nombre divisible par 7, c’est-à-dire qu’il existe k ∈ Z tel
que 32n − 2n = 7k. Alors, on calcule :

32(n+1) − 2n+1 = 32n × 32 − 2n × 2
= (7k + 2n) × 9 − 2n × 2
= 9 × 7k + 9 × 2n − 2 × 2n

= 9 × 7k + 7 × 2n

= 7(9k + 2n).
Et comme 9k + 2n est un nombre entier, la dernière éga-
lité prouve que 32(n+1) − 2n+1 est divisible par 7.
Conclusion : On a prouvé que P0 est vraie et que Pn est
héréditaire. Le principe de récurrence permet de conclure
que la propriété Pn est vraie pour tout n ∈ N.

Exercice 30. On raisonne par récurrence sur n ∈ N. On
note Pn la propriété « n3 + 5n est un multiple de 3 ».
Initialisation : Pour n = 0, on a que 03 + 5 × 0 = 0 est
bien un multiple de 3. C’est 3 × 0. Donc P0 est vraie.
Hérédité : Soit n ∈ N. Démontrons que Pn implique la
propriété Pn+1. On suppose que l’entier n3 + 5n est un
multiple de 3, c’est-à-dire qu’il existe un certain k ∈ Z
pour lequel n3 + 5n = 3k. Alors, on calcule :

(n + 1)3 + 5(n + 1) = n3 + 3n2 + 3n + 1 + 5n + 5

=
(

n3 + 5n
)

+
(

3n2 + 3n + 6
)

= 3k + 3(n2 + n + 2)

= 3(k + n2 + n + 2).

Et comme k + n2 + n + 2 est un entier, cette dernière
égalité prouve que (n + 1)3 + 5(n + 1) est multiple de 3.
Conclusion : On a prouvé que P0 est vraie et que Pn est
héréditaire. Le principe de récurrence permet de conclure
que la propriété Pn est vraie pour tout n ∈ N.

Exercice 31. On raisonne par récurrence sur n ∈ N. On
pose Pn la propriété 2n − 1 ⩾ n.
Initialisation : Au rang n = 0, on a que 20 − 1 = 0 et
donc bien que 20 − 1 ⩾ 0. La propriété P0 est vraie.
Hérédité : Soit n ∈ N. Montrons que Pn implique Pn+1.
On suppose que 2n − 1 ⩾ n. En multipliant cette inéga-
lité membre à membre par 2 puis en lui ajoutant 1, on
obtient que :

2
(

2n − 1
)
⩾ 2n

=⇒ 2n+1 − 2 ⩾ 2n

=⇒ 2n+1 − 1 ⩾ 2n + 1

Étant donné que 2n + 1 ⩾ n + 1, il vient que 2n+1 − 1 ⩾
n + 1. C’est excatement Pn+1.
Conclusion : On a prouvé que P0 est vraie et que Pn est
héréditaire. Le principe de récurrence permet de conclure
que la propriété Pn est vraie pour tout n ∈ N.

Exercice 32. L’inégalité de cet exercice généralise celle
de l’exercice précédent. C’était le cas particulier x = 1.
Pour tout n ∈ N, on pose Pn : (1 + x)n ⩾ 1 + nx.
Initialisation : Pour n = 1, on a (1 + x)1 = 1 + x d’une
part, d’autre part que 1 + 1 × x = 1 + x. Donc, on a bien
que (1 + x)1 ⩾ 1 + 1 × x et que la propriété P1 est vraie.
Hérédité : Soit n ∈ N∗. On démontre que Pn implique la
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propriété Pn+1. En d’autres termes, on va supposer que
l’on a (1 + x)n ≥ 1 + nx et l’on va montrer que :

(1 + x)n+1 ⩾ 1 + (n + 1)x.

En multipliant l’inégalité Pn par 1+x membre à membre,
on obtient que :

(1 + x)k+1 ⩾ (1 + kx)(1 + x).

Comme x > 0 et k ∈ N∗, on a que kx2 > 0. Ainsi, obtient
que :

(1 + kx)(1 + x) = 1 + x + kx + kx2

= 1 + (k + 1)x + kx2

⩾ 1 + (k + 1)x.

Finalement, on a bien :
(1 + x)k+1 ⩾ 1 + (k + 1)x.

Conclusion : On a prouvé que P0 est vraie et que Pn est
héréditaire. Le principe de récurrence permet de conclure
que la propriété Pn est vraie pour tout n ∈ N.

Exercice 33. Commençons par dire que cette équation
n’est définie que sur l’ensemble :

R \ {2; 3; 4; 5}.

On calcule :
(x + 2)(x + 3)(x + 4)(x + 5)
(x − 2)(x − 3)(x − 4)(x − 5)

=
(x + 2)(x + 5)(x + 3)(x + 4)
(x − 2)(x − 5)(x − 3)(x − 4)

=
(x2 + 7x + 10)(x2 + 7x + 12)
(x2 − 7x + 10)(x2 − 7x + 12)

=
a(a + 2)
b(b + 2)

en posant : {
a = x2 + 7x + 10
b = x2 − 7x + 10.

Ainsi, avec ce changement d’inconnues, l’équation est
équivalente à la recherche de a et b vérifiant :

a(a + 2)
b(b + 2)

= 1.

Or :
a(a + 2)
b(b + 2)

= 1 ⇐⇒ a(a + 2) = b(b + 2) =

⇐⇒ a2 + 2a = b2 + 2b

⇐⇒ a2 − b2 + 2(a − b) = 0
⇐⇒ (a − b)(a + b) + 2(a − b) = 0
⇐⇒ (a − b)(a + b + 2) = 0
⇐⇒ a − b = 0 ou a + b + 2 = 0.

On raisonne maintenant en traitant séparément ces deux
équations :

a − b = 0 ⇐⇒ x2 + 7x + 10 −
(

x2 − 7x + 10
)

= 0

⇐⇒ 14x = 0
⇐⇒ x = 0.

Ainsi 0 est une solution de l’équation. On examine le
deuxième cas :

a + b + 2 = 0

⇐⇒ x2 + 7x + 10 +
(

x2 − 7x + 10
)

+ 2 = 0

⇐⇒ 2x2 + 22 = 0

⇐⇒ x2 = −11.

Puisque x2 ⩾ 0 pour tout x ∈ R, ce cas est impossible. En
définition, la seule solution de notre équation est x = 0.

Exercice 34.
1. Le théorème de Pythagore appliqué sur les triangles

rectangles ABH et ACH donne :
BH2 + AH2 = AB2 et CH2 + AH2 = AC2.

Donc, on a que :
BH2 + AH2 = c2 et CH2 + AH2 = b2.

Ensuite :
b2 = CH2 + AH2

=
(

a − BH
)2

+ AH2

= a2 − 2aBH + BH2 + AH2

= a2 − 2aBH + BH2 + c2 − BH2

= a2 − 2aBH + c2.

Donc, on obtient :

BH2 =
c2 + a2 − b2

2a
.

Et finalement :
AH2 = AB2 − BH2

= c2 −
(

c2 + a2 − b2

2a

)2

.

2. On calcule :

A2 =
1
4

× a2 × h2

=
1
4

a2c2 −
1
16

(
c2 + a2 − b2

)2

=
1
16

(
(2ac)2 − (c2 + a2 − b2)2

)

=
1
16

(
2ac + c2 + a2 − b2

)(
2ac − c2 − a2 + b2

)

=
1
16

(
(a + c)2 − b2

)(
b2 − (a − c)2

)

=
1
16

(a + c + b)(a + c − b)(b + c − a)(b + a − c).

3. On calcule :

A2 =
1
16

(a + c + b)(a + c − b)(b + c − a)(b + a − c)

= 2s(2s − 2b)(2s − 2a)(2s − 2c)
= s(s − b)(s − a)(s − c).

Et finalement, en prenant la racine dans cette égalité,
on en déduit la formule de Héron :

A =
√

s(s − a)(s − b)(s − c). Co
rr

ig
és
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Chapitre 2 − Dénombrement

2.1 Synthèse de cours
Lorsqu’un ensemble A possède un nombre fini d’éléments, son nombre d’éléments est appelé son
cardinal. Il existe diverses notations pour cette notion, on notera ici Card(A).

2.1.1 Principes additif et multiplicatif

Propriété 1 (Principe additif). Soient n ∈ N∗ ainsi que E1, E2, . . . , En des ensembles finis
deux à deux disjoints. Alors, on a que :

Card (E1 ∪ E2 ∪ . . . ∪ En) = Card (E1) + Card (E2) + · · · + Card (En) .

