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Chapitre 1
Calculs et raisonnements

1.1 Synthése de cours

1.1.1 Identités remarquables

On appelle identité toute égalité entre deux expressions qui est vraie quelles que soient les
valeurs des variables intervenant dans ces expressions. Au lycée, trois identités remarquables sont
a connaitre par coeur.

Propriété 1. Pour tous a,b € R, on a que :

(a+b)2=a*>+2ab+b> ; (a—b?=a’>—-2ab+b> ; (a—Db)(a+b)=a>—01

1.1.2 Valeur absolue d’un nombre réel

Définition 1. La valeur absolue d’un nombre x € R est la distance, sur un axe gradué
unitaire, entre le point d’origine de ’axe et le point d’abscisse x. Ainsi, on a que :

X six >0,
|z| = .
—x siz<O.

Exemples. [6| =6 et | — 3| = 3.

| =3 16|

-4 -3 -2 -1 O 1 2 3 4 5 6 7

1.1.3 Puissances et racine carrée

Propriété 2. Soient m,n € Z ainsi que a,b € R. Alors, on a que :

o g = g™Mg" ;
o (ab)™ = a™b™.

e Lorsquea #0,onaque:a " =—eta" "= —
a

e Lorsque b # 0, on a que : (ﬂ) .

Pour tout a € R, par convention : a® = 1.
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Définition 2. Soit a un nombre réel positif. On appelle racine carrée de a 'unique réel positif
dont le carré est a. On le note y/a. Ainsi, pour tout nombre réel a positif, on a que :

(Va)* =a.

Exemples. Puisque v/25 est I'unique nombre réel positif dont le carré est 25, on a que /25 = 5.
La liste des premiers carrés parfaits fournit ainsi une liste de racines carrées qu’il est indispensable
d’avoir en mémoire :

VO=0 ; V9=3;
Vi=1; V16 =4 ;
V=2 ; V25 =5 ; ;

; VBL=9 ; Vil =12 ;
; V100 = 10 ; V169 =13 ;
: V121 =11 ; V196 = 14.

5558
[N =] Ne>)
Il
o ~J O

Le plus souvent, la racine carrée d’un nombre réel positif a¢ est un nombre irrationnel. Dans les
calculs, il est indispensable de prendre I’habitude de conserver la notation y/a et de ne la remplacer
par une valeur approchée qu’en cas d’ultime nécessité.

Propriété 1. Soient a et b deux nombres réels positifs. Alors, on a que :

® +\aX z\/aX\/B,
a \/a
e Lorsque b# 0,on a aussi : /- = —.
d 7 \/; Vb

Nous terminons ce paragraphe de rappels par une propriété trop souvent ignorée des lycéens et
dont la méconnaissance est source d’erreurs dans les calculs algébriques.

Propriété 2. Pour tout a € R, on a que : Va2 = |a.

Exemple. Appliquer la racine carrée a I’égalité 2% = 25 conduit & || = 5 et non & x = 5. En
particulier, comme vous le savez bien, I’équation 22 = 25 posséde deux solutions 5 et —5.

1.1.4 L’implication et I’équivalence logique
L’implication est la relation entre deux propositions correspondant au « si..., alors ... ». Voici
deux exemples d’implication :

e Si la connection internet ne fonctionne pas, alors je ne peux pas vérifier mes mails.

e Siz =2, alors 22 = 4.

Définition 3. En mathématiques, on écrit P —> @ pour dire que la proposition P implique
la proposition Q. La proposition P est 'hypothese de 'implication et la proposition @ en est
la conclusion. On dit que 'implication @ = P est la réciproque de 'implication P = Q.

Lorsqu’une implication est vraie, il se peut que son implication réciproque ne le soit pas. Par
exemple, I'implication « Il pleut. » = « Le sol est mouillé. » est vraie mais sa réciproque est
fausse.
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Définition 4. En mathématiques, on dit que deux propositions P et () sont équivalentes
lorsque 'implication P — @ et sa réciproque () =— P sont vraies. On écrit alors P <— (.

Les formulations suivantes ont toutes le méme sens, elles permettent de varier un peu le discours :
e P est équivalent a Q ;
e P si, et seulement si, Q ;
e Pour P, il faut et il suffit que Q.

— —
condition suffisante condition nécessaire
il suffit il faut

si seulement si

1.1.5 Manipulation des inégalités

Propriété 3. Soient a,b € R.

e Pour tout ¢ € R, on a que :
a<b <<= at+c<b+ec

e Pour tout réel ¢ > 0, on a que :

a b
a<b << axc<bxc et a<b = —<-.
c ¢
e Pour tout réel ¢ < 0, on a que :
a b
a<b << axc>bxec e a<b<—= —>-.
c ¢

Toutes ces propriétés restent évidemment valables en remplacant les inégalités strictes < par des
inégalités larges <. L’oubli du troisieme point est source d’erreurs fréquentes : on retiendra que
multiplier ou diviser une inégalité membre & membre inverse ’ordre. En particulier, lorsque ’on
divise une inégalité membre a membre par une expression algébrique, il est nécessaire de connaitre
le signe de cette expression.

1.1.6 Equations et inéquations du second degré

Définition 5. Soient a,b et ¢ trois nombres réels avec a # 0. On appelle fonction polynéme
de degré 2 toute f définie sur R par f : x — ax? + bx 4 c. On parle aussi de fonction trinéme.
On appelle alors discriminant le nombre réel défini par : A = b? — 4ac.

Dans un repére du plan, la courbe représentative d’une fonction polynéme du second degré est
une parabole. L’orientation de cette parabole est donnée par le signe du coefficient dominant a. Le
signe du discriminant A détermine le nombre de point(s) d’intersection entre la parabole et 1'axe
des abscisses, c’est-a-dire le nombre de solution(s) de I'’équation ax? + bz +c = 0. Une telle solution
est appelée une racine du polyndme.
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On a représenté ci-dessous chacun des six cas possibles selon le signe du coefficient dominant a et
du discriminant A.

My MU

a a
A>0 A>0 A=0 A=0 A< A<O

Propriété 4. Soient a,b et c des réels avec a # 0. Considérons 'équation az? + bz + ¢ = 0.

e Si A <0, I’équation n’admet pas de solution réelle.

—b
e Si A =0, ’équation admet une unique solution : zg = P
a
—b— VA —b+ VA
e Si A > 0, I'équation admet deux solutions : x7 = g et x9 = —g
a a

Lorsque A < 0, cette équation possede deux solutions dans I’ensemble C des nombres complexes. On
ne considerera jamais ce cas dans cet ouvrage. Rappelons également la connaissance des éventuelles
racines d'une fonction f : x +— ax? + bx + ¢ polyndome de degré 2 donne les formes factorisées :

e Lorsque A = 0, on a que, pour tout * € R: f(x) = a(x — z0)?.
e Lorsque A > 0, on a que, pour tout z € R: f(z) = a(x — z1)(x — x2).

Résolution d’inéquation. En pratique, la résolution d’une inéquation du second degré se rameéne
a I’étude du signe d’une fonction polynéme de degré 2. Nous n’énoncgons pas le résultat de cours sur
le signe d’une fonction polyndéme de degré 2 considérant que ce résultat se retrouve graphiquement
en discutant selon les signes de a et de A. Par exemple, dans le cas a < 0 et et A > 0 le graphique
ci-dessus donne (en supposant x; < x2 par exemple) immédiatement le tableau de signes suivant :

x —00 Z1 xr2 —+00

az? 4+ bz + ¢ -0 + 0 -

1.1.7 Le raisonnement par ’absurde

Définition 6. Le raisonnement par ’absurde est une méthode logique qui consiste & démontrer
qu’une affirmation est vraie en montrant que son contraire aboutit & une contradiction ou a
une absurdité.

En pratique, on fait 'hypothése que l'affirmation & démontrer est fausse, et, si cette hypothese
nous permet d’aboutir & une incohérence, on en conclut que I'affirmation initiale est vraie.
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1.1.8 Le raisonnement par récurrence

Propriété 3 (Raisonnement par récurrence). Considérons P,, une propriété dépendante d’'un
parameétre n € N. On suppose que :

(i) La propriété est vraie pour un certain entier naturel ng.
(ii) Pour tout entier n > ng, la propriété P,, implique la propriété Py, ;1.

Alors, la propriété P, est vraie pour tout entier n > nyg.

Lorsque (i) est vérifié, on dit que la propriété est initialisée au rang ng. Lorsque (ii) est vérifié, on
dit que la propriété est héréditaire. La rédaction d’un raisonnement par récurrence doit devenir un
automatisme, cette rédaction doit faire apparaitre explicitement les deux étapes — initialisation et
hérédité — du raisonnement. Nous utiliserons le modele de rédaction suivant :

Pour tout n > ng, on note P, la propriété (------ )
Initialisation : Aurang n =ng, ona (- -- )
Hérédité : Soit un entier n > ng. Montrons que P, implique P, 11.

Conclusion : La propriété P,, est donc initialisée au rang n = ng et héréditaire.
D’apres le principe de récurrence, elle est donc vraie pour tout entier n > ng.

1.2 Enoncés des exercices

Calcul littéral (c) 2z +5)(x—T)— (4z+8)(z—7T)
d) T(x+1)(22° +3) +a(z+1)(5— 14
Exercice 1. Soit x € R. Développer et réduire : ((e; x(;:_ 49)( ¢ ) +ale N z)
2
(a) (a: - %) (f) 2522 — 121y°
> (8) (2z—-1)*—(z+7)°
(b) (z—1)"(x+5) (h) 25(3 — )% — 16(7z +5)°
(¢) 5(z—4)?+3(x+1)(z—3)— 73z — 1)? () 2% -6z +9
@) (= +z+1)% () 4a? + 28z + 49
2
Exercice 2. Soient a,b € R. Calculer : (k) 1- 162 + 642"
(a) (a+ b)3 Exercice 5. Déterminer l’ensemble de définition
3 des expressions suivantes puis les réduire sous la
(b) (a—0) forme d’une seule fraction.
(c) (a+b)! (a) 5+ %
T —
(d) (a—0b)". ) 2 3
Exercice 3. On note x un nombre réel strictement z 9 =7 Az
s R 1 2, 1 _ _
positif qui vérifie z + o= 2025. Calculer z= + s (c) 243 2@=1)
1 1
Exercice 4. Soient z,y € R. Factoriser : (d) vz+ 7 + -
T
(a) a® -5z 11 1
(e) —+ +

(b) 3(x—1)+ (z—1)(z+5) z -1 22-1
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Puissances et racines carrées

Exercice 6. Ecrire chacun des nombres suivants
sous la forme a™ avec a,n € Z.

(a) 52 % 54 (e) 23 x 79
(b) 6'x6~° 142
(c) 3% x2%x5® 42\ 3
(@) —4x (-4) @ (@)

Exercice 7. Ecrire chacun des nombres suivants
sous la forme 223°5°7¢ avec a,b,¢,d € Z :

o= (1) < (5)
4 8
(2% x 5%)3
(22 x 72)4
32 x 971 x 62
12-3 x 24
° d=812+812+812+812

® C—

Exercice 8. Existe-t-il un nombre entier n € N tel
que 27" + 27" 4 27" = 3*0? Si oui, le déterminer.

Exercice 9. Ecrire chacun des nombres suivants
sous la forme av/2 ou sous la forme av/5 avec a € N.

V50 (e
V8 (f
1

a
b

E

(a) )
(b) )
) )
) )

(c 28 (g 320
(d) V72 (h) V98

Exercice 10. Fcrire les nombres suivants sous la
forme av/b avec a € Z et b € N.

o A=+12—4V3+4V75
e B =290 — 5v40 + 710
o C=17v32—-9v50+3V8

Exercice 11. Sans utiliser de calculatrice, calculer
astucieusement les nombres suivants :

(a) V132 +132 + 132 + 132
(b) V50 + V18
V32

2
(c) \/5+\/11+\/19+ V29 + V49

(d) 31+\/21+\/13+ T4+ V3+V1

(o Y5V
5 va
(f) /262 — 242

(8) V22+2°

Exercice 12. On considére un rectangle ABCD tel
que AB = v/12 et AC = /27. Calculer les valeurs
exactes et simplifiées de son aire et de son périmeétre.

Exercice 13 (Quantité conjuguée). On dit que des

quantités du type a+b et a — b sont conjuguées 'une

de Pautre. Par exemple, on dira que v/2 — 3 est la
quantité conjuguée de v/2 + 3.

