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CHAPITRE 1

Algebre

Dans tout ce chapitre, K désigne R ou C.

1. Définitions a connaitre

Dans cette section, on rappelle quelques définitions qui serviront a traiter les exercices sui-
vants. On fixe £ un K-espace vectoriel.

1.1. Définition. Soit u € Z(E). On appelle commutant de u I’ensemble
Cluy={ve Z(E)|uov=vou}.
On peut définir la méme notion avec les matrices, et on conserve la méme notation.

1.2. Définition. Soit u un endomorphisme de E. On dit que u est diagonalisable si et seulement
s’il existe une base de E composée de vecteurs propres de u.

On rappelle cette définition, puisque le programme traite généralement la diagonalisation
dans des espaces vectoriels de dimension finie. On passe alors par les endomorphismes, puisqu’on
se limiterait en considérant seulement des matrices.

1.3. Définition. Soit (u;);c; une famille d’endomorphismes de E. On dit que la famille (u;);cr
est codiagonalisable si et seulement s’il existe une base de E composée de vecteurs propres com-
muns a tous les (u;)icr.

Fixons désormais n € N*, et reformulons les définitions précédentes en termes de matrices.

1.4. Définition. Soit (4;)ics une famille de matrices de M,,(K). On dit que la famille (A;);ecr
est codiagonalisable dans My, (K) si et seulement s’il existe P € GLy,(K) telle que

PA;P~1 est diagonale pour tout i € I.

On peut faire de méme avec la trigonalisation, puisque nous travaillons en dimension finie.

1.5. Définition. Soit (4;)icsr une famille de matrices de M,,(K). On dit que la famille (A;);ecr
est cotrigonalisable dans M, (K) si et seulement s’il existe P € GL,,(K) telle que

PA; P~ est triangulaire supérieure pour tout i € I.

Lorsque E est de dimension finie, cette définition s’applique aux endomorphismes en consi-
dérant une base dans laquelle les matrices associées aux endomorphismes sont triangulaires su-
périeures. Le lecteur pourra se convaincre que les définitions en termes d’endomorphismes et de
matrices sont bien équivalentes. Dans la définition suivante, on prend n > 2.

1.6. Définition. Soit A € M, (C). Pour tous i,j € [1,n], on note A; ; la matrice de M,,(C)
formée en enlevant la i-éme ligne et la j-éme colonne de A. On appelle comatrice de A, et on
note com(A), la matrice de M,,(C) telle que

[com(A)];; = (—1)""7 det(A;;), pour tousi,j € [1,n].
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On sait alors que par développement d’'un déterminant sur les colonnes ou sur les lignes, on
a pour tous A € M, (K), et 4,5 € [1,n],

det(A Z a; glcom(A)]; et det(A4 Z ak,j[com(A)],;

Avant d’aborder ces exercices, on conseille au lecteur de se familiariser avec les trois derniers
chapitres de la partie 2. En particulier, les deux premiers exercices demandent de connaitre les
notions abordées dans le chapitre 24 (p. 413).

2. Algebre générale
Exercice 1

Soient (A, 4+, X) un anneau et z,y € A. Montrer que si 14 —xy est inversible, alors 14 — yx aussi.

Exercice 2
Soient E un K-espace vectoriel de dimension finie et G un sous-groupe de cardinal fini de GL(E).

On pose
p= g.
|G\ >

geG

1. Montrer que p est un projecteur de E.
2. En déduire que

ﬂ ker(g —id) = Im(p) et dim( ﬂ ker(g — > Il Z tr(g

geG geG geqG

3. Polynémes
Exercice 3
Soient P, @ € R[X] scindés. On écrit Q@ = >_;'_, b X*, o n € N*.
1. Montrer que pour tout a € R, P’ 4+ aP est scindé ou constant sur R.
2. En déduire que Y}, by, P est scindé ou constant sur R.

Exercice 4
Déterminer I'ensemble des polynémes P € C[X] tels que P(X?) = P(X)P(X —1).

Exercice 5
Soit P € R[X] tel que P(x) > 0, pour tout x € R. Montrer qu’il existe A, B € R[X] tels que

P =A%+ B>

Exercice 6
On dit qu’un polynéme de C[X] est pair (resp. impair) si et seulement s’il est combinaison linéaire
de mondmes de degré pair (resp. impair). Soit P € C[X] tel que P(X? +1) = (P(X))? + 1.
1. Montrer que P est pair ou impair.
2. Montrer que si P est impair, alors P(X) = X.
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3. En déduire que si P est non constant, il existe n € N tel que

P(X)=(X?+1)o---0(X%+1).

n fois

Exercice 7
Soit P € C[X]. Onnote U={ze€ C| |z| =1}.
1. Montrer que P(C) = C.

2. Soit A une partie de C. Donner une condition nécessaire et suffisante sur P pour que
P(A) C A dans les cas suivants :

(a) A=R. (b) A=Q. (c) A=1Z.

3. On suppose P non constant, on note d son degré, et on suppose que P(U) C U. Calculer de
deux manieres différentes :

2m )
/ P(e?)P(ei)e 4.
0

4. En déduire I’ensemble des polynémes @ € C[X] tels que Q(U) C U.

4. Algebre linéaire

Exercice 8
Soient E, F' et G trois K-espaces vectoriels de dimension finie.
1. Soient f € L (E,F) et g € Z(E,G). Donner une condition nécessaire et suffisante sur f et
g pour qu’il existe h € Z(F,G) telle que g = ho f.
2. Soient g € Z(E,G) et h € Z(F,G). Donner une condition nécessaire et suffisante sur g et
h pour qu’il existe f € Z(E, F) telle que g = ho f.