L’hypothèse clef est évidemment que les ensembles soient deux à deux disjoints, c’est-à-dire qu’ils
n’aient aucun élément en commun. Lorsque A et B sont deux parties d’un ensemble fini, nous
savons bien que :

Card(A ∪ B) = Card(A) + Card(B) − Card(A ∩ B).
Plus généralement, il existe une formule (dite formule du crible) qui donne le cardinal d’une réunion
quelconque de n ensembles. Le cas n = 3 sera proposé en exercice.

Définition 1. Soient n ∈ N∗ et E, E1, E2, . . . , En des ensembles non vides. On appelle produit
cartésien des ensembles E1, E2, . . . , En et l’on note E1 × E2 × · · · × En l’ensemble des suites
ordonnées de n éléments (e1; e2; . . . ; en) avec ek ∈ Ek pour tout k ∈ {1; . . . ; n}. De plus, le
produit cartésien E × E × · · · × E est noté En et ses éléments sont appelés des n−uplets.

Lorsque n = 2, on parle de couple plutôt que de 2−uplet. Et pour n = 3, on parle de triplet. Les
coordonnées d’un point du plan sont, par exemple, des couples d’éléments de R.

Propriété 2 (Principe multiplicatif). Soient n ∈ N∗ ainsi que E, E1, E2, . . . , En des ensembles
finis non vides. Alors, on a que :

• Card (E1 × E2 × . . . × En) = Card (E1) × Card (E2) × . . . × Card (En).
• Card (En) =

(
Card (E)

)n.

2.1.2 Arrangements, permutations et combinaisons
On rappelle que la factorielle n! d’un entier n ∈ N∗ est le produit de tous les entiers naturels
compris entre 1 et n. Et l’on pose 0! = 1 par convention. Pour tout n ⩾ 1, on a donc :

n! = 1 × 2 × 3 × · · · × n.

31
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2.1 Synthèse de cours
Lorsqu’un ensemble A possède un nombre fini d’éléments, son nombre d’éléments est appelé son
cardinal. Il existe diverses notations pour cette notion, on notera ici Card(A).

2.1.1 Principes additif et multiplicatif

Propriété 1 (Principe additif). Soient n ∈ N∗ ainsi que E1, E2, . . . , En des ensembles finis
deux à deux disjoints. Alors, on a que :

Card (E1 ∪ E2 ∪ . . . ∪ En) = Card (E1) + Card (E2) + · · · + Card (En) .

L’hypothèse clef est évidemment que les ensembles soient deux à deux disjoints, c’est-à-dire qu’ils
n’aient aucun élément en commun. Lorsque A et B sont deux parties d’un ensemble fini, nous
savons bien que :

Card(A ∪ B) = Card(A) + Card(B) − Card(A ∩ B).
Plus généralement, il existe une formule (dite formule du crible) qui donne le cardinal d’une réunion
quelconque de n ensembles. Le cas n = 3 sera proposé en exercice.

Définition 1. Soient n ∈ N∗ et E, E1, E2, . . . , En des ensembles non vides. On appelle produit
cartésien des ensembles E1, E2, . . . , En et l’on note E1 × E2 × · · · × En l’ensemble des suites
ordonnées de n éléments (e1; e2; . . . ; en) avec ek ∈ Ek pour tout k ∈ {1; . . . ; n}. De plus, le
produit cartésien E × E × · · · × E est noté En et ses éléments sont appelés des n−uplets.

Lorsque n = 2, on parle de couple plutôt que de 2−uplet. Et pour n = 3, on parle de triplet. Les
coordonnées d’un point du plan sont, par exemple, des couples d’éléments de R.

Propriété 2 (Principe multiplicatif). Soient n ∈ N∗ ainsi que E, E1, E2, . . . , En des ensembles
finis non vides. Alors, on a que :

• Card (E1 × E2 × . . . × En) = Card (E1) × Card (E2) × . . . × Card (En).
• Card (En) =

(
Card (E)

)n.

2.1.2 Arrangements, permutations et combinaisons
On rappelle que la factorielle n! d’un entier n ∈ N∗ est le produit de tous les entiers naturels
compris entre 1 et n. Et l’on pose 0! = 1 par convention. Pour tout n ⩾ 1, on a donc :

n! = 1 × 2 × 3 × · · · × n.
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32 CHAPITRE 2. DÉNOMBREMENT

Définition 2. Soient E un ensemble non vide et un entier naturel non nul p ⩽ Card(E). Un
arrangement de p éléments de E est un p-uplet d’éléments deux à deux distincts de E. Un
arrangement de tous les éléments de E est appelé une permutation de E.

Modélisation. Dans un arrangement, l’ordre des éléments a de l’importance et les éléments sont
deux à deux distincts. Il n’y a pas de répétition. Un arrangement de p éléments de E peut être
interprété comme le résultat de p tirages successifs et sans remise dans l’ensemble E.

Propriété 3. Soient E un ensemble non vide de cardinal n ainsi qu’un entier naturel p ⩽ n.
Le nombre d’arrangements de p éléments de E est égal à :

n!
(n − p)! = n × (n − 1) × · · · × (n − p + 1)

Ce nombre est parfois noté An
p . En prenant p = n, on voit que le nombre de permutations d’un

ensemble à n éléments est égal à n!.

Définition 3. Soit E un ensemble non vide et un entier naturel non nul p ⩽ Card(E). Une
combinaison de p éléments de E est un sous-ensemble de E possédant p éléments.

Modélisation. Dans une combinaison, l’ordre des éléments n’a pas d’importance et les éléments
sont deux à deux distincts. Il n’y a pas de répétition. Ainsi, une combinaison de p éléments d’un
ensemble E peut être interprétée comme le tirage simultané de p éléments dans l’ensemble E.

Propriété 4. Soient E un ensemble non vide de cardinal n et un entier naturel p ⩽ n. Le
nombre de combinaisons de p éléments de E est égal au coefficient binomial :

(
n

p

)
= n!

p!(n − p)! .

Pour résumer les caractéristiques clefs de la modélisation par un produit cartésien, un arrangement
ou une combinaison, on peut retenir le tableau suivant.

Produit cartésien Arrangement Combinaison
Prise en compte de l’ordre oui oui non
Répétition possible oui non non

2.2 Énoncés des exercices

Dénombrer en pratique
Exercice 1. Un groupe de dix personnes se réunit,
et chacun serre la main de tous les autres. Combien
y aura-t-il de poignées de main au total ? Justifier.

Exercice 2. Une course oppose 12 cyclistes.

1. Combien y a-t-il de podiums possibles ?
2. Combien y a-t-il de classements possibles ?

Exercice 3. En fin d’année de Seconde, un élève
doit choisir trois spécialités parmi les douze qui lui
sont proposées pour la classe de Première.

2.2. ÉNONCÉS DES EXERCICES 33

1. Combien de choix différents peut-il faire ?
2. Cet élève sait qu’il devra abandonner une des

trois spécialités en Terminale. Il décide donc
de choisir les deux spécialités qu’il conservera
et une troisième qu’il abandonnera. Combien
de choix peut-il faire ?

Exercice 4. Un jeu de 52 cartes comporte 13 cartes
de chacune des 4 couleurs (trèfle, pique, carreau et
coeur) qui sont, en classant par ordre croissant de
valeur, celles allant de 1 à 10, puis le valet, la dame
et le roi. On tire 5 cartes successivement et sans
remise. Ces 5 cartes constituent une « main » dans
laquelle on ne tient pas compte de l’ordre des cartes.
Dénombrer les mains qui contiennent :

(a) Quatre cartes de valeur identique.
(b) Trois cartes possédant la même valeur et deux

autres cartes avec également la même valeur.
(c) Cinq cartes de la même couleur qui se suivent.
(d) Exactement deux cartes de trèfle.

Exercice 5 (⋆). Un tournoi à élimination directe de
tennis débute en quart de finale avec huit joueurs.
On a schématisé une possibilité de déroulement du
tournoi dans laquelle J2 sort gagnant :

J1

J2

J3

J4

J5

J6

J7

J8

J2

J3

J5

J7

J2

J5

J2

1. Déterminer le nombre de matchs qu’un joueur
a gagné s’il a remporté ce tournoi.

2. Combien de matchs ce tournoi comporte-t-il ?
3. Combien de finales différentes sont possibles ?
4. Soit n ∈ N∗. Reprendre ces questions dans le

cas d’un tournoi qui débute avec 2n joueurs.

Exercice 6. Un anagramme est un mot formé en
changeant l’ordre les lettres d’un autre mot. On ne
tient pas compte de la signification du mot obtenu.
Déterminer le nombre d’anagrammes de :

1. Manchot

2. Canal
3. Mississippi.

Exercice 7. Dans une petite association, on veut
former un bureau constitué de six personnes, avec
la parité homme-femme. Il y a sept hommes et cinq
femmes dans cette association.