1. (a) Montrer que (v/2+3)(v/2—3) est entier.

(b) En déduire une écriture sans racine car-

rée au dénominateur du nombre suivant :

1
A= ——
V2+3

2. Ecrire sans radical au dénominateur chacun
des nombres suivants :

‘ B:W

23
p__ V6
x/§+1\/§

rPr=
1+vV3+V5

Exercice 14. Calculer :

8—2\/ﬁ+8+2\/ﬁ
V3—-V5  V3+45

Exercice 15. Prouver que :

V2-V3+V2+V3=16.

Valeur absolue

[ ] O:

Exercice 16. Dans chacun des cas suivants, trouver
Pensemble des x € R vérifiant la condition donnée.

(a) lol <2

(b) |x—1]<9
(€) |lz+5/<7
(@) |z—2]<-3

Exercice 17. Résoudre dans R les équations et les
inéquations suivantes.

(a) |2z+5|=7
(b) |7 —5z| = |3z +1]
(©) |o+2[=lz—2|
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(d) |z—5]+4(z—2) <322 -7
(e) [z+1]>]z—1]
(f) |z+2| > 2|z + 3|
Polyn6mes et équations
Exercice 18. Résoudre dans R les équations et les
inéquations suivantes.
a) 22422z -3=0
b) 5z +7x+ 18 =0.
) (z+3)(22% — 10z +15) =0
d) —32°+92+30<0
)
)
)

~ —~ S~
o

— 2?2 —bx+T>x+1
(z4+3)(222+92 - 5) <0
r+3
222 +9x — 5

—

e
f

—~~

(8 >0

Exercice 19. Dans un carré de coté 10 centimetres,
on a colorié une bande de largeur x centimetres et
un carré de c6té x centimetres centré comme comme
sur la figure suivante.

Déterminer les valeurs de x pour lesquelles 'aire de
la partie coloriée est strictement inférieure a l'aire
de la partie non coloriée.

Exercice 20. L’objectif de ’exercice est de résoudre
dans R I’équation suivante :

(E) : 2 —2° — 14z +24=0.

1. Vérifier que 2 est une solution de (E).

2. Trouver trois nombres réels a, b et c tels que,
pour tout x € R :

® —2® — 14z 4 24 = (z — 2)(az” + bz + ).
3. Résoudre 'équation (E).

Exercice 21. L’objectif de ’exercice est de résoudre
dans R I’équation suivante :

(E) : o —52° 4 42° + 52 +1=0.

13

1. Vérifier que 0 n’est pas solution de (E).
1

2. Soit x € R*. On pose y =z — —.
x

(a) Montrer que z est solution de (F) si, et
seulement si, y? — 5y + 2 = 0.
(b) Résoudre I’équation y? — 5y + 2 = 0.
3. Résoudre (E).

Exercice 22. Trouver la forme factorisée de chacun
des polynomes suivants. On pourra commencer par
chercher une racine évidente.

1. P(z) =22 —32%> — 2 +2

Exercice 23. Soient a,b,c € R tels que a # 0. On
rappelle que la forme « canonique » d’un polynéme
du second degré P : z — ax? + bz + ¢ est donnée
e b\? b*—4ac
P(z) :a(x+ %) T

Trouver la forme canonique des polynémes suivants.

1. Pi(z)=2*—-8z+16

2. Py(x) = 2?4+ 12z + 10

3. Ps(x) = —22% 4+ 10z + 25

4. Py(z) =42® 4+ 5243

Les raisonnements

Exercice 24. En raisonnant par I’absurde, montrer
que I’équation

ot =72 42”45 —2=0
ne possede pas de solution parmi les nombres entiers.

Exercice 25. Par ’absurde, démontrer que % n’est
pas décimal. On rappelle qu’un nombre d est décimal

s’il existe a € Z et n € N tels que d = 7.

Exercice 26. On souhaite démontrer par ’absurde
que le nombre /2 est irrationnel.

1. On suppose que V2 est rationnel. Il existe
ainsi deux nombres a € N et b € N* premiers
entre eux tels que :

V2 =2
b
(a) En élevant cette égalité au carré, mon-
trer que a? est un nombre pair.
(b) En déduire que a est un nombre pair. Il
existe donc k € N tel que a = 2k .
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(c) Montrer qu’alors : b*> = 2k*. En déduire
que b est également un nombre pair.
2. Conclure que v/2 est un nombre irrationnel.
Exercice 27. Démontrer par récurrence que, pour
tout n € N* :

1)(2n + 1
IENIPC I C I S () (Ch ) )6(”+ )

Exercice 28. Démontrer par récurrence que, pour
tout n € N* :

1x2+2x3+~~~+n(n+1):w.

Exercice 29. Démontrer par récurrence que, pour
tout n € N, le nombre 3%™ — 2" est divisible par 7.

Exercice 30. Démontrer par récurrence que, pour
tout n € N, le nombre n® + 5n est multiple de 3.

Exercice 31. Prouver que 2" — 1 > n pour tout
n € N. On pourra raisonner par récurrence.

Exercice 32. Soit z > 0. Démontrer par récurrence
que, pour tout n € N* :

(1+2)" >1+nz.

Le coin du chercheur

Exercice 33 (xx). Résoudre dans R :

(z4+2)(x+3)(z+4)(z+5)

- -5

Exercice 34 (x%). Soient ABC un triangle et H le
point d’intersection de la hauteur issue de A et du
segment [BC]. On note :

a=BC ; b=AC ; c=AB,

ainsi que

_a+b+ec

-—

L’objectif de I'exercice est de démontrer la formule
de Héron affirmant que laire A du triangle est :

A= \/s(s —a)(s—b)(s—c).

B

1. Justifier que :

A (S b
a 2a ’

2. Montrer que :

A% = %(aJchrb)(a+cfb)(b+cfa)(b+afc).

3. Montrer que

2 1
A = E(Qs —2¢)(2s — 2a)(2s — 2b)(2s).

Et déduire pour conclure la formule de Héron.

1.3 Corrigés des exercices

Exercice 1.

(a) En utilisant la deuxiéme identité remarquable, on
obtient que :

(s=3) = ge (3)
rT——-) ==z T X — -
2 2 2

—x2+96+1
= T

(b) On commence par développer (z — 1)2 avec la
deuxiéme identité remarquable puis on distribue. On

calcule :
(@ —1)%(x+5)= (22 =22+ 1)(xz+5)
22+ 522 — 222 — 10z +2+5

=% + 322 -9z + 5.

(c) Notons A l’expression a développer. On commence
par développer les produits et carrés :

5(x — 4)% = 5(2? — 8z + 16)
= 522 — 40z + 80
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3z +1)(x+3)=30k?+3c+2+3)
=3(2% + 42 +3)
=322 4+12249
7(3z —1)% = 7(92% — 6z + 1)
= 6322 — 42z + 7.
Ensuite, on calcule :
A= (527 — 40z + 80) + (32 + 122+ 9)
— (632 — 422+ 7)
= 5z2 + 322 — 6322 — 40z + 12z + 42z
+80+9—7
= —5522 + 14z + 82.

(d) L’idée est d’utiliser la premiére identité remarquable
en prenant, par exemple :

a=z?
b=z+1.
On calcule :
(@ +z+1)? =2 +2:22+ 1)+ (x+1)?
:x4+2x3+2x2+x2+2x+1
=2t +22% + 322 + 22+ 1.
Exercice 2.

(a) On calcule :
(a+b)* = (a+b)(a+b)?
= (a+b)(a® + 2ab + b?)
= a® + 2a%b + ab? + ba? + 2ab> + b°
= a® + 3a%b + 3ab® + b°.
(b) On calcule :
(a —b)3 = (a —b)(a—0b)?
= (a —b)(a® — 2ab + b?)
= a® — 2a%b + ab? — ba? + 2ab? — b°
=a® — 3a”b + 3ab® — b°.

(¢) En utilisant le résultat obtenu & la premiere question,
on calcule :

(a+b)*=(a+b)(a+b)?®
= (a4 b)(a® + 3a2b + 3ab® + b3)
= a* 4 3a%b + 3a2b% + ab®
+ ba® + 3262 + 3ab® 4 b*
=a* +4a%b + a®b? + 4ab® + b*.
(d) Il est possible de procéder comme précédemment.

Pour changer de méthode, on propose de nous ra-
mener au cas (a + b)? en remarquant que :

a+b=a—(-Db).

15

et que :

(=02 =0 5 (=b)P=-b" ; (-b)'=b"

Ainsi, on calcule :
4
(a+b)* = (a+(-0))
=at 4 4a3(—b) + (12(—b)2
+4a(=0)* + (=b)*
=a* — 4a%b + a?b? — 4ab® + b,

Remarque : la technique utilisée en question 4 permettait
évidemment de retrouver (a — b)3 & partir de (a + b)3.

Exercice 3. L’idée clef du calcul est de remarquer que

les termes z2 et - sont exactement les deux carrés du
(L’2

développement de 'identité remarquable

(2"

Cette observation étant faite, on se lance dans les calculs
et on avise! Déja, on voit que :

1\2 1 1\2
x4+ — =z +2XxXr X —+|(—
T T T
2 1
==z +2+—2.
T

Et c’est gagné! En effet :

x2+xi2: <x+%)2—2
=2025%2 — 2
= 4100623.
Exercice 4.
(a) On factorise :
22 —br=xzxx— 5z
=z(xz — 5).
(b) On factorise :
3a-D+(@-D+5)=(@-1)(3+(x+5))
= (z —1)(z + 8).
(¢) On factorise :
(22 +5)(z —7) + (42 + 8)(z — 7)
=(@-7)(@2z+5) - (4z+8))
=(z—17)(2x + 5 — 4z — 8)
=(z —T7)(—2z — 3).
(d) On factorise :
(x4 1)(222 + 3) + z(z + 1)(5 — 14z)

= (z 4+ 1)(7(22° + 3) + x(5 — 142))

= (z +1)(1422 + 21 + 5z — 142?)

= (z 4+ 1)(5z + 21).

es

corri
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L’idée est d’utiliser la troisiéme identité remarquable
pour a = z et b = 7. En effet, on calcule alors :

2 _49=2a>-17°
=(@-T)(x+7).

De méme qu’a la question précédente, avec la troi-
siéme identité remarquable, on a que :

2522 — 12192 = (5z)% — (11y)?
= (b — 11y)(5z + 11y).

En appliquant la troisiéme identité remarquable pour
les nombres a =2x —let b=x + 7, on a que :

2z —1)2 — (x4 7)2
= (-1 - (+7)(Qe-1)+@+7)
=2z —1—2—7)(3z+6)
= (z — 8)(3z + 6).

En procédant de méme qu’a la question précédente,
on calcule :

25(3 — )2 — 16(7x +5)?

= (563 - x)) (4(72 + 5))

(53 —2) —4(7z + 5)) (5(3 — 2) + 4(7z + 5))
= (15 — 5z — 28z — 20)(15 — 5 + 28z + 20)

= (=332 — 5)(17z + 35).

L’idée est de reconnaitre la forme développée de la
deuxieme identité remarquable pour a = x et b = 3.
En effet, on a que :

2 _6r+9=x?>—-2xzx3+32
= (z —3)2

Comme a la question précédente, on identifie la
forme développée de la premiére identité remar-
quable :

42% + 28z +49 = (22)2 +2 x 22 x T+ 72
= (224 7)%

On identifie de nouveau la forme développée de la
deuxieme identité remarquable :

1—16z + 6422 =12 —2 x 1 x 8z + (8z)?
=(1-8x)%

Exercice 5.

(a)

Cette expression est définie lorsque x — 1 # 0. Ainsi,
son ensemble de définition D est :

R\ {1} =] — 005 1[ U ]1; +o0[.
Pour tout x € D, on calcule :
sl L _B@-1 1
rx—1 x—1 r—1
5z —-1)+1
- r—1
br —4

x—1"

(b) Cette expression est définie pour tous les z € R tels

que x # 0 et © — 7 # 0. Son ensemble de définition
est donc :

D =R\ {0;7}.
Pour tout = € D, on calcule :
2 3 2x-T) 3z
z -7 zx-7) z(z—7)
_2(xz—-7) -3z
T ox(z—7)
_ —z—14
Tae-T7)
Remarque : On ne développe pas le dénominateur.

La forme factorisée permet de voir les valeurs inter-
dites.

(c) Cette expression est définie pour tous les z € R qui

vérifient £+3 # 0 et (x+5)(x—1) # 0. Son ensemble
de définition est donc :

D =R\ {-5;-3;1}.
Pour tout x € D, on calcule :
2 _ 4z
z+3 (z+5)(x—1)
2(z +5)(x—1) dz(z + 3)

C(@+3)(@+5)(e—1)  (z+3)(x+5)(z—1)
2(x+5)(z—1) —dz(z + 3)
B (z+3)(xz+5)(z—1)
_ 2(z? 442 —5) —4a? — 12z
(z+3)(x+5)(z—1)
222 + 8z — 10 — 422 — 12z
(z+3)(x+5)(z—1)
=22 — 4z —10
T (+3)(z+5)(z—1)

La racine carrée n’étant définie que pour les nombres
réels positifs, cette expression est définie pour tous
les nombres x € R tels que z > 0 et z # 0. Son
ensemble de définition est donc :

=]0; +ool.

Pour tout = € D, on calcule :

1 1 X 1
vEr Lyploexve, Vo1
NZI T VT Xt =
1
_wE L VE
x z oz
_z/r o+ 1
- .

Cette expression algébrique est définie pour tous les
nombres z € R tels que x # 0, que x — 1 # 0 et que

2140 = (e—1D(z+1)#0
<~ z#letz#-—1
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Son ensemble de définition est D = R\ {—1;0;1}.
Pour tout = € D, on calcule :

1 1 1
_l’_

z z-1 22-1
_oa?—1 z(z+1) 1
Cx(2-1)  z@-1D@E+1)  z22-1
2 —ltz(z+1) 42
- z(z?2 — 1)
_ 22 —1+z2+z+ax
N z(z2 — 1)
. 222 4+ 22— 1
Toz(@2-1)

Exercice 6. On simplifie chaque expression en utilisant
les propriétés des puissances. Au lecteur de s’assurer qu’il
identifie & chaque étape des calculs la propriété utilisée.

(a) On calcule :
52 x 51 = 52+
=5,
(b) On calcule :
6* x 679 = 64 (=9)
=65.
(¢) On calcule :
38 x 28 x 58 = (3 x 2 x 5)8
= 30°%.
(d) On calcule :
—4x (=47 = (-4 x (-9
= (—4)8.
(e) On calcule :

23 x 79

23 x 79
143~ (2x7)3
28 %7

(f) On calcule :

-3
(5) -
()
_ 4—7><(—3)
— 421.

Exercice 7. Comme dans ’exercice précédent, il s’agit
de manipuler habilement les formules sur les puissances.
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e On calcule :

372 1
2%
“2x4%2x8°°

3
=372 (22)" % (2%)7°
3
2

a =

-2 X 24 X 2715

—11 % 3—2

e On calcule :

(@)« 5’

(22)" x ()"
29 x 512

T s« TE

=2x512x 778

b=

e On calcule :

32 x (32) - (2 x 3)2
(22 x3) 7 xt

32 x 378 %22 x 32
26 x 3-3 x 24

374 x2?

T 2-2x 33

=24 x 371

c=

e On calcule :
d= 812 4 gl2 4 gl2 | gi2
=4 x 812
12
=22 x (2°)
— 22 x 236

= 2%,

Exercice 8. Supposons qu’un tel entier n € N existe.
On commence par calculer :
27" 427" 427" = (3%)" + (3%)" + (3%)"
=3 x 33"
— 33n+1.

On cherche ainsi n € N tel que 33"t1 = 346, Cela im-
plique que 3n + 1 = 46. Et finalement, on trouve que
n = 15.

Exercice 9. On utilise ici que va x b = y/a x Vb pour
tous réels a > 0 et b > 0. On calcule :

) V50 = /25 X 2 =25 x V2 =52
) VB=VIXx2=V4ixV2=2V2

) 64 x 2 =164 xV2=28V2
(d) V72 =1+/36 x2=1+/36 x V2 =62
) V18 =V9IxV2=3V2

) V125 = /25 x5 =25 x V5 =55
) V320 = /64 X 5 = /64 x /5 =85
49X 2 =49 x V2 =1TV2

es

corri
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Exercice 10. (d) On procede comme & la question précédente. Cela
e On remarque que 3, 12 et 75 sont multiples de 3. On donne successivement :
calcule : Vi=1
A=vVAX3-4V3+4/25x3 3+V1I=vV4=2

=V4xV3-4V3+4vV25 x V3

=2v3 —4V3 +20V3
=18V3. \/13+ T+V3+V/1=vV13+3=V16=4
e On remarque que 10, 40 et 90 sont multiples de 10.
Oncalcﬁezzzmig’er?m \/21+\/13+ T+V34Vi=V2ltd=5
= 2v/xV10 — 5V4 x V10 + 7V10
= 6110 — 10v/10 4+ 710 31+ 21+\/13+\/7+ 3+v1=+31+5.
= 3V10.

Ce nombre est donc 6.
e On remarque que 8, 32 et 50 sont multiples de 2. On (e) On calcule :

calcule :
C=7VI6x2—9v/35x 2+ 3VAx 2 Vﬁ’fwozv%fﬁ’fv%“
3—V2 3—v2
=7V16 x V2 — 9V25 x V2 4+ 3V4 x V2 SVi-sva
= 28v2 — 45v2 + 6v2 =32
=-11V2. 5(V3 - v2)
Exercice 11. o V3—-+2
(a) On calcule : —5.
\/132 +132 +132413% = \/4 x 132 (f) On observe que le nombre sous le radical se préte a
— ViIx V132 l'utilisation de la troisieme identité remarquable. On
calcule :
=2x13
— 2. /262 — 242 = | /(26 — 24)(26 + 24)
(b) On calcule : =2 x50
V50 + V18 /25 X249 x 2 =+/100
V32 \/16 X 2 =10.
_ 5V2+3v2 (g) En utilisant les propriétés des puissances, on calcule :
2v2
_8\/5 \/29+29=\/2X29
T 2v2 — /210
= 4.
- -y
(c) L’idée est de calculer progressivement en partant de
la racine carrée la plus & l'intérieur de I’expression. — 95
On obtient successivement que :
32.
V49 =7
29 + V49 =+/29 + 7 = V36 = Exercice 12. L’aire Axpcp du rectangle ABCD est
égale a :
19+1V29+vV49=v19+6=V25=5
Aapcp = AB x AC
\/11+ 194+ V29 +v49 =+V1145=V16=4 = V12 x V27
=vV3x4x+/3x9
2
5+\/11+ 19429+ V49 =514 =3, =(V3)" x VAx 9

= 18.
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Et son périmeétre est : e On calcule :
Papcp = 2AB + 2AC D V6(v2 - v3)
= 2V12 + 227 (V2+v3) (v2-v3)
—2x2V3+2x3V3 _ VB(v2-v3)
2—-3
=4v3+6V3
V12 — /18
Exercice 13. = VI8 -VI2
1. (a) En utilisant la troisiéme identité remarquable, =3vV2-2V3.
on calcule : e On procede en deux étapes en commengant par
2 5 considérer comme conjugués I'un de 'autre les
(\/5 + 3) (\/5 - 3) = (\/5) -3 nombres :
=2-9 (1+v3) +v5 et (1+V3) V5.
=-T On calcule :
Ce nombre est entier. E = 1+v3-v5
(b) On multiplie le numérateur et le dénominateur (1 +V3+ \/5) (1 +V3- \/5)
par la quantité conjuguée de v/2 + 3 : 14++v/3-5
= 2 2
B V2 -3 (1+v3)" - (v5)
(VZ+3)(v2-3) . 1+V3-5
_ - 2
_v2-3 1+2v3+ (v3) -5
-7
3 -2 = 1+v3-V5
P —1+2V3

Et ensuite, en utilisant de nouveau la quantité

2. On procede a chaque fois de la méme maniere qu’a du dénominateur, on obtient que :

la question précédente en utilisant la quantité conju-

guée du dénominateur. o (1 +v3- \/5) ( —-1- 2\/3)
e On calcule : (—1+2\/§)(—1—2\/§)
3(v6 - V5) ~1-2V3-V3-2(v3)" +V5+2VI5
~ (VB+5) (V6 - vB) (-1)2 - (2v3)*
3(v6—V5) _ —T-3V3+V5+2V15
(\/6)27(\/5)2 7+3f—x}%—2x/ﬁ
_30/6-V5) - & .
- 6-5 Exercice 14. Notons A ce nombre. Avec les expressions
= 3(\[ - \/5) conjuguées des dénominateurs, on calcule déja que :
e On calcule : (8—2\/5) (\/§+\/5) _ 8V3+8v5—2V45 — 275
- 2 2
C= LICAL) . e 8\/§+(;/j)5 _2\(/\;? 2V75
(2-v3)(2+v3) —
B 5(2 + \/§> et d’autre part que :
@2 (v3) (8+2v15) (V8- V5)  8v3 -8V +2/15 275
5(2+3) (VBva)(va-va) (V)" - (v5)’
4-3 _ 8V3 -8V +2V45 -2V75

=5(2+V3). -2

es

corri
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En additionant les deux quantités obtenues, on obtient
finalement que :

16v/3 — 475
R
=2V75-8V3
=2v25 x 3—8V3
=10V3—-8V3
= 2v/3.

Exercice 15. L’égalité voulue est une égalité entre deux
nombres réels positifs. Deux nombres réels positifs sont
égaux si, et seulement si, leurs carrés sont égaux. Ainsi,
il suffit de montrer que :

(\/27\/§+ \/2+\/§)2:6.

A=

On calcule :

(\/2—\/§+\/2+\/§)2
- (ﬁ)2+2¢2_¢§x V2+v3
+ (\/2+\/§)2

V3)(2+V3) +2+ V3

=2-V3+2¢/(2-

= 442y/22 - (vB)?
=4+2V1
= 6.

Exercice 16. Soient a € R et un réel r > 0. Puisque la
valeur absolue |z — a| correspond & la distance (sur un
axe gradué unitaire) entre les points d’abscisses z et a,
on voit que I’ensemble des nombres = € R tels que

|z —al <7

est I’ensemble des abscisses « des points s’écartant du
point d’abscisse a d’une distance au maximum égale & r.
C’est donc l'intervalle [a — r;a + r].

T T

| 4 »
t 1 t | o

a—+r

Lorsque I'inégalité large < est remplacée par une inéga-

lité stricte < l'intervalle est ouvert.

(a) On prend a = 0 et » = 2 dans le raisonnement ci-
dessus. L’ensemble recherché est I'intervalle [0;2].

(b) On prend a = 1 et » = 9. L’ensemble recherché est

donc lintervalle ouvert ] — 8; 10[.
(¢) On prend a = —5 et r = 7. L’ensemble recherché est
donc lintervalle | — 12;2].

(d) L’inégalité |z — 2| < —3 est évidemment impossible.
L’ensemble recherché est ’ensemble vide.

Exercice 17. Dans ce type d’exercice, le bon réflexe est
de faire le nécessaire pour se débarasser des valeurs ab-
solues. On fait des disjonctions de cas selon le signe des
expressions contenues dans les valeurs absolues.

(a) On résout :

-5
2:c+5>0<:>x>7.
Ainsi, on a que :
2z +5 siz> 30
2 5| = 2
|22+ 5] {—(2:c+5) six<_75.
On en déduit que :
20 +5=17 si:z:}f—5
2 = < 2
2w 45 =7 {—235—57 siz< 3.

La premieére équation 2x + 5 = 7 donne que x = 2 et
on vérifie que 2 > 5 . La deuxiéme équation donne

que x = —6 et on verlﬁe que —6 < 5 . L’ensemble
des solutions de 1’équation est donc :
S ={-6;2}.

Remarque. On trouve dans la littérature mathématique
l'utilisation de la propriété (qui est claire par définition
de la valeur absolue) donnant que, pour tout réel a > 0 :

2] =a <= (x=a ou z = —a).

Son utilisation donne une résolution rapide de I’équation
précédente. Nous avons préféré rédiger la disjonction de
cas en détail car il s’agit de la méthode générale pour
traiter toute équation/inéquation avec des valeurs abso-
lues.