1. Combien y a-t-il de bureaux possibles ?
2. Même question si Monsieur Dupont fait partie

du bureau et si Madame Martin ne veut pas
en faire partie.

Exercice 8 (⋆). Sur une grille carrée de 4×4 cases,
on peut se déplacer uniquement vers la droite ou vers
le haut. On part du point A(0, 0) en bas à gauche
pour rejoindre le point B(4, 4) en haut à droite. On
donne ci-dessous un exemple d’un tel chemin.

A

B

1. Déterminer le nombre de chemins différents
permettant d’aller de A à B en respectant ces
règles de déplacement. Justifier.

2. On place un obstacle en C(2, 2), on ne peut
plus passer par ce point. Combien de chemins
différents permettent encore d’atteindre B ?

A

B

C

Exercice 9. On souhaiter positionner quatre tours
sur un échiquier 4 × 4 de manière à ce qu’aucune
d’elles ne se menace. Pour rappel, une tour peut
se déplacer horizontalement ou verticalement d’au-
tant de cases que souhaité. Une configuration satis-
faisante est représentée ci-dessous.
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Définition 2. Soient E un ensemble non vide et un entier naturel non nul p ⩽ Card(E). Un
arrangement de p éléments de E est un p-uplet d’éléments deux à deux distincts de E. Un
arrangement de tous les éléments de E est appelé une permutation de E.

Modélisation. Dans un arrangement, l’ordre des éléments a de l’importance et les éléments sont
deux à deux distincts. Il n’y a pas de répétition. Un arrangement de p éléments de E peut être
interprété comme le résultat de p tirages successifs et sans remise dans l’ensemble E.

Propriété 3. Soient E un ensemble non vide de cardinal n ainsi qu’un entier naturel p ⩽ n.
Le nombre d’arrangements de p éléments de E est égal à :

n!
(n − p)! = n × (n − 1) × · · · × (n − p + 1)

Ce nombre est parfois noté An
p . En prenant p = n, on voit que le nombre de permutations d’un

ensemble à n éléments est égal à n!.

Définition 3. Soit E un ensemble non vide et un entier naturel non nul p ⩽ Card(E). Une
combinaison de p éléments de E est un sous-ensemble de E possédant p éléments.

Modélisation. Dans une combinaison, l’ordre des éléments n’a pas d’importance et les éléments
sont deux à deux distincts. Il n’y a pas de répétition. Ainsi, une combinaison de p éléments d’un
ensemble E peut être interprétée comme le tirage simultané de p éléments dans l’ensemble E.

Propriété 4. Soient E un ensemble non vide de cardinal n et un entier naturel p ⩽ n. Le
nombre de combinaisons de p éléments de E est égal au coefficient binomial :

(
n

p

)
= n!

p!(n − p)! .

Pour résumer les caractéristiques clefs de la modélisation par un produit cartésien, un arrangement
ou une combinaison, on peut retenir le tableau suivant.

Produit cartésien Arrangement Combinaison
Prise en compte de l’ordre oui oui non
Répétition possible oui non non

2.2 Énoncés des exercices

Dénombrer en pratique
Exercice 1. Un groupe de dix personnes se réunit,
et chacun serre la main de tous les autres. Combien
y aura-t-il de poignées de main au total ? Justifier.

Exercice 2. Une course oppose 12 cyclistes.

1. Combien y a-t-il de podiums possibles ?
2. Combien y a-t-il de classements possibles ?

Exercice 3. En fin d’année de Seconde, un élève
doit choisir trois spécialités parmi les douze qui lui
sont proposées pour la classe de Première.
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1. Combien de choix différents peut-il faire ?
2. Cet élève sait qu’il devra abandonner une des

trois spécialités en Terminale. Il décide donc
de choisir les deux spécialités qu’il conservera
et une troisième qu’il abandonnera. Combien
de choix peut-il faire ?

Exercice 4. Un jeu de 52 cartes comporte 13 cartes
de chacune des 4 couleurs (trèfle, pique, carreau et
coeur) qui sont, en classant par ordre croissant de
valeur, celles allant de 1 à 10, puis le valet, la dame
et le roi. On tire 5 cartes successivement et sans
remise. Ces 5 cartes constituent une « main » dans
laquelle on ne tient pas compte de l’ordre des cartes.
Dénombrer les mains qui contiennent :

(a) Quatre cartes de valeur identique.
(b) Trois cartes possédant la même valeur et deux

autres cartes avec également la même valeur.
(c) Cinq cartes de la même couleur qui se suivent.
(d) Exactement deux cartes de trèfle.

Exercice 5 (⋆). Un tournoi à élimination directe de
tennis débute en quart de finale avec huit joueurs.
On a schématisé une possibilité de déroulement du
tournoi dans laquelle J2 sort gagnant :

J1

J2

J3

J4

J5

J6

J7

J8

J2

J3

J5

J7

J2

J5

J2

1. Déterminer le nombre de matchs qu’un joueur
a gagné s’il a remporté ce tournoi.

2. Combien de matchs ce tournoi comporte-t-il ?
3. Combien de finales différentes sont possibles ?
4. Soit n ∈ N∗. Reprendre ces questions dans le

cas d’un tournoi qui débute avec 2n joueurs.

Exercice 6. Un anagramme est un mot formé en
changeant l’ordre les lettres d’un autre mot. On ne
tient pas compte de la signification du mot obtenu.
Déterminer le nombre d’anagrammes de :

1. Manchot

2. Canal
3. Mississippi.

Exercice 7. Dans une petite association, on veut
former un bureau constitué de six personnes, avec
la parité homme-femme. Il y a sept hommes et cinq
femmes dans cette association.

1. Combien y a-t-il de bureaux possibles ?
2. Même question si Monsieur Dupont fait partie

du bureau et si Madame Martin ne veut pas
en faire partie.

Exercice 8 (⋆). Sur une grille carrée de 4×4 cases,
on peut se déplacer uniquement vers la droite ou vers
le haut. On part du point A(0, 0) en bas à gauche
pour rejoindre le point B(4, 4) en haut à droite. On
donne ci-dessous un exemple d’un tel chemin.

A

B

1. Déterminer le nombre de chemins différents
permettant d’aller de A à B en respectant ces
règles de déplacement. Justifier.

2. On place un obstacle en C(2, 2), on ne peut
plus passer par ce point. Combien de chemins
différents permettent encore d’atteindre B ?

A

B

C

Exercice 9. On souhaiter positionner quatre tours
sur un échiquier 4 × 4 de manière à ce qu’aucune
d’elles ne se menace. Pour rappel, une tour peut
se déplacer horizontalement ou verticalement d’au-
tant de cases que souhaité. Une configuration satis-
faisante est représentée ci-dessous.
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R

R

R

R

1. Les quatre tours sont noires et indiscernables.
Trouver le nombre de configurations possibles.

2. Les tours sont de quatre couleurs différentes.
Trouver le nombre de configurations possibles.

3. Deux tours sont blanches, deux sont noires.
Trouver le nombre de configurations possibles.

Un peu plus abstrait
Exercice 10. Soient p et n deux entiers naturels
tels que 1 ⩽ p ⩽ n. Démontrer que :
(

n

p

)
=

(
n

n − p

)
et

(
n − 1
p − 1

)
+

(
n − 1

p

)
=

(
n

p

)
.

Exercice 11 (⋆). On considère E un ensemble non
vide de cardinal n ∈ N∗. Démontrer que le nombre
de sous-parties de E est égal à :

n∑
p=0

(
n

p

)
= 2n.

Exercice 12. Dans chacun des cas suivants, donner
les ensembles :

A ∪ B ; A ∩ B ; A × B ; B × A.

1. A = {1; 2; 3} et B = {1; 2; 4}
2. A = {a; b} et B = {ε, δ}

Exercice 13. On considère A = {1; 2; 3; 4}. Écrire
les deux arrangements, les trois combinaisons ainsi
que les permutations de A.

Le coin du chercheur
Exercice 14 (⋆). Considérons E un ensemble non
vide ainsi que A, B deux sous-ensembles de E. On
appelle différence symétrique de A et B le sous-
ensemble de E, noté A∆B, contenant les éléments
de A∪B n’appartenant pas à A∩B. Autrement dit :

A∆B =
{

x ∈ A ∪ B | x /∈ A ∩ B
}

.

1. On pose :

A = {1; 2; 3; 4; 5} et B = {3; 4; 5; 6; 7}.

(a) Déterminer A ∩ B et A∆B.
(b) Préciser le cardinal de A∆B et A ∩ B.

2. On revient au cas général en supposant que
les ensembles A et B sont de cardinaux finis.
Prouver que le cardinal de A∆B est égal à :

Card(A) + Card(B) − 2 Card(A ∩ B).