(b) On résout :

7
7—5x>0<:>:c<g

et 1
324+1>0 < x> _?
On distingue trois cas que ’on peut présenter sous

la forme du tableau suivant :

=1 7 +o00

x — 00 3 5

7 — bx 7 — b5z 7 —bx b — 7

3z +1 —3x—1 3z +1 3z +1

Premier cas : Lorsque x € ]foo; %1 [, I’équation
est équivalente a
7T—5x=-3xz—-1 < —2zx=-8

< T =

3
Ce cas est finalement impossible car % & } —00; _Tl [
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Deuxiéeme cas : Lorsque x € [%1, %], on obtient
que ’équation est équivalente a
7T—5xr=3rx+1 < —8xr=—-6
-3
— T= —.
4
Ce cas est encore impossible puisque =2 Z [;1 Z]
4 3°5]"
Troisiéeme cas : Lorsque = € ]% : +o00 [7 on obtient
que ’équation est équivalente a
Sbx —T7T=3x+1 < 2x =28
— z=4.

Ce cas est valable puisque ’on a bien 4 € ] % 1 400 [

En conclusion, ’équation admet une unique solu-
tion. On a que :

S = {4}.
Nous laissons ici le lecteur rédiger la disjonction de
cas et vérifier que S = {0}.
On résout :

z—5>0 <= x>5

et .
20 —7>0 <— x>5.

On distingue trois cas que I’on présente sous la forme
du tableau suivant :

x —00

—+o00o

NI~
ot

z—5 5—x 5—x xr—5

20— 7 —2x+7 20— 7 20— 7

Premier cas : Lorsque x € ]—oo; % [, I'inéquation
est équivalente a

5—z+4(x—2)<3(—2x+7)
< b—z+4r—8< —6x+21
< 9r <24
8
<~ =< —.
3

Tous les nombres z < % sont bien solutions car ils

appartiennent a ’intervalle ] —00; % [

7

Deuxiéme cas : Lorsque = € [5;

I'inéquation est équivalente a

5] , on obtient que

b—z+4+4(x—2)<32z-7)
< b—x+4r—8 L 6b6x—21
—3x < —18
< x > 6.

g

Ce cas n’apporte aucune solution puisque aucun
nombre réel x > 6 est dans 'intervalle [%, 5] .
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Troisiéme cas : Lorsque x € ]5;4o00[, I'inéquation
est équivalente a

z—5+4(x—2) <32z —7)
< x—5+4r —8 L 6x—21
<< —x< -8
<~ z>8.

Tous les nombres x > 8 sont bien solutions car ils
appartiennent & l'intervalle ]5; +oco].

En conclusion, on a que ’ensemble des solutions
de I'inéquation est :

S:]foo;g[ U 15;400].

On effectue le méme raisonnement. Les expressions
changent de signe en x = —1 et x = 1. Le tableau
suivant présente la disjonction de cas :

T —00 -1 1 +o0o
z—1 —xr+1 —z+1 z—1
z+1 -z —1 z+1 z+1
Premier cas : Lorsque z € | — oo; 1[, 'inéquation est

équivalente a
e+l 2z—-1 < —z2—-1>—-2+1
= —-12>1

Ceci est impossible, ce cas n’apporte aucune solution.

Deuziéme cas : Lorsque x € [—1;1], on obtient
alors que :
le+1>|lz—1 < z2+1>—-2+1
<~ x2>0.

Les solutions apportées par ce cas sont les nombres
réels vérifiant = € [—1;1] N [0; +-00[, donc = € [0;1].

Troisiéme cas : Lorsque z € |1;+o0], la résolution
de 'inéquation est :

le+12lz—1 < z+1>22—-1
= 1> -1

Ce qui est toujours vrai, pour tout € R. Ainsi, tous
les nombres z € ]1; +00[ sont bien des solutions.

Pour conclure, en combinant les trois cas, ’ensemble
des solutions de 'inéquation est :

S = [0; +o0l.
On procede encore de la méme maniére. Les expres-
sions changent de signe en z = —3 et * = —2. Le
tableau suivant présente la disjonction de cas :

T —00 -3 —2 +o0o

T+ 2

T+ 3

es

corri
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Premier cas : Lorsque z € | — oo; —3], l'inéquation
est équivalente a
e +2| 22243 < —2z—22>2(—z—3)
= >4

Les solutions sont les réels € | — oo; =3[ N [—4; 00|,
ce qui donne z € [—4; —3|

Deuziéme cas : Lorsque z € [—3;—2], l'inéquation
est équivalente a

lz+2]>22)x43| <= —z—-2>22x+6

8
= —— 2>
3
Les solutions sont les « € [—3; —2] N ]foo; %8], ce

qui donne z € [73; ,%] .

Troisiéme cas : Pour & € | —2;400], I'inéquation est
équivalente a
e +2| 22|43 < z+2>2x+6
< —4>u.

Comme [—2; 400 N] — co; —4] est vide, il n’y a pas
de solution pour ce cas.

En réunissant les solutions obtenues dans les trois
cas, I’ensemble des solutions de I'inéquation est :

s3]

Exercice 18.

(a)

Une premiére méthode commence évidemment par
le calcul du discriminant de cette équation :

A=22—4x1x(=3)
= 16.
Puisque A > 0, I’équation posséde deux solutions
qui sont :
-2+ 16
2x1
=1 =

—2—+/16
2x1
—3.

xr1 = Tro =

Plus habilement, on pouvait remarquer que 1 est une
solution « évidente » de I’équation. Ainsi, le trindéme
se factorise sous la forme :
22 +22 —3=(z—1)(z — z2).
En développant ’expression de droite et en égalisant
les termes constants, on retrouve que :
—3 = xo.

Avec un peu d’habitude, cela se fait mentalement. . .
Pour les amateurs de la méthode, il est aussi possible
d’utiliser la somme ou le produit des racines.

On calcule :

A=72_-4x5x%x18
= —311.

Puisque A < 0, I’équation ne posséde pas de solution
dans ’ensemble des nombres réels.

(c)

(d)

Un produit de nombres réels est nul si, et seulement
si, au moins 'un de ses facteurs est nul. L’équation
est donc équivalente & :

z4+3=0 ou 2z%2—10z+15=0.

La premieére équation donne évidemment que x =
—3. Le discriminant de la seconde est :
A=(-10)2 —4x2x15
= —20.
Comme A < 0, I’équation 222 — 10z 415 = 0 n’a pas
de solution dans R. Ainsi, 'unique solution est —3.
On commence par déterminer le tableau de signes de
la fonction P : z — —3x2+9x+30. Son discriminant
est :
A =92 —4x(-3)x30
= 441.

Comme A > 0, le trinébme P posséde deux racines
qui sont :

-9+ v441
2% (=3)
=2

—9 — V441
€T = x = e—
! T 2% (-3)
=5.
Puisque a = —3, la parabole est tournée vers le bas
et l'on obtient le tableau de signes suivant :

—2 5 +o0

x —00

P(x) - 0 + 0 -

L’ensemble des solutions est : | — co; —2[ U ]5; +o0].
Le premier réflexe est de se ramener a 1’étude du
signe d’une fonction polynéme P de degré 2. On a :

2?2 —bx 472241 < —22—-6x+6>0.
On calcule :

A=(-6)2—4x(-1)x6
= 60.

Puisque A > 0, le trinéme P posséde deux racines
qui sont :

6 — /60 _ 6460

rl = —- et xro =

2% (—1) 2 x (—1)
=415-3 =V15+ 3.
Puisque a = —3, la parabole est tournée vers le bas

et ’on obtient le tableau de signes suivant :

. [-oo VI5-3  V15+3 +00
P(x) - 0 + 0 -

L’ensemble des solutions de notre inéquation est
donc l'intervalle

[ﬁ—s;\/ﬁ+3 .
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(f) On étudie le signe de chacun des facteurs afin de
dresser le tableau de signes de la fonction

[z (x4 3)(22% 4 92 — 5).

Il est clair que = 4+ 3 > 0 si, et seulement si, x > —3.
Le discriminant du trinéme est :

A=92—4x2x(-5)

=121.
Puisque A > 0, le trinéme P posséde deux racines
qui sont :
-9 —+v121 -9+ V121
x = —-— =  —-——
! 2% 2 ? 2% 2
1
= -5 = —.
2

Puisque a = 2, la parabole est tournée vers le haut
et 'on obtient le tableau de signes suivant :

z |—oo -5 -3 1 +00
z+3 - - 0 +
P(z) + 0 - - 0
f(z) - 0 4+ 0 - 0

Finalement, ’ensemble des solutions de I'inéquation
est donc :

]—oo;—5[U} —3;%{.

(g) L’étude des signes est identique & celle de la question
précédente. Rappelons que les racines du trindme
au dénominateur sont des valeurs interdites et que
I'usage est de le signaler par des « doubles barres »
dans le tableau. On obtient :

z |—oo -5 -3 3 +00
z+3 - - 0 +
P(x) + - -
f(x) - + 0 -

Finalement, ’ensemble des solutions de I'inéquation
est donc :

1= 5i-3] U | i+o0].

Exercice 19. On commence par remarquer que la
construction de la figure impose que z € [0;10]. Dans le
cas ¢ = 0, la figure ne comporte que le carré initial. Dans
le cas © = 10, 'intégralité du carré initial est colorié. Ce
sont des cas extrémes : si ’on préfere exclure ces cas, on
choisit = € ]0;10[. Ce détail n’a pas grande importance.
Nous prenons z € [0; 10].
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[ | 10 — 2z

| B e

Exprimons en fonction de x chacune des aires coloriées
et non coloriées. On les note A et A respectivement.

e On remarque (par exemple) que laire coloriée est
composée de 4 rectangles de longueur 10 — 2z et
de largeur x ainsi que de 5 carrés de coté x. Ainsi,
on a que :

A = 42(10 — 2z) 4 52
= 40z — 8x2 + 522
= 40z — 322
e L’aire non coloriée s’obtient par différence de ’aire

totale du carré initial avec ’aire coloriée. Ainsi, on
calcule que :

A =102 — (40x — 32?)
=100 — 40z + 322
On résout donc :
A< A < 40z — 322 < 100 — 40z + 32>
< 622 — 80z + 100 > 0.

Il s’agit d’une inéquation du second degré. On calcule son
discriminant :
A = (—80)2 — 4 x 6 x 100
= 4000.

Puisque A > 0, le trinébme posséde deux racines que nous
notons « et 3 pour changer :

_ 80 — /4000 80+ v/4000
T 2x6 p= 2% 6
20— 510 20+ 5v10
- 3 n 3

~ 1,4 ~ 11,9.

Puisque a = 6, la parabole est tournée vers le haut : le
trindme prend des valeurs négatives sur [«; (] et positives
sinon. Puisque 8 ¢ [0; 10], on obtient le tableau de signes
suivant.

T 0 « 10

P(x) + 0 —

En conclusion, ’aire coloriée est strictement inférieure a
l’aire non coloriée lorsque z € [0; a].

es

corri
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Exercice 20.
1. On calcule :
23 22 14x2+24=8-4-28+24
=0.
Donc 2 est solution de (F).
2. L’idée est de développer la forme factorisée que
I’énoncé propose afin d’identifier des conditions sur

les coefficients a, b et ¢ permettant d’avoir 1’égalité.
Pour tout z € R, on calcule :

(z — 2)(az? + bz + ¢)
= az® + ba? + cx — 2az?® — 2bx — 2¢
= az® + (b — 2a)z? + (c — 2b)z — 2c.

En identifiant les coefficients devant les mondémes de
méme degré, on conclut que :

23 — 2% — 14z + 24 = (z — 2)(az? + bz + ¢)

a=1
b—2a=-1
=\ c-2=-14
—2c=24
a=1
= b=1
c=—12.

Finalement, pour tout x € R :
23 —2? — 14z + 24 = (z — 2)(z® + = — 12).

3. L’équation (E) est donc maintenant équivalente a
I’équation suivante :

(—2)(z2+z—-12)=0
—2-2=0 ou z>2—z—12=0.

La premiére équation donne que x = 2. Le discrimi-
nant de la seconde est :

A=1%2-4x1x12

=49.
Puisque A > 0, I’équation posséde deux solutions
qui sont :
—1—+/49 —1++49
r = — et ro = —8M—
2x1 2x1
=4 =3.

En définitive, on conclut que I’équation (E) admet

trois solutions : —4, 2 et 3.
Remarque : Vous verrez en 1"¢ année qu’un polynéme
de degré n posséde au maximum n racines. Vous verrez
aussi que la propriété de factorisation vue pour les po-
lynémes de degré 2 est vraie pour tout polynoéme : tout
polynéme admettant o € R pour racine se factorise par
(z — o). Cela justifie la factorisation par (x — 2) dans cet
exercice et donc 'existence des nombres a, b et c.

Exercice 21.
1. On a que:
0f —5x0%34+4x02+5x0+1#0.
Donc 0 n’est pas solution de (E).

2. (a) Comme 0 n’est pas solution de I’équation (E),
on peut calculer (diviser par 2?2 est licite) ainsi :

z est solution de (F)

— 2zt -5+ 422 + 5 +1=0
xt —5x3 + 422 + 52+ 1
= 3 =0
T

5 1
= ®—br+4+=-+—5 =0
T T

5 1 1
= |z"+ 3 —5(lx——)+4=0.
X x

En remarquant alors (comme cela a déja été
vu dans lexercice 3) que :

1
y2—2:<x2+7),
T

on obtient que :
x est solution de (F)
— (y?—2)—5y+4=0
—y?-5y+2=0.

(b) Le discriminant de cette équation est A = 17.
Elle admet donc deux solutions :
5— /17 5+ V17
= — et Yo = ———.
2 2
3. Compte tenu de I’équivalence obtenue a la question
précédente, on a que :

Y1

1 1
z solution de (E) <= z+ — =y1 ouz+ — = y2.
x x

Il reste & résoudre ces deux équations. La premiére
déja. En multipliant membre & membre par 2z, on
obtient que :

1 5— V17

1
r+—-—=y1 <~ v+ — =
x T 2
= 2?+2=(5-VIT)z
= 227 - (5-VIT)z+2=0.
On calcule son discriminant :
A=(5-VIT) —ax2x2
=26 — 10v17
~ —15,2.

Puisque A < 0, cette premiére équation ne posséde
pas de solution réelle. Pour la seconde équation, on
a de la méme maniere que :

1 54 V17

1
T+ — =Y << T+ — =
x T 2
= 272 4+2= (5+\/17)x
— 222 — (5+\/17)$+2:0.
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Son discriminant est :
A=(5+VIT) —4x2x2
=26+ 10V17

Puisque A > 0, elle admet deux solutions que l'on
note « et B et qui sont égales & :

54+ V17 —4/2+10V17
a =
4

et

g SHVITH /24 10V17
= " .

Pour conclure, I’équation (F) admet exactement

deux solutions réelles : les nombres « et 8 ci-dessus.

Exercice 22. Nous allons procéder avec la démarche de
Pexercice 20 : factoriser par (x — o) avec o une racine.
N’ayant pas d’indication dans I’énoncé, on commence par
chercher une racine évidente.

1. On trouve que z = 1 est racine car P(1) = 0. I
existe donc a,b et ¢ des nombres réels tels que,
pour tout x € R :

P(z) = (z — 1)(az? + bz + c).
Pour tout z € R, on calcule :
(z —1)(az? + bz + ¢)
=az® 4+ baz? + cx —az® — bz — ¢
=az®+(b—a)z®+ (c—bz—c

En identifiant les coefficients devant les mondémes
de méme degré, on obtient que :

22% — 302 —x + 2= (z — 1)(ax? + bz + ¢)

a=2
— b—a=-3
c—b=-1
—c=2
a=2
= b=-1
c=—2.

Ainsi, pour tout z € R :
P(z) = (z —1)(2z% —z — 2).

Il reste & factoriser le polynéme 222 — 2 — 2. Nous
laissons le lecteur vérifier que son discriminant est
égal & A = 17 et que ses deux racines réelles sont :

1—-+V17 1+ v17
a=— f=—-:
4 4
Ainsi, pour tout z € R :
222 — 2 — 2 =2(z — a)(z — ).

Finalement, nous avons que la forme factorisée du
polyndéme P est donnée, pour tout z € R, par :

P(z)=2(z—1)(z — a)(z — B).

4.
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En testant avec les petites valeurs entiéres, on
trouve que = 2 est une racine car Q(2) = 0.
Il existe donc des réels a, b et c tels que, pour tout
zeR:

Q(z) = (x — 2)(az® + bz + ¢)
= az® 4 (b — 2a)z? + (c — 2b)z — 2c.
Et comme
Qz) =23 —22% + = — 2,

en identifiant les coefficients devant les monomes
de méme degré, on obtient que :

a=1 -1
b—2a=—2 Z:o
c—2=1 — =

96— —9 c=1.

Donc, pour tout x € R :
Qz) = (z —2)(«® +1).

Puisque x2 + 1 n’admet pas de racine réelle, cette
factorisation est la meilleure possible dans R.

. On trouve que x = 2 est une racine. Il existe donc

des réels a, b et c tels que, pour tout ¢ € R :
R(z) = (z — 2)(az? + bz +¢)
= az® + (b — 2a)x? + (c — 2b)x — 2¢.
Et comme
R(z) = a3 — 2% — 42 4 4,

en identifiant les coefficients devant les monémes
de méme degré, on obtient que :

a=1 -1
b-Za=-1 Zzl
c—2b=—4 B 9
—2c=4 =T

Donc, pour tout x € R :
R(z) = (z — 2)(2% +z — 2).

On laisse le lecteur factoriser z2 + x — 2 et vérifier
que, pour tout x € R :

2 rr—-2=(x+2)(z—1).
Et finalement, pour tout x € R :
R(z) = (z — 2)(x +2)(x — 1).
On peut voir que z = 2 est racine. Cependant,

il est plus habile de remarquer (par la deuxi¢me
identité remarquable) que, pour tout z € R :

S(z) = (2% —4)2.
Et comme
2?2 — 4= (z—2)(z +2),
on a finalement que la (meilleure) forme factorisée
du polynoéme S(z) est donnée, pour tout z € R,

par :
S(x) = (z — 2)%(x +2)%

es

corri
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Exercice 23. Une premiére méthode consiste sim-
plement & utiliser la forme canonique

b\2 b%—4ac
P = —_ —
(@) =a (I + Qa) 4a

rappelée dans I’énoncé. Ce n’est pas la méthode la plus
maligne. Elle nécessite déja de mémoriser la formule!

1. Avec

a=1, b=-8, c=16,

on obtient que :

2. Avec

on obtient que :
Py(x) = (z 4 6)% — 26.

3. Avec
a= -2,

on obtient que :

P =2 (s 2) 4

4. Avec
a=4,

on obtient que :

11

pores (o) -

La deuxiéme méthode consiste a reconnaitre dans les
premiers termes « az?-+bzx » de ’expression P(z) le début
de I'une des deux premiéres identités remarquables.

1. On remarque que 2 — 8z + 16 peut s’écrire comme
une identité remarquable. Pour tout x € R, on a :

P1(:c):a:2—2><4><a:+42
= (z —4)2.
2. On commence par voir 22 + 12z comme le début
de l'identité (z + 6)? = 22 + 12z + 62. Ainsi, on a

que :
z? + 12z = (z + 6)% — 36.

Pour tout z € R, on a donc :
Py(z) = 2 + 12z + 10
= (x+6)2—36+10
= (z +6)% — 26.
3. On commence par factoriser par —2 pour faciliter

la reconnaissance de la deuxiéme identité remar-
quable. Pour tout € R, on a que :

Py(z) = =2 (2* - 5z) + 25.

Et comme :

x2—5r:zg—2><§x
2
5 52 52
2
= —2X = = —| =
[x 2“(2)] (2>
( 5)2 25
= m—— - —,
2 4
il vient, pour tout = € R :

Py(z) = -2 (z2—5z) +25
2

_2[(%5) %

2 4

(-3)'+3

2 2

4. Comme dans l’exemple précédent, on factorise
d’abord par 4 pour faciliter la reconnaissance de
I’identité remarquable. Ainsi, pour tout z € R, on
calcule :

Py(x) = 42? + 5z +3

:4(:52—5-21‘)—}—3

+ 25

I
|
)

Exercice 24. On raisonne par ’absurde. Supposons que
cette équation posséde une solution o € Z. Alors, on a
que :

at—7a% +4a® +5a—-2=0
—=a' - 7% +4a® +5a =2
— a(a® -7 +4a+5)=2.

Mais comme « est un nombre entier, il est évident que
le nombre o® — 7a? 4+ 4a + 5 est également entier. Ainsi,
notre derniere égalité

a(a® =70 +4a+5)=2

implique que a est un diviseur de 2. Et nous savons que
les diviseurs de 2 sont : —2; —1;1 et 2. Reprenons le fil
du raisonnement : si « est solution entiére de 1’équation,
alors on a nécessairement que a € {—2; —1;1;2}. Il nous
reste & tester chacune de ces quatre possibilités :

e 1 n’est pas solution car
1*—7x134+4x1245x1-2=1;
e 2 n’est pas solution car
24 7 x 22 4+4x2245%x2-2=—16;
e —1 n’est pas solution car
(—1)* =7 x (m1)® +4x (=1)2+5 x (—1) — 2 = 5;
e —2 n’est pas solution car

(—2)* = 7 x (=2)3 + 4 x (=2)2 45 x (—2) — 2 = 76.
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L’hypothese d’existence d’une solution entiére a ’équa-
tion conduit ainsi & une absurdité. Cette équation ne
possede donc pas de solution entiére.

Exercice 25. On raisonne par ’absurde. Supposons que
le nombre % soit décimal. Par définition, il existerait des
entiers a € Z et n € N tels que :
1 a
3 107
Donc :
10™ = 3a,
si bien que 10™ serait un nombre divisible par 3. Or, la
décomposition (qui est unique) en facteurs premiers
10" =2" . 5"
ne comporte pas de 3. Ainsi, le nombre 10™ n’est donc
pas divisible par 3 et I’hypotheése faite nous a conduits a
une absurdité. On en conclut que % n’est pas décimal.
Exercice 26.
1. (a) En élevant les deux cotés de 1’égalité au carré,
on obtient :

c’est-a-dire :

b2
En multipliant cette égalité membre & membre
par b2, on obtient que :

a? = 2b?
Cette égalité prouve que a? est un multiple de
2. Autrement dit, il est pair.

(b) Nous allons démontrer par contraposée qu’un
nombre dont le carré est pair est lui-méme pair.
Soit € Z. La propriété a démontrer est :

x? pair = = pair
La négation de « étre un nombre pair » étant
le fait d’« étre un nombre impair », la contra-
posée de notre propriété est :

x impair = z2 impair .
Supposons donc x impair. Par définition, il
existe alors k € Z tel que z = 2k + 1. Cela
implique que :

2? = (2k+1)?
=4k? + 4k + 1
=2(2k2 +2)+1
=2q+1
en posant ¢ = 2k2 + 2. Ainsi, il existe ¢ € Z

tel que 22 = 2¢ +1 et le nombre x2 est impair.
Par contraposée, on a bien ’affirmation voulue.

La question précédente donne que x2 est pair.
Avec la propriété démontrée & l’instant, on
en conclut que a est pair. Dans la suite, on
désigne par k € N I'entier tel que a = 2k.
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(c) En substituant a = 2k dans I’égalité 2b = a?,
on obtient que :

202 = (2k)?
puis que :
2b? = 4k>
Et enfin que :
b2 = 2k?

Ainsi b2 est pair. L’argument vu & la question
précédente nous donne que b est pair.
2. Supposant par ’absurde la rationnalité de v/2, nous
avons écrit que

a
2= -
V2 ;

avec a € Z et b € N* des entiers premiers entre eux,
c’est-a-dire la fraction irréductible. Cette hypothese
nous a conduits & une absurdité. Si a et b sont des
nombres premiers entre eux, ils ne peuvent pas étre
pairs (donc divisible par 2) tous les deux. Donc, le
nombre v/2 est bien irrationnel.

Exercice 27. Nous allons raisonner par récurrence.
Pour tout entier n € N*, on note Py, la propriété :
1)(2 1
12192432 4. g2 nntDEED )6( ntl)

Pour simplifier la rédaction du raisonnement, on notera
également :

Sp=12422 432 4+... 402

Initialisation : Au rang n = 1, on a que S; = 12 d’une
part et, d’autre part, que :

I1+1)(2x1+1)
6

=1.

Donc P est vraie.
Hérédité : Soit n € N*. Montrons que Py, implique Pj,41.
On suppose donc que :

n(n+1)(2n+1)

Sn:f.

Et, on calcule alors :

Sp41 = Sn + (n+1)?
_n(n+1)2n+1)
B 6
n(n+1)(2n + 1) +6(n + 1)2
6
(n+1)(n@2n+1)+6(n+1))
6
(n+1)(2n? 4+ Tn + 6)
. .