Exercice 15 (⋆⋆). On veut placer le roi noir et la
dame noire sur deux cases distinctes d’un échiquier.

—

80Z0Z0Z0Z
7Z0ZqZ0Z0
60Z0Z0Z0Z
5Z0Z0ZkZ0
40Z0Z0Z0Z
3Z0Z0Z0Z0
20Z0Z0Z0Z
1Z0Z0Z0Z0

a b c d e f g h
Déterminer le nombre de positions telles que :

1. La dame soit située sur une ligne strictement
plus au-dessus de celle où se trouve le roi.

2. Le roi et la dame soient sur la même ligne.

2.3. CORRIGÉS DES EXERCICES 35

2.3 Corrigés des exercices

Exercice 1. On numérote les personnes de 1 à 10 et on
note E = {p1; . . . ; p10} l’ensemble des personnes. Choisir
une poignée de mains revient à choisir deux personnes qui
se serrent la main. C’est une combinaison (pas d’ordre,
pas de répétition) de 2 éléments parmi 10. Le nombre de
poignées de mains est donc :

(10
2

)
=

10!
2! 8!

=
10 × 9

2
= 45.

Exercice 2. On numérote les cyclistes de 1 à 12 et on
note E = {c1; . . . ; c12} l’ensemble de ces cyclistes.
1. Choisir un podium, c’est choisir 3 cyclistes au sein de

l’ensemble E sans répétition et en tenant compte de
l’ordre. Il s’agit donc d’un arrangement de 3 cyclistes
parmi 12. Au total, le nombre de podium est donc :

A12
3 =

12!
9!

= 12 × 11 × 10 = 1320.

2. Un classement des 12 cyclistes est une permutation
des 12 éléments de E. Le nombre de classements est
donc égal à :

12! = 479 001 600.

Exercice 3. On numérote les spécialités de 1 à 12 et on
note E = {s1; . . . ; s12} l’ensemble de ces spécialités.
1. L’élève doit choisir trois éléments différents de E sans

tenir compte de l’ordre. Chaque choix possible est une
combinaison de 3 éléments parmi 12. Le nombre de
choix possibles est donc :

(12
3

)
=

12!
3! 9!

=
12 × 11 × 10

3
= 440.

2. L’élève fait d’abord le choix des 2 spécialités qu’il
va conserver en Terminale puis le choix de celle qu’il
abandonnera. On note C l’ensemble des choix pour les
deux spécialités conservées et A l’ensemble des choix
possibles pour la spécialité abandonnée. L’ensemble
des choix possibles pour les 3 spécialités en Première
est alors :

C × A.

Or, nous savons que :
Card(C × A) = Card(C) × Card(A).

L’ensemble C est l’ensemble des parties à 2 éléments
distincts de E. Ce sont les combinaisons de 2 éléments
de E. Donc :

Card(C) =
(12

2
)

=
12!

2! 10!
=

12 × 11
2

= 66.

Le choix de la spécialité abandonnée se fait parmi les
10 spécialités restantes. C’est une combinaison d’un
élément parmi 10. Donc :

Card(A) =
(10

1
)

=
10!
1! 9!

= 10.

En définitive, si l’élève fait le choix de cette manière,
le nombre total de possibilités est :

66 × 10 = 660.

Exercice 4.
(a) Comme l’ordre des cartes dans une main n’est pas

pris en compte, on peut supposer que l’on commence
par choisir les quatre cartes de même valeur puis la
cinquième. Il y a au total 13 choix possibles pour les
quatre cartes portant la même valeur : soit les 4 rois,
soit les 4 dames, soit les 4 valets, soit les 4 dix, etc.
Puis, on choisit une autre carte quelconque parmi les
quarantes-huits cartes restantes. Ainsi, choisir une
telle main revient à choisir un élément de l’ensemble

E = {1; . . . ; 13} × {1; . . . ; 48}.

Finalement, le nombre de mains comportant quatre
cartes de même valeur est :

Card(E) = 13 × 48 = 624.

(b) Dans le jeu, chaque valeur n’existe qu’en quatre
exemplaires. Ainsi, les trois cartes de même valeur
ne peuvent pas avoir la même valeur que les deux
autres cartes qui, elles aussi, sont de même valeur.
Comme l’ordre des cartes dans une main n’est pas
pris en compte, on peut commencer par dénombrer
les possibilités pour les trois cartes, puis celles pour
les 2 cartes.
• Pour les 3 cartes de même valeur, on choisit une

valeur parmi les 13 valeurs possibles. Ensuite, on
choisit 3 couleurs parmi 4. Par exemple, si l’on
choisit la valeur « valet », il reste à en choisir trois
parmi les valets de pique, trèfle, carreau ou coeur.
C’est une combinaison de 3 couleurs parmi 4. Au
total, le nombre de possibilités est :

13 ×
(4

3
)

= 13 ×
4!

3! 1!
= 13 × 4 = 52.

• Pour le choix des 2 autres cartes, il reste 12 choix
possibles pour la valeur. Ensuite, on fait le choix
de deux couleurs parmi les 4 couleurs. C’est une
combinaison de 2 parmi 4, ce qui donne 6 choix
possibles. On peut d’ailleurs les lister :

{♡, ♣}, {♡, ♢}, {♡, ♠}, {♣, ♢}, {♣, ♠}, {♢, ♠}

Au total, le nombre de possibilités pour ce choix
de 2 cartes de même valeur est :

12 × 6 = 72.

Par le principe multiplicatif, le nombre de total de
possibilités avec les conditions données est :

52 × 72 = 3744.

(c) Choisir cinq cartes de la même couleur qui se suivent
revient à choisir la première carte, les quatres autres
se suivent sans choix. Avoir cinq cartes qui se suivent
impose que la carte de plus petite valeur dans la main
soit le 9. Ainsi cela revient à choisir une carte de l’as
au neuf dans l’une ou l’autre des quatre couleurs. Il
y a donc 9 × 4 = 36 mains possibles.
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R

R

R

R

1. Les quatre tours sont noires et indiscernables.
Trouver le nombre de configurations possibles.

2. Les tours sont de quatre couleurs différentes.
Trouver le nombre de configurations possibles.

3. Deux tours sont blanches, deux sont noires.
Trouver le nombre de configurations possibles.

Un peu plus abstrait
Exercice 10. Soient p et n deux entiers naturels
tels que 1 ⩽ p ⩽ n. Démontrer que :
(

n

p

)
=

(
n

n − p

)
et

(
n − 1
p − 1

)
+

(
n − 1

p

)
=

(
n

p

)
.

Exercice 11 (⋆). On considère E un ensemble non
vide de cardinal n ∈ N∗. Démontrer que le nombre
de sous-parties de E est égal à :

n∑
p=0

(
n

p

)
= 2n.

Exercice 12. Dans chacun des cas suivants, donner
les ensembles :

A ∪ B ; A ∩ B ; A × B ; B × A.

1. A = {1; 2; 3} et B = {1; 2; 4}
2. A = {a; b} et B = {ε, δ}

Exercice 13. On considère A = {1; 2; 3; 4}. Écrire
les deux arrangements, les trois combinaisons ainsi
que les permutations de A.

Le coin du chercheur
Exercice 14 (⋆). Considérons E un ensemble non
vide ainsi que A, B deux sous-ensembles de E. On
appelle différence symétrique de A et B le sous-
ensemble de E, noté A∆B, contenant les éléments
de A∪B n’appartenant pas à A∩B. Autrement dit :

A∆B =
{

x ∈ A ∪ B | x /∈ A ∩ B
}

.

1. On pose :

A = {1; 2; 3; 4; 5} et B = {3; 4; 5; 6; 7}.

(a) Déterminer A ∩ B et A∆B.
(b) Préciser le cardinal de A∆B et A ∩ B.

2. On revient au cas général en supposant que
les ensembles A et B sont de cardinaux finis.
Prouver que le cardinal de A∆B est égal à :

Card(A) + Card(B) − 2 Card(A ∩ B).

Exercice 15 (⋆⋆). On veut placer le roi noir et la
dame noire sur deux cases distinctes d’un échiquier.

—

80Z0Z0Z0Z
7Z0ZqZ0Z0
60Z0Z0Z0Z
5Z0Z0ZkZ0
40Z0Z0Z0Z
3Z0Z0Z0Z0
20Z0Z0Z0Z
1Z0Z0Z0Z0

a b c d e f g h
Déterminer le nombre de positions telles que :

1. La dame soit située sur une ligne strictement
plus au-dessus de celle où se trouve le roi.

2. Le roi et la dame soient sur la même ligne.
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2.3 Corrigés des exercices

Exercice 1. On numérote les personnes de 1 à 10 et on
note E = {p1; . . . ; p10} l’ensemble des personnes. Choisir
une poignée de mains revient à choisir deux personnes qui
se serrent la main. C’est une combinaison (pas d’ordre,
pas de répétition) de 2 éléments parmi 10. Le nombre de
poignées de mains est donc :

(10
2

)
=

10!
2! 8!

=
10 × 9

2
= 45.

Exercice 2. On numérote les cyclistes de 1 à 12 et on
note E = {c1; . . . ; c12} l’ensemble de ces cyclistes.
1. Choisir un podium, c’est choisir 3 cyclistes au sein de

l’ensemble E sans répétition et en tenant compte de
l’ordre. Il s’agit donc d’un arrangement de 3 cyclistes
parmi 12. Au total, le nombre de podium est donc :

A12
3 =

12!
9!

= 12 × 11 × 10 = 1320.

2. Un classement des 12 cyclistes est une permutation
des 12 éléments de E. Le nombre de classements est
donc égal à :

12! = 479 001 600.

Exercice 3. On numérote les spécialités de 1 à 12 et on
note E = {s1; . . . ; s12} l’ensemble de ces spécialités.
1. L’élève doit choisir trois éléments différents de E sans

tenir compte de l’ordre. Chaque choix possible est une
combinaison de 3 éléments parmi 12. Le nombre de
choix possibles est donc :

(12
3

)
=

12!
3! 9!

=
12 × 11 × 10

3
= 440.

2. L’élève fait d’abord le choix des 2 spécialités qu’il
va conserver en Terminale puis le choix de celle qu’il
abandonnera. On note C l’ensemble des choix pour les
deux spécialités conservées et A l’ensemble des choix
possibles pour la spécialité abandonnée. L’ensemble
des choix possibles pour les 3 spécialités en Première
est alors :

C × A.

Or, nous savons que :
Card(C × A) = Card(C) × Card(A).

L’ensemble C est l’ensemble des parties à 2 éléments
distincts de E. Ce sont les combinaisons de 2 éléments
de E. Donc :

Card(C) =
(12

2
)

=
12!

2! 10!
=

12 × 11
2

= 66.

Le choix de la spécialité abandonnée se fait parmi les
10 spécialités restantes. C’est une combinaison d’un
élément parmi 10. Donc :

Card(A) =
(10

1
)

=
10!
1! 9!

= 10.

En définitive, si l’élève fait le choix de cette manière,
le nombre total de possibilités est :

66 × 10 = 660.

Exercice 4.
(a) Comme l’ordre des cartes dans une main n’est pas

pris en compte, on peut supposer que l’on commence
par choisir les quatre cartes de même valeur puis la
cinquième. Il y a au total 13 choix possibles pour les
quatre cartes portant la même valeur : soit les 4 rois,
soit les 4 dames, soit les 4 valets, soit les 4 dix, etc.
Puis, on choisit une autre carte quelconque parmi les
quarantes-huits cartes restantes. Ainsi, choisir une
telle main revient à choisir un élément de l’ensemble

E = {1; . . . ; 13} × {1; . . . ; 48}.

Finalement, le nombre de mains comportant quatre
cartes de même valeur est :

Card(E) = 13 × 48 = 624.

(b) Dans le jeu, chaque valeur n’existe qu’en quatre
exemplaires. Ainsi, les trois cartes de même valeur
ne peuvent pas avoir la même valeur que les deux
autres cartes qui, elles aussi, sont de même valeur.
Comme l’ordre des cartes dans une main n’est pas
pris en compte, on peut commencer par dénombrer
les possibilités pour les trois cartes, puis celles pour
les 2 cartes.
• Pour les 3 cartes de même valeur, on choisit une

valeur parmi les 13 valeurs possibles. Ensuite, on
choisit 3 couleurs parmi 4. Par exemple, si l’on
choisit la valeur « valet », il reste à en choisir trois
parmi les valets de pique, trèfle, carreau ou coeur.
C’est une combinaison de 3 couleurs parmi 4. Au
total, le nombre de possibilités est :

13 ×
(4

3
)

= 13 ×
4!

3! 1!
= 13 × 4 = 52.

• Pour le choix des 2 autres cartes, il reste 12 choix
possibles pour la valeur. Ensuite, on fait le choix
de deux couleurs parmi les 4 couleurs. C’est une
combinaison de 2 parmi 4, ce qui donne 6 choix
possibles. On peut d’ailleurs les lister :

{♡, ♣}, {♡, ♢}, {♡, ♠}, {♣, ♢}, {♣, ♠}, {♢, ♠}

Au total, le nombre de possibilités pour ce choix
de 2 cartes de même valeur est :

12 × 6 = 72.

Par le principe multiplicatif, le nombre de total de
possibilités avec les conditions données est :

52 × 72 = 3744.

(c) Choisir cinq cartes de la même couleur qui se suivent
revient à choisir la première carte, les quatres autres
se suivent sans choix. Avoir cinq cartes qui se suivent
impose que la carte de plus petite valeur dans la main
soit le 9. Ainsi cela revient à choisir une carte de l’as
au neuf dans l’une ou l’autre des quatre couleurs. Il
y a donc 9 × 4 = 36 mains possibles. Co

rr
ig

és
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(d) Comme l’ordre des cartes dans une main n’est pas
pris en compte, on peut commencer par choisir les
deux cartes de trèfle puis les trois autres. Un choix
de 2 trèfles est une combinaison de 2 éléments parmi
13. Le choix des 3 autres cartes est une combinaison
de 3 éléments parmi 52 − 13 = 39. Ainsi, le nombre
de mains possibles est :

(13
2

)
×

(39
3

)
=

13!
2! 11!

×
39!

3! 36!

=
13 × 12

2
×

39 × 38 × 37
3 × 2

= 712 842.

Exercice 5.
1. On compte simplement le nombre de matchs qu’il a

gagné : le quart de finale, la demi-finale et la finale. Il
faut donc gagner 3 matchs pour remporter le tournoi.

2. Il suffit de compter le nombre de matchs sur le schéma.
Il y a 7 matchs. En anticipation de la généralisation de
la dernière question, proposons deux méthodes pour
trouver cette valeur :
• Il y a quatre quarts de finale, deux demi-finales et

une finale. Ainsi, il faut gagner 7 matchs.
• Il y a 8 joueurs, à la fin du tournoi il ne reste qu’un

seul joueur. Chaque match élimine un joeur. Ainsi,
il doit y avoir 8 − 1 = 7 matchs.

3. Un finale oppose 2 joueurs. Il y a 8 joueurs inscrits
au tournoi. Une finale est un choix de 2 parmi 8, sans
répétition et sans tenir compte de l’ordre. C’est une
combinaison de deux joueurs dans un groupe de huit.
Le nombre de finales possibles est donc :

(8
2
)

=
8!

2! 6!
=

8 × 7
2

= 28.

4. (a) À chaque tour, un joueur sur 2 est éliminé. Au
premier tour, il y a 2n joueurs, au deuxième
tour, il y a 2n−1 joueurs, au troisième tour, il
y a 2n−2 joueurs. Si l’on généralise, au k-ième
tour, il y a 2n−(k−1) joueurs. Ainsi, à la finale,
il reste

2 = 2n−(n−1)

joueurs. Ainsi, la finale est le n-ième tour du
tournoi. En conclusion, pour gagner le tournoi,
il est nécessaire de gagner n matchs.

(b) Il y a 2n joueurs au début du tournoi et un seul
gagnant. Le tournoi doit éliminer 2n−1 joueurs.
Chaque match élimine un joueur. On en conclut
que le tournoi comporte 2n − 1 matchs.

(c) Il y a 2n joueurs inscrits. Une finale est une
combinaison de 2 joueurs parmi 2n. Le nombre
de finales possibles est donc :

(2n

2
)

.

Exercice 6.
1. Un anagramme de « manchot » est une permutation

de l’ensemble E = {m; a; n; c; h; o; t; }. Cet ensemble
comportant 7 éléments, le nombre d’anagramme re-
cherché est :

7! = 5040.

2. Première méthode. Le mot « canal » est formé de cinq
lettres. A priori, si l’on procède comme à la question
précédente, on devrait dénombrer 5! anagrammes. Or,
dans ces anagrammes, si les deux « a » sont permu-
tés, le mot est inchangé. Ainsi, pour ne pas compter
ces anagrammes deux fois, on divise 5! par le nombre
de permutations possibles des deux « a ». Le nombre
d’anagrammes recherché est donc :

5!
2!

= 5 × 4 × 3 = 60.