+(n41)?

es

corri



28 CHAPITRE 1. CALCULS ET RAISONNEMENTS

Comme :
(n+2)(2(n+1)+1) = (n+2)(2n +3)
=2n?+3n+4n+6
=2n% +7Tn+6,

on conclut que :

(n+1)m+2)(2(n+1)+1)
Sn+1 = .
6

Et cette derniere égalité est exactement la propriété
Pr1-

Conclusion : On a prouvé que la propriété P, est vraie
au rang n = 1 et qu’elle est héréditaire. Par le principe
de récurrence, elle est donc vraie pour tout n € N*.

Exercice 28. Nous allons raisonner par récurrence.
Pour tout entier n € N*, on note P, la propriété :
nn+1)(n+2
n(n—l—l):i( + D+ )
3
Pour simplifier la rédaction du raisonnement, on notera
également :

1xX2+2%x34---+

Sn=1x24+2%x3+---+n(n+1).

Initialisation : Aurang n =1, on a que S; = 1 x 2 d’une
part et, d’autre part, que :
1(1+1)(142)
3

=2.

Donc P; est vraie.
Hérédité : Soit n € N*. Montrons que P, implique Py 1.
On suppose donc que :

n(n+1)(n+2)

Sp = ———F———=.
3

Et, on calcule alors :

Sp+(m+1)(n+2)
= W F(n+1)(n+2)
nn+1)(n+2)+3(n+1)(n+2)
3
(n+1)(n+2)(n+3)
3

Sn+1

Et cette derniére égalité est exactement la propriété
Pr+1-

Conclusion : On a prouvé que la propriété P, est vraie
au rang n = 1 et qu’elle est héréditaire. Par le principe
de récurrence, elle est donc vraie pour tout n € N*.

Exercice 29. On raisonne par récurrence sur n € N. On
note Py, la propriété « 32" — 2" est divisible par 7 ».
Initialisation : Pour n = 0, on a que 32%0 — 20 = ( est
divisible par 7. Donc Py est bien vraie.

Hérédité : Soit n € N. Démontrons que P, implique la
propriété Pp41. On suppose donc que 32" — 2" est un

nombre divisible par 7, c’est-a-dire qu’il existe k € Z tel
que 327 — 27 = Tk. Alors, on calcule :
32(n+1) _ 2n+1 _ 32n % 32 _9m w9

=(Tk+2")x9—2" x2
=9XxXTk+9x2" —2x2"
=9XxTk+7x2"
=T(9k 4+ 2™).

Et comme 9k + 2™ est un nombre entier, la derniére éga-

lité prouve que 32(*+1) — 2n+1 egt divisible par 7.

Conclusion : On a prouvé que Py est vraie et que P, est

héréditaire. Le principe de récurrence permet de conclure
que la propriété P, est vraie pour tout n € N.

Exercice 30. On raisonne par récurrence sur n € N. On
note Py, la propriété « n3 4 5n est un multiple de 3 ».
Initialisation : Pour n = 0, on a que 03 +5 x 0 = 0 est
bien un multiple de 3. C’est 3 X 0. Donc Py est vraie.
Hérédité : Soit n € N. Démontrons que P, implique la
propriété Ppy1. On suppose que U'entier n® 4 5n est un
multiple de 3, c’est-a-dire qu’il existe un certain k € Z
pour lequel n3 + 5n = 3k. Alors, on calcule :

m+1)3+5n+1)=n3+3n>+3n+1+5n+5
= (n3+5n) + (3n2+3n+6)
=3k+3(n%>+n+2)
=3k+n?+n+2).

Et comme k 4+ n? 4+ n + 2 est un entier, cette derniére
égalité prouve que (n + 1) + 5(n + 1) est multiple de 3.
Conclusion : On a prouvé que Py est vraie et que Py, est
héréditaire. Le principe de récurrence permet de conclure
que la propriété P, est vraie pour tout n € N.

Exercice 31. On raisonne par récurrence sur n € N. On
pose Py, la propriété 2™ — 1 > n.

Initialisation : Aurang n = 0, on a que 20 —1 = 0 et
donc bien que 2° — 1 > 0. La propriété Py est vraie.
Hérédité : Soit n € N. Montrons que P, implique Pj41.
On suppose que 2" — 1 > n. En multipliant cette inéga-
lité membre & membre par 2 puis en lui ajoutant 1, on
obtient que :

2(2"—1) > 2n
= 2"t _9>9n
= 2"l _1>2n+41

Etant donné que 2n+ 1 > n+1, il vient que 27t1 —1 >
n + 1. C’est excatement Pp41.

Conclusion : On a prouvé que Py est vraie et que Py, est
héréditaire. Le principe de récurrence permet de conclure
que la propriété Py, est vraie pour tout n € N.

Exercice 32. L’inégalité de cet exercice généralise celle
de D’exercice précédent. C’était le cas particulier x = 1.
Pour tout n € N, on pose P, : (1 +z)" > 1+ na.

Initialisation : Pour n = 1, on a (1 + z)! = 1 + 2 d’une
part, d’autre part que 1+ 1 X z = 1 4+ z. Donc, on a bien
que (1+2)! > 141 x = et que la propriété P; est vraie.
Hérédité : Soit n € N*. On démontre que Py, implique la
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propriété Py 1. En d’autres termes, on va supposer que
Pon a (14 )™ > 1+ nz et on va montrer que :

A4+2)" =14 (n+ 1)z

En multipliant I'inégalité P, par 14+ membre & membre,
on obtient que :

A+ )t > (14 ka)(1 4 ).
Comme z > 0 et k € N*, on a que kz? > 0. Ainsi, obtient
que :
A+ ka)(1+x) =1+ + ka + ka?

=1+ (k+ 1z + ka?

>1+ (k+1)z.
Finalement, on a bien :

A+ > 14 k+ 1)z

Conclusion : On a prouvé que Py est vraie et que Py, est
héréditaire. Le principe de récurrence permet de conclure
que la propriété P, est vraie pour tout n € N.

Exercice 33. Commencons par dire que cette équation
n’est définie que sur ’ensemble :

R\ {2;3;4;5}.
On calcule :

(z+2)(x+3)(z+4)(x+5)

(z —2)(x —3)(z —4)(x — 5)
(@ +2)(x+5)(z+3)(xz+4)

(z =2)(z = 5)(x —3)(x —4)

_ (22 + Tz +10) (2% + Tz + 12)
T (22 — Tz +10) (22 — Tz + 12)
_ala+2)
T b(b+2)

en posant :

b=22— 7z + 10.
Ainsi, avec ce changement d’inconnues, 1’équation est
équivalente a la recherche de a et b vérifiant :
a(a+2)
b(b+2)

{ a=z24+"7x+10

Or:
a(a + 2)

b(b+ 2)

|
-

NN

ala+2)=bb+2)=

a®+2a=0b2+2b

a? = +2a-b=0
(a=0b)(a+b)+2(a—b)=0
(a—b)a+b+2)=0
a—b=0oua+b+2=0.

On raisonne maintenant en traitant séparément ces deux
équations :

a—b=0 < x2+7m+10—(a)2—7$+10):0
< 14z =0
<~ x=0.
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Ainsi 0 est une solution de I’équation. On examine le
deuxieme cas :

a+b+2=0
= 2?+ 72410+ (2 =72 +10) +2=0
= 2624+22=0
= 22 =-11.

Puisque 22 > 0 pour tout = € R, ce cas est impossible. En
définition, la seule solution de notre équation est z = 0.

Exercice 34.

1. Le théoreme de Pythagore appliqué sur les triangles
rectangles ABH et ACH donne :

BH? + AH? = AB? et CH?+ AH? = AC?.
Donc, on a que :
BH? + AH? = et
Ensuite :
b¥> = CH? + AH?

CH? + AH? = b2,

= (a—BH)® + AH?
=a? —2aBH + BH? + AH?
=a? — 2aBH + BH? + ¢> — BH?
=a® — 2aBH + 2.
Donc, on obtient :
2 +a%2-0b?
2a

BH? =

Et finalement :
AH? = AB? — BH?

2
) 2+ a2 — b2
=c" - | —— .
2a
2. On calcule :

1
A2=Z><a2><h2

:1a202—i(02+a2—b2)2

4 16
= 1—16((2116)2 — (c2 +a?— b2)2)
= 1—16(2ac+c2+a2 —b2)(2ac—02—a2—|—b2)

_ 1—16((0,—1-0)2 —1?) (1 = (a—0)?)

- 1—16(a+c+b)(a+c—b)(b+c—a)(b+a—c)‘
3. On calcule :
A? = %(a+c+b)(aJrcfb)(bJrcfa)(bJrafc)
= 25(2s — 2b)(2s — 2a)(2s — 2¢)
=3s(s—b)(s—a)(s—c).

Et finalement, en prenant la racine dans cette égalité,
on en déduit la formule de Héron :

A= \/s(s —a)(s —b)(s—c).
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Chapitre 2
Dénombrement

2.1 Syntheése de cours

Lorsqu’un ensemble A posséde un nombre fini d’éléments, son nombre d’éléments est appelé son
cardinal. Il existe diverses notations pour cette notion, on notera ici Card(A).

2.1.1 Principes additif et multiplicatif

Propriété 1 (Principe additif). Soient n € N* ainsi que Ey, Fs,. .., E, des ensembles finis
deux a deux disjoints. Alors, on a que :

Card (Ey UE,U...UE,) = Card (Ey) + Card (E2) + - - - 4+ Card (E,,) .

L’hypothese clef est évidemment que les ensembles soient deux & deux disjoints, c’est-a-dire qu’ils
n’aient aucun élément en commun. Lorsque A et B sont deux parties d’un ensemble fini, nous
savons bien que :

Card(AU B) = Card(A) + Card(B) — Card(AN B).
Plus généralement, il existe une formule (dite formule du crible) qui donne le cardinal d’une réunion
quelconque de n ensembles. Le cas n = 3 sera proposé en exercice.

Définition 1. Soient n € N* et E, E1, Es, ..., E, des ensembles non vides. On appelle produit
cartésien des ensembles E1, Es, ..., E, et I'on note F; X Fs X --- X E, I’ensemble des suites
ordonnées de n éléments (e1;eq;...;€,) avec e € Ej pour tout k € {1;...;n}. De plus, le
produit cartésien £ X E X --- X E est noté E" et ses éléments sont appelés des n—uplets.

Lorsque n = 2, on parle de couple plutét que de 2—uplet. Et pour n = 3, on parle de triplet. Les
coordonnées d’un point du plan sont, par exemple, des couples d’éléments de R.

Propriété 2 (Principe multiplicatif). Soient n € N* ainsi que E, E1, Fa, ..., E, des ensembles
finis non vides. Alors, on a que :

o Card(Ey x By x ... x E,) = Card (Ey) x Card (E3) x ... x Card (E,).
e Card (E") = (Card (E))".

2.1.2 Arrangements, permutations et combinaisons

On rappelle que la factorielle n! d'un entier n € N* est le produit de tous les entiers naturels
compris entre 1 et n. Et I'on pose 0! = 1 par convention. Pour tout n > 1, on a donc :

nl=1x2x3x---xn.
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Définition 2. Soient E un ensemble non vide et un entier naturel non nul p < Card(E). Un
arrangement de p éléments de E est un p-uplet d’éléments deux a deux distincts de E. Un
arrangement de tous les éléments de E est appelé une permutation de F.

Modélisation. Dans un arrangement, ’ordre des éléments a de 'importance et les éléments sont
deux a deux distincts. Il n’y a pas de répétition. Un arrangement de p éléments de E peut étre
interprété comme le résultat de p tirages successifs et sans remise dans ’ensemble F.

Propriété 3. Soient F un ensemble non vide de cardinal n ainsi qu’un entier naturel p < n.
Le nombre d’arrangements de p éléments de E est égal a :

n!

s e DX ()

Ce nombre est parfois noté Ap. En prenant p = n, on voit que le nombre de permutations d’un
ensemble & n éléments est égal a n!.

Définition 3. Soit E un ensemble non vide et un entier naturel non nul p < Card(E). Une
combinaison de p éléments de E est un sous-ensemble de F possédant p éléments.

Modélisation. Dans une combinaison, 'ordre des éléments n’a pas d’importance et les éléments
sont deux a deux distincts. Il n’y a pas de répétition. Ainsi, une combinaison de p éléments d’un
ensemble F peut étre interprétée comme le tirage simultané de p éléments dans I’ensemble E.

Propriété 4. Soient F un ensemble non vide de cardinal n et un entier naturel p < n. Le
nombre de combinaisons de p éléments de E est égal au coefficient binomial :

() =

Pour résumer les caractéristiques clefs de la modélisation par un produit cartésien, un arrangement
ou une combinaison, on peut retenir le tableau suivant.