Deuxième méthode. Choisir un anagramme revient à
choisir l’emplacement des deux « a » puis à placer les
autres lettres dans les emplacements restants. Si l’on
note E = {1; . . . ; 5} les emplacements possibles, on
remarque que le choix des places pour les « a » est
une combinaison de 2 places parmi 5 : il n’y pas de
répétition et pas d’ordre. Choisir les emplacements
des autres lettres est une permutation de 3 places.
En définitive, par le principe multiplicatif, le nombre
d’anagrammes est :

(5
2
)

× 3! =
5!

2! 3!
× 3! = 5 × 4 × 3 = 60.

3. Avec la première méthode : le mot « mississippi » est
composé de 11 lettres dont les lettres « s » et « i » qui
apparaissent 4 fois et le « i » qui apparait 2 fois. Le
nombre d’anagramme de « mississippi » est donc :

11!
4! 4! 2!

=
11 × 10 × 9 × 8 × 7 × 6 × 5

4 × 3 × 2 × 2
= 34 650.

Avec la seconde méthode, on observe que choisir un
anagramme revient à choisir 4 places parmi 11 pour
les lettres « i » puis 4 places parmi les 7 restantes pour
les lettres « s » puis enfin 2 places parmi les 3 restantes
pour les lettres « p ». Il ne reste qu’une place. Ainsi,
le nombre d’anagrammes est :

(11
4

)
×

(7
4
)

×
(3

2
)

× 1 = 34 650.

Exercice 7. Un bureau de 6 membres constitué à parité
contient 3 hommes et 3 femmes.
1. Il n’y a pas d’ordre entre les membres du bureau,

on peut donc commencer par choisir les hommes puis
les femmes. Si l’on note H = {h1; . . . ; h7} l’ensemble
des 7 hommes membres de l’association, le choix des
hommes pour le bureau est une combinaison (ni ordre,
ni répétition) de 3 éléments de H. De même, le choix
des femmes est une combinaison de 3 éléments de
l’ensemble F des 5 femmes membres de l’association.
Par le principe multiplicatif, le nombre de possibilités
pour le bureau est donc :

(7
3
)

×
(5

3
)

=
7!

3! 4!
×

5!
3! 2!

= 35 × 10 = 350.
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2. On adapte le raisonnement de la question précédente.
Puisque Monsieur Dupont est membre du bureau, il
reste 2 hommes à choisir parmi les 6 hommes restants.
Puisque Madame Martin ne peut pas être au bureau,
le choix des 3 femmes se fait parmi 4 femmes. Ainsi,
le nombre de possibilités est :

(6
2
)

×
(4

3
)

=
6!

2! 4!
×

4!
3! 1!

= 15 × 4 = 60.

Exercice 8.
1. Un chemin correspond à huit déplacements,

quatre vers le Haut et quatre vers la Droite. Ainsi,
choisir un chemin revient à choisir un anagramme
de DDDDHHHH. En reprenant l’une ou l’autre
des méthodes données dans l’exercice 6, on obtient
que le nombre de chemins possibles est :

8!
4! 4!

=
8 × 7 × 6 × 5

2 × 3 × 4
= 70.

2. On va compter le nombre de chemins qui passent
par cet obstacle, passer par le point (2; 2) revient
à choisir un chemin de A à C puis de C à B. Le
nombre de chemins de A à C est (en utilisant le
même raisonnement que précédemment) de 6, de
même pour les chemins de C à B. Ainsi le nombre
de chemin ne passant pas par C est le nombre de
chemins total moins le nombre de chemins passant
par C :

70 − 2 × 6 = 58.

Exercice 9.
1. On raisonne par placement successif des tours. On

peut s’aider d’un schéma où l’on colorie au fur et à
mesure les lignes/colonnes de l’échiquier des cases où
l’on positionne une tour.
• On place la première tour. Il y a 16 choix possibles.
• On place la deuxième tour. Elle ne peut être mise

ni sur la ligne, ni sur la colonne où l’on a mis la
première tour. Cela retire 7 cases de l’échiquier. Il
y a donc 16 − 7 = 9 emplacements possibles.

• On place la troisième tour. Elle ne peut être mise
ni sur les lignes, ni sur les colonnes où se situent
les deux premières tours. Cela retire 5 cases de
l’échiquier. Il y a donc 9 − 5 = 4 choix possibles.

• Pour la dernière tour, il ne reste qu’un seul choix.
Ainsi, choisir une configuration pour les quatre tours
revient à choisir un élément de l’ensemble :

{1; . . . ; 16} × {1; . . . ; 9} × {1; 2; 3; 4} × {1}

dont le cardinal est 16×9×5×1 = 720. En définitive,
il y a 720 configurations possibles.

2. Choisir une configuration pour quatre tours toutes
de couleurs différentes, cela revient à choisir une des
configurations de la question précédente puis ensuite
une permutation des quatre couleurs. Ainsi, le nombre
de possibilités est :

720 × 4! = 720 × 24 = 17 280.

3. Choisir une configuration avec deux tours noires et
deux blanches revient à choisir une configuration de
la première question puis un ensemble à deux éléments
parmi quatre. Ainsi, le nombre de possibilités est :

720 ×
(4

2
)

= 720 ×
4!

2! 2!
= 720 × 6 = 4320.

Exercice 10.
1. Par définition, on a :

(n

p

)
=

n!
p!(n − p)!

=
n!

(n − p)!
(

n − (n − p)
)

!

=
( n

n − p

)
.

2. On propose deux méthodes pour cette question : par
un calcul direct et par un argument de dénombrement.
Première solution. On fait un calcul direct en partant
du membre de gauche de l’égalité. On met au même
dénominateur les deux fractions intervenant dans le
calcul. On calcule :

(n − 1
p − 1

)
=

(n − 1)!
(p − 1)!(n − p)!

=
p(n − 1)!
p!(n − p)!

et :
(n − 1

p

)
=

(n − 1)!
p!(n − 1 − p)!

=
(n − 1)!(n − p)

p!(n − p)!
.

On a multiplié le numérateur et le dénominateur de la
première fraction par p. La seconde par n−p. Dans ce
type de calculs, on doit être vigilant aux parenthèses
et bien comprendre que

p(n − 1)! ̸=
(

p(n − 1)
)

!.

Ainsi, en factorisant par (n − 1)! au numérateur, on
obtient :

(n − 1
p − 1

)
+

(n − 1
p

)
=

p(n − 1)!
p!(n − p)!

+
(n − p)(n − 1)!

p!(n − p)!

=
(n − 1)!

(
p + n − p

)
p!(n − p)!

=
n!

p!(n − p)!

=
(n

p

)
.

Deuxième solution. Dans un ensemble à n éléments,
on cherche le nombre de possibilités pour choisir un
sous-ensemble de p éléments. Notons Ep l’ensemble
des sous-ensembles de E qui ont pour cardinal p :

Ep =
{

A ⊂ E | Card(A) = p
}

.
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(d) Comme l’ordre des cartes dans une main n’est pas
pris en compte, on peut commencer par choisir les
deux cartes de trèfle puis les trois autres. Un choix
de 2 trèfles est une combinaison de 2 éléments parmi
13. Le choix des 3 autres cartes est une combinaison
de 3 éléments parmi 52 − 13 = 39. Ainsi, le nombre
de mains possibles est :

(13
2

)
×

(39
3

)
=

13!
2! 11!

×
39!

3! 36!

=
13 × 12

2
×

39 × 38 × 37
3 × 2

= 712 842.

Exercice 5.
1. On compte simplement le nombre de matchs qu’il a

gagné : le quart de finale, la demi-finale et la finale. Il
faut donc gagner 3 matchs pour remporter le tournoi.

2. Il suffit de compter le nombre de matchs sur le schéma.
Il y a 7 matchs. En anticipation de la généralisation de
la dernière question, proposons deux méthodes pour
trouver cette valeur :
• Il y a quatre quarts de finale, deux demi-finales et

une finale. Ainsi, il faut gagner 7 matchs.
• Il y a 8 joueurs, à la fin du tournoi il ne reste qu’un

seul joueur. Chaque match élimine un joeur. Ainsi,
il doit y avoir 8 − 1 = 7 matchs.

3. Un finale oppose 2 joueurs. Il y a 8 joueurs inscrits
au tournoi. Une finale est un choix de 2 parmi 8, sans
répétition et sans tenir compte de l’ordre. C’est une
combinaison de deux joueurs dans un groupe de huit.
Le nombre de finales possibles est donc :

(8
2
)

=
8!

2! 6!
=

8 × 7
2

= 28.

4. (a) À chaque tour, un joueur sur 2 est éliminé. Au
premier tour, il y a 2n joueurs, au deuxième
tour, il y a 2n−1 joueurs, au troisième tour, il
y a 2n−2 joueurs. Si l’on généralise, au k-ième
tour, il y a 2n−(k−1) joueurs. Ainsi, à la finale,
il reste

2 = 2n−(n−1)

joueurs. Ainsi, la finale est le n-ième tour du
tournoi. En conclusion, pour gagner le tournoi,
il est nécessaire de gagner n matchs.

(b) Il y a 2n joueurs au début du tournoi et un seul
gagnant. Le tournoi doit éliminer 2n−1 joueurs.
Chaque match élimine un joueur. On en conclut
que le tournoi comporte 2n − 1 matchs.

(c) Il y a 2n joueurs inscrits. Une finale est une
combinaison de 2 joueurs parmi 2n. Le nombre
de finales possibles est donc :

(2n

2
)

.

Exercice 6.
1. Un anagramme de « manchot » est une permutation

de l’ensemble E = {m; a; n; c; h; o; t; }. Cet ensemble
comportant 7 éléments, le nombre d’anagramme re-
cherché est :

7! = 5040.

2. Première méthode. Le mot « canal » est formé de cinq
lettres. A priori, si l’on procède comme à la question
précédente, on devrait dénombrer 5! anagrammes. Or,
dans ces anagrammes, si les deux « a » sont permu-
tés, le mot est inchangé. Ainsi, pour ne pas compter
ces anagrammes deux fois, on divise 5! par le nombre
de permutations possibles des deux « a ». Le nombre
d’anagrammes recherché est donc :

5!
2!

= 5 × 4 × 3 = 60.

Deuxième méthode. Choisir un anagramme revient à
choisir l’emplacement des deux « a » puis à placer les
autres lettres dans les emplacements restants. Si l’on
note E = {1; . . . ; 5} les emplacements possibles, on
remarque que le choix des places pour les « a » est
une combinaison de 2 places parmi 5 : il n’y pas de
répétition et pas d’ordre. Choisir les emplacements
des autres lettres est une permutation de 3 places.
En définitive, par le principe multiplicatif, le nombre
d’anagrammes est :

(5
2
)

× 3! =
5!

2! 3!
× 3! = 5 × 4 × 3 = 60.

3. Avec la première méthode : le mot « mississippi » est
composé de 11 lettres dont les lettres « s » et « i » qui
apparaissent 4 fois et le « i » qui apparait 2 fois. Le
nombre d’anagramme de « mississippi » est donc :

11!
4! 4! 2!

=
11 × 10 × 9 × 8 × 7 × 6 × 5

4 × 3 × 2 × 2
= 34 650.

Avec la seconde méthode, on observe que choisir un
anagramme revient à choisir 4 places parmi 11 pour
les lettres « i » puis 4 places parmi les 7 restantes pour
les lettres « s » puis enfin 2 places parmi les 3 restantes
pour les lettres « p ». Il ne reste qu’une place. Ainsi,
le nombre d’anagrammes est :

(11
4

)
×

(7
4
)

×
(3

2
)

× 1 = 34 650.

Exercice 7. Un bureau de 6 membres constitué à parité
contient 3 hommes et 3 femmes.
1. Il n’y a pas d’ordre entre les membres du bureau,

on peut donc commencer par choisir les hommes puis
les femmes. Si l’on note H = {h1; . . . ; h7} l’ensemble
des 7 hommes membres de l’association, le choix des
hommes pour le bureau est une combinaison (ni ordre,
ni répétition) de 3 éléments de H. De même, le choix
des femmes est une combinaison de 3 éléments de
l’ensemble F des 5 femmes membres de l’association.
Par le principe multiplicatif, le nombre de possibilités
pour le bureau est donc :

(7
3
)

×
(5

3
)

=
7!

3! 4!
×

5!
3! 2!

= 35 × 10 = 350.
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2. On adapte le raisonnement de la question précédente.
Puisque Monsieur Dupont est membre du bureau, il
reste 2 hommes à choisir parmi les 6 hommes restants.
Puisque Madame Martin ne peut pas être au bureau,
le choix des 3 femmes se fait parmi 4 femmes. Ainsi,
le nombre de possibilités est :

(6
2
)

×
(4

3
)

=
6!

2! 4!
×

4!
3! 1!

= 15 × 4 = 60.

Exercice 8.
1. Un chemin correspond à huit déplacements,

quatre vers le Haut et quatre vers la Droite. Ainsi,
choisir un chemin revient à choisir un anagramme
de DDDDHHHH. En reprenant l’une ou l’autre
des méthodes données dans l’exercice 6, on obtient
que le nombre de chemins possibles est :

8!
4! 4!

=
8 × 7 × 6 × 5

2 × 3 × 4
= 70.

2. On va compter le nombre de chemins qui passent
par cet obstacle, passer par le point (2; 2) revient
à choisir un chemin de A à C puis de C à B. Le
nombre de chemins de A à C est (en utilisant le
même raisonnement que précédemment) de 6, de
même pour les chemins de C à B. Ainsi le nombre
de chemin ne passant pas par C est le nombre de
chemins total moins le nombre de chemins passant
par C :

70 − 2 × 6 = 58.

Exercice 9.
1. On raisonne par placement successif des tours. On

peut s’aider d’un schéma où l’on colorie au fur et à
mesure les lignes/colonnes de l’échiquier des cases où
l’on positionne une tour.
• On place la première tour. Il y a 16 choix possibles.
• On place la deuxième tour. Elle ne peut être mise

ni sur la ligne, ni sur la colonne où l’on a mis la
première tour. Cela retire 7 cases de l’échiquier. Il
y a donc 16 − 7 = 9 emplacements possibles.

• On place la troisième tour. Elle ne peut être mise
ni sur les lignes, ni sur les colonnes où se situent
les deux premières tours. Cela retire 5 cases de
l’échiquier. Il y a donc 9 − 5 = 4 choix possibles.

• Pour la dernière tour, il ne reste qu’un seul choix.
Ainsi, choisir une configuration pour les quatre tours
revient à choisir un élément de l’ensemble :

{1; . . . ; 16} × {1; . . . ; 9} × {1; 2; 3; 4} × {1}

dont le cardinal est 16×9×5×1 = 720. En définitive,
il y a 720 configurations possibles.

2. Choisir une configuration pour quatre tours toutes
de couleurs différentes, cela revient à choisir une des
configurations de la question précédente puis ensuite
une permutation des quatre couleurs. Ainsi, le nombre
de possibilités est :

720 × 4! = 720 × 24 = 17 280.

3. Choisir une configuration avec deux tours noires et
deux blanches revient à choisir une configuration de
la première question puis un ensemble à deux éléments
parmi quatre. Ainsi, le nombre de possibilités est :

720 ×
(4

2
)

= 720 ×
4!

2! 2!
= 720 × 6 = 4320.

Exercice 10.
1. Par définition, on a :

(n

p

)
=

n!
p!(n − p)!

=
n!

(n − p)!
(

n − (n − p)
)

!

=
( n

n − p

)
.

2. On propose deux méthodes pour cette question : par
un calcul direct et par un argument de dénombrement.
Première solution. On fait un calcul direct en partant
du membre de gauche de l’égalité. On met au même
dénominateur les deux fractions intervenant dans le
calcul. On calcule :

(n − 1
p − 1

)
=

(n − 1)!
(p − 1)!(n − p)!

=
p(n − 1)!
p!(n − p)!

et :
(n − 1

p

)
=

(n − 1)!
p!(n − 1 − p)!

=
(n − 1)!(n − p)

p!(n − p)!
.

On a multiplié le numérateur et le dénominateur de la
première fraction par p. La seconde par n−p. Dans ce
type de calculs, on doit être vigilant aux parenthèses
et bien comprendre que

p(n − 1)! ̸=
(

p(n − 1)
)

!.

Ainsi, en factorisant par (n − 1)! au numérateur, on
obtient :

(n − 1
p − 1

)
+

(n − 1
p

)
=

p(n − 1)!
p!(n − p)!

+
(n − p)(n − 1)!

p!(n − p)!

=
(n − 1)!

(
p + n − p

)
p!(n − p)!

=
n!

p!(n − p)!

=
(n

p

)
.

Deuxième solution. Dans un ensemble à n éléments,
on cherche le nombre de possibilités pour choisir un
sous-ensemble de p éléments. Notons Ep l’ensemble
des sous-ensembles de E qui ont pour cardinal p :

Ep =
{

A ⊂ E | Card(A) = p
}

. Co
rr

ig
és
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Pour x ∈ E, notons Ex,p les sous-ensembles de E de
cardinal p et contenant x, c’est-à-dire :

Ep,x =
{

A ∈ Ep | x ∈ A
}

.

Notons également Ex̄,p les sous-ensembles de E de
cardinal p ne contenant pas x. On a clairement que :

Ep = Ex,p ∪ Ex̄,p et Ex,p ∩ Ex̄,p = ∅.