Produit cartésien Arrangement Combinaison
Prise en compte de I'ordre oui oui non
Répétition possible oui non non

2.2 Enoncés des exercices

Dénombrer en pratique ____ 1. Combien y a-t-il de podiums possibles ?

Exercice 1. Un groupe de dix personnes se réunit, 2. Combien y a-t-il de classements possibles ?
et chacun serre la main de tous les autres. Combien

. L, . . Exercice 3. En fin d’année de Seconde, un éleve
y aura-t-il de poignées de main au total ? Justifier.

doit choisir trois spécialités parmi les douze qui lui
Exercice 2. Une course oppose 12 cyclistes. sont proposées pour la classe de Premiere.
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1. Combien de choix différents peut-il faire ?

2. Cet éleve sait qu’il devra abandonner une des
trois spécialités en Terminale. Il décide donc
de choisir les deux spécialités qu’il conservera
et une troisieme qu’il abandonnera. Combien
de choix peut-il faire ?

Exercice 4. Un jeu de 52 cartes comporte 13 cartes
de chacune des 4 couleurs (trefle, pique, carreau et
coeur) qui sont, en classant par ordre croissant de
valeur, celles allant de 1 a 10, puis le valet, la dame
et le roi. On tire 5 cartes successivement et sans
remise. Ces 5 cartes constituent une « main » dans
laquelle on ne tient pas compte de ’ordre des cartes.
Dénombrer les mains qui contiennent :

(a) Quatre cartes de valeur identique.

(b) Trois cartes possédant la méme valeur et deux
autres cartes avec également la méme valeur.

(¢) Cing cartes de la méme couleur qui se suivent.

(d) Exactement deux cartes de tréfle.

Exercice 5 (x). Un tournoi a élimination directe de
tennis débute en quart de finale avec huit joueurs.
On a schématisé une possibilité de déroulement du
tournoi dans laquelle J2 sort gagnant :

J1
>J2
J2

J2
J2

J5

1. Déterminer le nombre de matchs qu’un joueur
a gagné s’il a remporté ce tournoi.

2. Combien de matchs ce tournoi comporte-t-il 7

3. Combien de finales différentes sont possibles ?

4. Soit n € N*. Reprendre ces questions dans le
cas d’un tournoi qui débute avec 2" joueurs.

Exercice 6. Un anagramme est un mot formé en
changeant l'ordre les lettres d’un autre mot. On ne
tient pas compte de la signification du mot obtenu.
Déterminer le nombre d’anagrammes de :

1. Manchot
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2. Canal
3. Mississippi.

Exercice 7. Dans une petite association, on veut
former un bureau constitué de six personnes, avec
la parité homme-femme. Il y a sept hommes et cinq
femmes dans cette association.

1. Combien y a-t-il de bureaux possibles ?

2. Méme question si Monsieur Dupont fait partie
du bureau et si Madame Martin ne veut pas
en faire partie.

Exercice 8 (). Sur une grille carrée de 4 x 4 cases,
on peut se déplacer uniquement vers la droite ou vers
le haut. On part du point A(0,0) en bas & gauche
pour rejoindre le point B(4,4) en haut a droite. On
donne ci-dessous un exemple d’un tel chemin.

B

A —

1. Déterminer le nombre de chemins différents
permettant d’aller de A & B en respectant ces
regles de déplacement. Justifier.

2. On place un obstacle en C(2,2), on ne peut
plus passer par ce point. Combien de chemins
différents permettent encore d’atteindre B ?

Bl

| Q)

A —

Exercice 9. On souhaiter positionner quatre tours
sur un échiquier 4 x 4 de maniére a ce qu’aucune
d’elles ne se menace. Pour rappel, une tour peut
se déplacer horizontalement ou verticalement d’au-
tant de cases que souhaité. Une configuration satis-
faisante est représentée ci-dessous.
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b=

1. Les quatre tours sont noires et indiscernables.
Trouver le nombre de configurations possibles.

2. Les tours sont de quatre couleurs différentes.
Trouver le nombre de configurations possibles.

3. Deux tours sont blanches, deux sont noires.
Trouver le nombre de configurations possibles.

Un peu plus abstrait

Exercice 10. Soient p et n deux entiers naturels
tels que 1 < p < n. Démontrer que :

()= () =« Go)=(5)-6)

Exercice 11 (x). On considére E un ensemble non
vide de cardinal n € N*. Démontrer que le nombre
de sous-parties de E est égal a :

>(5) ==

Exercice 12. Dans chacun des cas suivants, donner
les ensembles :

AUB ; AnB ; AxB ; BxA.

1. A=1{1;2;3} et B={1;2;4}
2. A={a;b} et B={e,d}

Exercice 13. On considére A = {1;2;3;4}. Ecrire
les deux arrangements, les trois combinaisons ainsi
que les permutations de A.

CHAPITRE 2. DENOMBREMENT

Le coin du chercheur

Exercice 14 (x). Considérons E un ensemble non
vide ainsi que A, B deux sous-ensembles de E. On
appelle différence symétrique de A et B le sous-
ensemble de F, noté AAB, contenant les éléments
de AU B n’appartenant pas & AN B. Autrement dit :

AAB={ze AUB |z ¢ AnB}.
1. On pose :
A=1{1;2;3;4;5} et B ={3;4;5;6;7}.

(a) Déterminer AN B et AAB.
(b) Préciser le cardinal de AAB et AN B.

2. On revient au cas général en supposant que
les ensembles A et B sont de cardinaux finis.
Prouver que le cardinal de AAB est égal a :

Card(A) + Card(B) — 2Card(A N B).

Exercice 15 (xx). On veut placer le roi noir et la
dame noire sur deux cases distinctes d’un échiquier.

. W T
. M

/
h

— a b ¢ d f

Déterminer le nombre de positions telles que :

[ee)

N

o
N

\
N\

\
\

N

.
-

&\
N
.
N

0Q

1. La dame soit située sur une ligne strictement
plus au-dessus de celle ou se trouve le roi.

2. Le roi et la dame soient sur la méme ligne.
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2.3 Corrigés des exercices

Exercice 1. On numérote les personnes de 1 a 10 et on

note E = {p1;...;p10} 'ensemble des personnes. Choisir

une poignée de mains revient & choisir deux personnes qui
se serrent la main. C’est une combinaison (pas d’ordre,
pas de répétition) de 2 éléments parmi 10. Le nombre de
poignées de mains est donc :

2/ 2180 2

Exercice 2. On numérote les cyclistes de 1 a 12 et on

note E = {c1;...;c12} Pensemble de ces cyclistes.

1. Choisir un podium, c’est choisir 3 cyclistes au sein de
I’ensemble E sans répétition et en tenant compte de
Pordre. Il s’agit donc d’un arrangement de 3 cyclistes
parmi 12. Au total, le nombre de podium est donc :

12!
Al? = = =12 x 11 x 10 = 1320.
9!

45.

2. Un classement des 12 cyclistes est une permutation
des 12 éléments de E. Le nombre de classements est
donc égal a :

12! = 479 001 600.

Exercice 3. On numérote les spécialités de 1 & 12 et on

note E = {s1;...;s12} Pensemble de ces spécialités.

1. L’éleve doit choisir trois éléments différents de E sans
tenir compte de ’ordre. Chaque choix possible est une
combinaison de 3 éléments parmi 12. Le nombre de
choix possibles est donc :

(12)_172!7 12 x 11 x 10
37 3ol 3

2. L’éleve fait d’abord le choix des 2 spécialités qu’il
va conserver en Terminale puis le choix de celle qu’il
abandonnera. On note C' I’ensemble des choix pour les
deux spécialités conservées et A I’ensemble des choix
possibles pour la spécialité abandonnée. L’ensemble
des choix possibles pour les 3 spécialités en Premiére
est alors :

= 440.

C x A.

Or, nous savons que :
Card(C x A) = Card(C) x Card(A).

L’ensemble C' est ’ensemble des parties a 2 éléments
distincts de E. Ce sont les combinaisons de 2 éléments
de E. Donc :

Card(C) = (

12 12! 12 x 11
) = =" =66
2 2110! 2

Le choix de la spécialité abandonnée se fait parmi les
10 spécialités restantes. C’est une combinaison d’un
élément parmi 10. Donc :

10) 10!

Card(A) = ( )= =

Co1!
En définitive, si I’éléve fait le choix de cette maniére,
le nombre total de possibilités est :

66 x 10 = 660.

Exercice 4.

(a) Comme lordre des cartes dans une main n’est pas
pris en compte, on peut supposer que ’on commence
par choisir les quatre cartes de méme valeur puis la
cinquiéme. Il y a au total 13 choix possibles pour les
quatre cartes portant la méme valeur : soit les 4 rois,
soit les 4 dames, soit les 4 valets, soit les 4 dix, etc.
Puis, on choisit une autre carte quelconque parmi les
quarantes-huits cartes restantes. Ainsi, choisir une
telle main revient & choisir un élément de ’ensemble

E ={1;...;13} x {1;...;48}.

Finalement, le nombre de mains comportant quatre
cartes de méme valeur est :

Card(E) = 13 x 48 = 624.

(b) Dans le jeu, chaque valeur n’existe qu’en quatre
exemplaires. Ainsi, les trois cartes de méme valeur
ne peuvent pas avoir la méme valeur que les deux
autres cartes qui, elles aussi, sont de méme valeur.
Comme l'ordre des cartes dans une main n’est pas
pris en compte, on peut commencer par dénombrer
les possibilités pour les trois cartes, puis celles pour
les 2 cartes.

e Pour les 3 cartes de méme valeur, on choisit une
valeur parmi les 13 valeurs possibles. Ensuite, on
choisit 3 couleurs parmi 4. Par exemple, si 'on
choisit la valeur « valet », il reste & en choisir trois
parmi les valets de pique, tréfle, carreau ou coeur.
C’est une combinaison de 3 couleurs parmi 4. Au
total, le nombre de possibilités est :

4 4!
13x () =13x — =13 x4=52
3 311!

e Pour le choix des 2 autres cartes, il reste 12 choix
possibles pour la valeur. Ensuite, on fait le choix
de deux couleurs parmi les 4 couleurs. C’est une
combinaison de 2 parmi 4, ce qui donne 6 choix
possibles. On peut d’ailleurs les lister :

{0, 8}, {0, 01 {0, 4}, {&, O}, { b, #}, {0, #}

Au total, le nombre de possibilités pour ce choix
de 2 cartes de méme valeur est :

12 x 6 =T72.

Par le principe multiplicatif, le nombre de total de
possibilités avec les conditions données est :

52 X 72 = 3744.

(c) Choisir cinqg cartes de la méme couleur qui se suivent
revient & choisir la premiére carte, les quatres autres
se suivent sans choix. Avoir cinqg cartes qui se suivent
impose que la carte de plus petite valeur dans la main
soit le 9. Ainsi cela revient a choisir une carte de I’as
au neuf dans 'une ou lautre des quatre couleurs. I1
y a donc 9 X 4 = 36 mains possibles.

es

corri
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(d) Comme l'ordre des cartes dans une main n’est pas Exercice 6.

pris en compte, on peut commencer par choisir les 1 {Up anagramme de « manchot » est une permutation

deux cartes de tréfle puis les trois autres. Un choix
de 2 trefles est une combinaison de 2 éléments parmi
13. Le choix des 3 autres cartes est une combinaison
de 3 éléments parmi 52 — 13 = 39. Ainsi, le nombre
de mains possibles est :

de ’ensemble E = {m;a;n;c;h;o;t; }. Cet ensemble
comportant 7 éléments, le nombre d’anagramme re-
cherché est :

7! = 5040.

Premiére méthode. Le mot « canal » est formé de cing

(13) % (39) 13! % 39! lettres. A priori, si ’on procéde comme a la question
2 3 211! 3!36! précédente, on devrait dénombrer 5! anagrammes. Or,
13 x 12 39 %38 x37 dans ces anagrammes, si les deux « a » sont permu-

= 2 % 3% 2 tés, le mot est inchangé. Ainsi, pour ne pas compter

— 712842, ces anagrammes deux fois, on divise 5! par le nombre

Exercice 5.

1.

On compte simplement le nombre de matchs qu’il a
gagné : le quart de finale, la demi-finale et la finale. I1
faut donc gagner 3 matchs pour remporter le tournoi.