De plus, on remarque que choisir un sous-ensemble
à p éléments de E contenant x revient à choisir un
sous-ensemble à p − 1 éléments dans E − {x}. Ainsi :

Card(Ex,p) =
(n − 1

p − 1
)

Et, choisir un sous-ensemble à p éléments de E qui
ne contient pas x est équivalent à choisir un sous-
ensemble à p éléments dans E − {x}. Ainsi :

Card(Ex̄,p) =
( n

k − 1
)

.

En définitive, donc par principe d’additivité, on
conclut que :

(n

p

)
= Card(Ep)

= Card(Ex,p) + Card(Ex̄,p)

=
(n − 1

p − 1
)

+
( n

p − 1
)

.

Exercice 11. On considère E un ensemble non vide fini
de cardinal n. Nous devons démontrer que le nombre de
sous-ensembles (on parle aussi de sous-parties) de E est
donné par la formule suivante :

n∑
p=0

(n

p

)
= 2n.

Nous allons montrer séparément que le nombre de sous-
parties de E est égal à la somme du membre de gauche
puis qu’il est égal à 2n. On notera P(E) l’ensemble des
parties de E : c’est une notation usuelle.
• Notons Ep l’ensemble des sous-ensembles de E qui

contiennent p éléments. Autrement dit :

Ep =
{

A ⊂ E | Card(A) = p
}

.

Pour deux entiers naturels p, q ⩽ n tels que p ̸= q, on
a clairement que :

Ep ∩ Eq = ∅.

En effet, par l’absurde : si cette intersection était non
vide, il existerait un sous-ensemble A ⊂ E tel que
Card(A) = p et Card(A) = q, ce qui est absurde.
D’après le cours, nous savons que le nombre de sous-
ensemble de E à p éléments est :

Card(Ep) =
(n

p

)
.

Enfin, comme un sous-ensemble de E peut contenir
soit 0, soit 1, . . . , soit n éléments (autrement dit, les

ensembles Ep pour p ∈ {0; 1; . . . ; n} définissent une
partition de E) on obtient, par principe d’additivité :

Card
(

P(E)
)

= Card
( n⋃

p=0

Ep

)

=
n∑

p=0

Card(Ep)

=
n∑

p=0

(n

p

)
.

• Maintenant démontrons que le cardinal de P(E) est
égal à 2n. Pour cela, on prouve que P(E) est de même
cardinal que l’ensemble :

{0; 1}n = {0; 1} × {0; 1} × · · · × {0; 1}.

Cet ensemble est l’ensemble de tous les n-uplets avec
les nombres 0 ou 1. Écrivons que E = {x1; ...; xn}. À
chaque sous-ensemble A ⊂ E, on associe le n-uplet :

(a1; . . . ; an) avec
{

ak = 1 si xk ∈ A
ak = 0 si xk ̸∈ A.

Par ce procédé, à tout sous-ensemble A ⊂ E on fait
correspondre un n-uplet de {0; 1}. Réciproquement, à
tout n-uplet de {0; 1}, on fait correspondre un unique
ensemble A composé des xk tels que ak = 1. Ainsi,
compter le nombre de sous-ensembles de E revient à
compter le nombre de n-uplets de {0; 1}. D’après le
principe multiplicatif, on en déduit que :

Card
(

P(E)
)

= Card
(

{0; 1}n
)

= 2n.

Exercice 12. On donne juste les résultats. Faisons juste
remarquer que A × B n’est en général pas égal à B × A.
1. A ∪ B = {1; 2; 3; 4}

A ∩ B = {1; 2}
A × B = {(1, 1);(1, 2); (1, 4); (2, 1);

(2, 2); (2, 4); (3, 1); (3, 2); (3, 4)}
B × A = {(1, 1);(1, 2); (1, 3); (2, 1);

(2, 2); (2, 3); (4, 1); (4, 2); (4, 3)}
2. A ∪ B = {a; b; ε; δ}

A ∩ B = ∅
A × B = {(a, ε); (a, δ); (b, ε); (b, δ)}
B × A = {(ε, a); (ε, b); (δ, a); (δ, b)}

Exercice 13.
1. Un arrangement de deux éléments de A consiste à

choisir deux éléments distincts et à les ordonner. Nous
savons qu’il y en a :

A4
2 =

4!
(4 − 2)!

=
4!
2!

= 12.

Les voici :
(1; 2) (1; 3) (1; 4)
(2; 1) (2; 3) (2; 4)
(3; 1) (3; 2) (3; 4)
(4; 1) (4; 2) (4; 3).
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2. Une combinaison de trois éléments de A consiste à
choisir trois éléments distincts sans tenir compte de
l’ordre. Nous savons qu’il y en a :4

3


=
4!

3! (1)!
= 4.

Les voici :
{1; 2; 3} ; {1; 2; 4} ; {1; 3; 4} ; {2; 3; 4}.

3. Une permutation de A est un arrangement de tous les
éléments de A. Nous savons que le nombre de permu-
tations possibles de A est :

4! = 24.

Les voici :
(1; 2; 3; 4) (1; 2; 4; 3) (1; 3; 2; 4)
(1; 3; 4; 2) (1; 4; 2; 3) (1; 4; 3; 2)
(2; 1; 3; 4) (2; 1; 4; 3) (2; 3; 1; 4)
(2; 3; 4; 1) (2; 4; 1; 3) (2; 4; 3; 1)
(3; 1; 2; 4) (3; 1; 4; 2) (3; 2; 1; 4)
(3; 2; 4; 1) (3; 4; 1; 2) (3; 4; 2; 1)
(4; 1; 2; 3) (4; 1; 3; 2) (4; 2; 1; 3)
(4; 2; 3; 1) (4; 3; 1; 2) (4; 3; 2; 1).

Exercice 14. La différence symétrique est la réunion
des ensembles A et B privée de leur intersection. Ainsi :

A∆B = (A ∪ B) \ (A ∩ B).
1. (a) On trouve :

A ∩ B = {3; 4; 5} et A∆B = {1; 2; 6; 7}.

(b) On a que : Card(A∩B) = 3 et Card(A∆B) = 4.
2. Avec le diagramme de Venn donné ci-dessous, on peut

remarquer que :
A∆B =


A\(A ∩ B)


∪


B\(A ∩ B)


et que c’est une réunion de deux ensembles disjoints.

A\(A ∩ B) B\(A ∩ B)

A ∩ B

A B

A∆B

Ce diagramme de Venn permet également de se
convaincre que :

Card


A\(A ∩ B)


= Card(A) − Card(A ∩ B)

Card


B\(A ∩ B)


= Card(B) − Card(A ∩ B).
Ainsi, en utilisant le principe d’additivité, on calcule :
Card(A∆B) = Card


A\(A ∩ B)


∪ (B\(A ∩ B))



= Card


A\(A ∩ B)


+Card


A\(A ∩ B)


= Card(A) − Card(A ∩ B)
+ Card(B) − Card(A ∩ B)

= Card(A) + Card(B) − 2 Card(A ∩ B).

Exercice 15.
1. On note L et C l’ensemble des lignes et des colonnes

de l’échiquier :
L = {1; 2; 3; 4; 5; 6; 7; 8}
C = {a; b; c; d; e; f ; g; h}.

Positionner la dame revient à choisir un élément de
l’ensemble L × C, de même pour un placement de roi.
Ainsi une position correspond à choisir un élément
de (L × C)2. Une position avec la reine sur une ligne
supérieure strictement à celle du roi correspond à un
élément de :

8
i=2

i−1
j=1


(Li × C) × (Lj × C).

En passant aux cardinaux et en remarquant que les
ensembles de l’union sont deux à deux disjoints, en
utilisant le principe multiplicatif, on calcule :

8
i=2

i−1
j=1

Card


(Li × C) × (Lj × C)


=
8

i=2

i−1
j=1


Card(C)

2
× Card(Li) × Card(Lj)

=
8

i=2

i−1
j=1

82

= 82
8

i=2

i−1
j=1

1

= 82
8

i=2

(i − 1)

= 82 ×
(1 + 7) × (8 − 2 + 1)

2
= 1792.

2. De même le roi et la reine sont sur la même ligne si
la position est un élément de :

8
i=1

8
j1,j2=1
j1 ̸=j2


(Li × Cj1 ) × (Li × Cj2 ).

Comme dans la question précédente, on passe ensuite
aux cardinaux et l’on calcule :

Card




8
i=1

8
j1,j2=1
j1 ̸=j2


(Li × Cj1 ) × (Li × Cj2 )




=
8

i=1

8
j1,j2=1
j1 ̸=j2

Card


(Li × Cj1 ) × (Li × Cj2 )


= 8 × 8 × 7
= 448.
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