11 suffit de compter le nombre de matchs sur le schéma.
Il y a 7 matchs. En anticipation de la généralisation de
la derniére question, proposons deux méthodes pour
trouver cette valeur :

e Il y a quatre quarts de finale, deux demi-finales et
une finale. Ainsi, il faut gagner 7 matchs.

e Ily a8 joueurs, a la fin du tournoi il ne reste qu’un
seul joueur. Chaque match élimine un joeur. Ainsi,
il doit y avoir 8 — 1 = 7 matchs.

Un finale oppose 2 joueurs. Il y a 8 joueurs inscrits
au tournoi. Une finale est un choix de 2 parmi 8, sans
répétition et sans tenir compte de l'ordre. C’est une
combinaison de deux joueurs dans un groupe de huit.
Le nombre de finales possibles est donc :

8 8 8x7
(2):ﬁ: ;T

(a) A chaque tour, un joueur sur 2 est éliminé. Au
premier tour, il y a 2™ joueurs, au deuxieéme
tour, il y a 2?1 joueurs, au troisiéme tour, il
y a 2”72 joueurs. Si I'on généralise, au k-iéme
tour, il y a 27~ (*=1) joueurs. Ainsi, & la finale,
il reste

92— 2n—(n—1)

joueurs. Ainsi, la finale est le n-iéme tour du
tournoi. En conclusion, pour gagner le tournoi,
il est nécessaire de gagner n matchs.

. Avec la premiére méthode :

de permutations possibles des deux « a ». Le nombre
d’anagrammes recherché est donc :
5!

— =5 x4 x3=60.
2!

Deuzxiéme méthode. Choisir un anagramme revient &
choisir 'emplacement des deux « a » puis a placer les
autres lettres dans les emplacements restants. Si ’on
note E = {1;...;5} les emplacements possibles, on
remarque que le choix des places pour les « a » est
une combinaison de 2 places parmi 5 : il n’y pas de
répétition et pas d’ordre. Choisir les emplacements
des autres lettres est une permutation de 3 places.
En définitive, par le principe multiplicatif, le nombre
d’anagrammes est :

(5) ><3!:5—!><3!:5><4><3:60.
2 213!

le mot « mississippi » est
composé de 11 lettres dont les lettres « s » et « i » qui
apparaissent 4 fois et le « i » qui apparait 2 fois. Le
nombre d’anagramme de « mississippi » est donc :

11! 11x10x9X8XT7Tx6X%X5
414121 4xX3x2x2
Avec la seconde méthode, on observe que choisir un
anagramme revient & choisir 4 places parmi 11 pour
les lettres « i » puis 4 places parmi les 7 restantes pour
les lettres « s » puis enfin 2 places parmi les 3 restantes
pour les lettres « p ». Il ne reste qu’une place. Ainsi,

le nombre d’anagrammes est :
(7) x (Z) x 1= 34650.

()

= 34650.

Exercice 7. Un bureau de 6 membres constitué a parité
(b) Iy a 2™ joueurs au début du tournoi et un seul contient 3 hommes et 3 femmes.
gagnant. Le tournoi doit éliminer 2™ —1 joueurs.
Chaque match élimine un joueur. On en conclut

que le tournoi comporte 2™ — 1 matchs.

1. Il n’y a pas d’ordre entre les membres du bureau,
on peut donc commencer par choisir les hommes puis
les femmes. Si l'on note H = {h1;...; h7} I'ensemble
des 7 hommes membres de ’association, le choix des
hommes pour le bureau est une combinaison (ni ordre,
ni répétition) de 3 éléments de H. De méme, le choix
des femmes est une combinaison de 3 éléments de
I’ensemble F' des 5 femmes membres de ’association.
Par le principe multiplicatif, le nombre de possibilités
pour le bureau est donc :

(1) =

(¢) Il y a 2™ joueurs inscrits. Une finale est une
combinaison de 2 joueurs parmi 2™. Le nombre
de finales possibles est donc :

()

5 7! 51
( ):—x—:35x10=350.
3/ 7 3141 " 312
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2. On adapte le raisonnement de la question précédente.

Puisque Monsieur Dupont est membre du bureau, il
reste 2 hommes a choisir parmi les 6 hommes restants.
Puisque Madame Martin ne peut pas étre au bureau,
le choix des 3 femmes se fait parmi 4 femmes. Ainsi,
le nombre de possibilités est :

(;) ~

4 6! 4!
():—x—:15><4:60.
3 2141 7 311!

Exercice 8.

1. Un chemin correspond & huit déplacements,
quatre vers le Haut et quatre vers la Droite. Ainsi,
choisir un chemin revient & choisir un anagramme
de DDDDHHHH. En reprenant ’une ou l'autre
des méthodes données dans ’exercice 6, on obtient
que le nombre de chemins possibles est :

8! 8 x 7
8! _8xTx6x5_
414! 2x3x4

2. On va compter le nombre de chemins qui passent
par cet obstacle, passer par le point (2;2) revient
a choisir un chemin de A a C puis de C' & B. Le
nombre de chemins de A & C est (en utilisant le
méme raisonnement que précédemment) de 6, de
méme pour les chemins de C & B. Ainsi le nombre
de chemin ne passant pas par C est le nombre de
chemins total moins le nombre de chemins passant
par C :

70 — 2 X 6 = 58.

Exercice 9.

1. On raisonne par placement successif des tours. On

peut s’aider d’un schéma ou 'on colorie au fur et a
mesure les lignes/colonnes de I’échiquier des cases ou
I’on positionne une tour.

e On place la premiére tour. Il y a 16 choix possibles.

e On place la deuxiéme tour. Elle ne peut étre mise
ni sur la ligne, ni sur la colonne ou 'on a mis la
premiére tour. Cela retire 7 cases de ’échiquier. 11
y a donc 16 — 7 = 9 emplacements possibles.

e On place la troisiéme tour. Elle ne peut étre mise
ni sur les lignes, ni sur les colonnes ou se situent
les deux premiéres tours. Cela retire 5 cases de
I’échiquier. Il y a donc 9 — 5 = 4 choix possibles.

e Pour la derniere tour, il ne reste qu’un seul choix.

Ainsi, choisir une configuration pour les quatre tours
revient a choisir un élément de ’ensemble :

{1;...;16} x {1;...;9} x {1;2;3;4} x {1}
dont le cardinal est 16 X9 x 5 x 1 = 720. En définitive,
il y a 720 configurations possibles.

. Choisir une configuration pour quatre tours toutes
de couleurs différentes, cela revient & choisir une des
configurations de la question précédente puis ensuite
une permutation des quatre couleurs. Ainsi, le nombre
de possibilités est :

720 x 4! = 720 x 24 = 17 280.

1. Par définition, on
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3. Choisir une configuration avec deux tours noires et

deux blanches revient a choisir une configuration de
la premiére question puis un ensemble & deux éléments
parmi quatre. Ainsi, le nombre de possibilités est :

4 41
720 x ( ) =720 x —— =720 x 6 = 4320.
2 212

Exercice 10.

o

(n) _ n!

p’  pl(n—p)!
n!

(n—p)!(n—(n—p))!
=(," )

p

2. On propose deux méthodes pour cette question : par

un calcul direct et par un argument de dénombrement.
Premieére solution. On fait un calcul direct en partant
du membre de gauche de I’égalité. On met au méme
dénominateur les deux fractions intervenant dans le
calcul. On calcule :

n—1y (n—1)!
G-t = G i
_ p(n —1)!
p!(n —p)!

et :
n—-1,  (n—1)!
Oy )= Mo
_ (n=Dl(n—p)
-~ plln—p)!
On a multiplié le numérateur et le dénominateur de la
premiere fraction par p. La seconde par n—p. Dans ce

type de calculs, on doit étre vigilant aux parenthéses
et bien comprendre que

p(n— 1)1 # (p(n— D)L,

Ainsi, en factorisant par (n — 1)! au numérateur, on
obtient :

n—1 n—1 pn-1! (n—p)(n-—1)!
(p71)+( P )_p!(nfp)! pl(n —p)!
_ (nfl)!(ernfp)
pl(n —p)!
n!
" plin—p)!
()

Deuziéme solution. Dans un ensemble a n éléments,
on cherche le nombre de possibilités pour choisir un
sous-ensemble de p éléments. Notons E, I’ensemble
des sous-ensembles de E qui ont pour cardinal p :

E, = {A C E|Card(A) :p}.

es

corri
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Pour z € E, notons E; , les sous-ensembles de E de
cardinal p et contenant x, c’est-a-dire :

By ={AcEp|zcA}.

Notons également Ez, les sous-ensembles de E de
cardinal p ne contenant pas . On a clairement que :

E,=Ey,pUEz, et EgpNEzp,=0.

De plus, on remarque que choisir un sous-ensemble
a p éléments de E contenant x revient a choisir un
sous-ensemble & p — 1 éléments dans E — {x}. Ainsi :

Card(Ez,p) = (Z : i)

Et, choisir un sous-ensemble & p éléments de E qui
ne contient pas x est équivalent a choisir un sous-
ensemble & p éléments dans E — {z}. Ainsi :

Card(Ez,p) = (k i 1).

En définitive, donc par principe d’additivité, on
conclut que :

(Z) = Card(E))
= Card(Ez,p) + Card(Ez,p)
n—1 n
= (p—l) + (p—l).

Exercice 11. On considére E un ensemble non vide fini
de cardinal n. Nous devons démontrer que le nombre de
sous-ensembles (on parle aussi de sous-parties) de E est
donné par la formule suivante :

n
n
§ () =2
p
p=0
Nous allons montrer séparément que le nombre de sous-
parties de E est égal & la somme du membre de gauche

puis qu’il est égal & 2. On notera P(E) I’ensemble des
parties de E : c’est une notation usuelle.

e Notons E, l’ensemble des sous-ensembles de E qui
contiennent p éléments. Autrement dit :

B, ={AC E|Card(A) =p}.

Pour deux entiers naturels p,q < n tels que p # ¢, on
a clairement que :

EpNEq =0.

En effet, par I’absurde : si cette intersection était non
vide, il existerait un sous-ensemble A C E tel que
Card(A) = p et Card(A) = ¢, ce qui est absurde.
D’apres le cours, nous savons que le nombre de sous-
ensemble de E & p éléments est :

Card(Ep) = (Z)

Enfin, comme un sous-ensemble de F peut contenir
soit 0, soit 1, ..., soit n éléments (autrement dit, les

CHAPITRE 2. DENOMBREMENT

ensembles E, pour p € {0;1;...;n} définissent une
partition de F) on obtient, par principe d’additivité :

Card(P(E)) = Card( O Ep)

p=0

= Card(E,)
p=0

_EZ:(Z)_

e Maintenant démontrons que le cardinal de P(E) est
égal & 2™. Pour cela, on prouve que P(E) est de méme
cardinal que ’ensemble :

{0;1}" = {0;1} x {0;1} x --- x {0;1}.
Cet ensemble est ’ensemble de tous les n-uplets avec

les nombres 0 ou 1. Ecrivons que E = {z1;...;2,}. A
chaque sous-ensemble A C E, on associe le n-uplet :
sizp € A

(a1;...5an) avec { si g & A

Par ce procédé, a tout sous-ensemble A C FE on fait
correspondre un n-uplet de {0; 1}. Réciproquement, &
tout n-uplet de {0;1}, on fait correspondre un unique
ensemble A composé des xj tels que ap = 1. Ainsi,
compter le nombre de sous-ensembles de E revient a
compter le nombre de n-uplets de {0;1}. D’aprés le
principe multiplicatif, on en déduit que :

Card(P(E)) = Card ({0;1}")
=2,

ap =1
ap =0

Exercice 12. On donne juste les résultats. Faisons juste
remarquer que A X B n’est en général pas égal & B x A.
1. AUB =1{1;2;3;4}

ANB= gl; 2%

Ax B={(1,1);(1,2); (1,4); (2,1);

Bx A= (1,3 R 332G

(2,2);(2,3); (4,1); (4,2); (4,3)}

2. AUB ={a;b;e;0}

ANB=10

Ax B ={(a,¢);(a,0); (b,e); (b,9)}

B x A={(g,a); (e, 0); (,a); (5,b) }

Exercice 13.

1. Un arrangement de deux éléments de A consiste a
choisir deux éléments distincts et a les ordonner. Nous
savons qu’il y en a :

4! 4!
42 = T
Les voici :
(1;2) (1;3) (1;4)
(2;1) (2;3) (2;4)
(3;1) (3;2) (3;4)
(45 1) (4;2) (453).