Exercice 9
Soient E un K-espace vectoriel de dimension finie et u € Z(E). On pose

N = U ker(u) et J= ﬂ Im(u").

keN keN

1. Montrer que la suite (ker(u*))zen est stationnaire.
2. Montrer que N et J sont des sous-espaces vectoriels de E, stables par u et supplémentaires.

Exercice 10
Soient n € N* et E' un R-espace vectoriel de dimension n. Pour tout u € Z(FE), on dit que u est
cyclique si et seulement §'il existe xg € E tel que (zg,u(z0),...,u" (z0)) est une base de E.
Soit u € Z(E).
1. Montrer que si u est nilpotent d’indice n, alors u est cyclique.
2. Montrer que si u admet n valeurs propres distinctes, alors w est cyclique.
3. On suppose que u est cyclique. Montrer que le commutant de u est R,,_1[u].

Exercice 11
Soit n > 2. Montrer que tout hyperplan de M,,(K) contient une matrice inversible.
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Exercice 12
Soient n € N*, et A, B € M, (R). On suppose que A et B sont semblables dans M,,(C). On se
donne ainsi une matrice P € GL,,(C) telle que

A=PBP L.

On écrit P = R+ iJ, avec R = Re(P) et J = Im(P) des matrices & coefficients réels.
1. Montrer qu’il existe ¢t € R tel que R+ tJ € GL,(R).
2. En déduire que A et B sont semblables dans M., (R).

Exercice 13
Soient E un R-espace vectoriel de dimension finie, et p, ¢, des projecteurs de E. On suppose
que p + \/§q + \/gr est un projecteur. Montrer que ¢ et r sont nuls.

Exercice 14
Soient F un K-espace vectoriel et f € Z(F). On suppose que pour tout z € E, (x, f(x)) est liée.
Montrer que f est une homothétie.

Exercice 15
Montrer qu'une matrice de trace nulle est semblable & une matrice a coefficients diagonaux nuls.

5. Déterminant

Exercice 16
Soient n > 2 et A € M, (C).
1. Montrer que Acom(A4)T = com(A)TA = det(A)I,.
2. Donner le rang de com(A) en fonction de celui de A.
3. Montrer qu'il existe P € C[X] tel que P(A) = com(A)T.
Exercice 17
Soient n € N*, et A, B,C,D € M,(C). On suppose que AB = BA. Montrer que
A B
‘0 D‘ = det(DA — CB).

Exercice 18
Soient n € N* et A, B € M,,(R) commutant. Montrer que det(A4% + B?) > 0.

6. Réduction

Exercice 19
Soient n € N* et A € M,,(C).

1. Montrer que A est limite d’une suite de matrices diagonalisables de M, (C).
2. En déduire une preuve du théoréme de Cayley-Hamilton.

Exercice 20
Soient n € N*, et A, B € M,,(C). Montrer que

xa=xB < VkeN, tr(A*)=tr(B").
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Exercice 21
Soient n € N*, P € C[X] non constant et A € M,,(C). On cherche & résoudre 1’équation

P(M)=A, dinconnue M € M, (C).

1. Montrer que si A est diagonalisable, I’équation admet toujours une solution.
2. Que dire si A n’est pas diagonalisable 7
3. Discuter I'équation dans le cas ot n = 2 et P(X) = X2,

Exercice 22
On pose A = (11). Résoudre I'équation M? + M = A, d’'inconnue M € My(R).

Exercice 23
Soit E un K-espace vectoriel.
1. Soient u et v deux endomorphismes de F.
(a) On suppose que u et v commutent. Montrer que les espaces propres de u sont stables
par v.
(b) On suppose que u est diagonalisable, et que v stabilise les espaces propres de u. Montrer
que u et v commutent.
2. En déduire que si (u;);er est une famille codiagonalisable d’endomorphismes de E, alors
c’est une famille d’endomorphismes diagonalisables commutant deux a deux.
3. On se propose de montrer deux réciproques partielles. Soit (u;);e; une famille d’endomor-
phismes de E diagonalisables et commutant deux & deux.
(a) Montrer que si I est fini, (u;);er est codiagonalisable.
(b) En déduire que si E est de dimension finie, (u;);er est codiagonalisable.

Exercice 24
Soient n € N* et A, B € M,,(C). On définit ’endomorphisme u € £ (M, (C)) par

u(M)=AM — MB, pour tout M € M, (C).

1. Montrer que si o € Sp(A) et 8 € Sp(B), alors a — 8 € Sp(u).

2. Soient A € Sp(u) et M € M, (C) un vecteur propre associé.
(a) Montrer que pour tout P € C[X], P(A)M = MP(B + \I,,).
(b) En déduire qu’il existe o € Sp(A) et 5 € Sp(B) tels que A = a — 8.

3. En déduire Sp(u).

4. Donner une condition nécessaire et suffisante sur A et B pour qu’il existe une matrice
M € M,,(C) non nulle telle que AM = MB.

Exercice 25
Soient n € N* et A € M,,(C). Pour tout ¢ € [1,n], on pose

|z = aii| < Z|am’|}~

D, = {ZE(C
J#i

1. Montrer que Sp(A4) C Ui, D;.
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2. On suppose que A est a diagonale strictement dominante, i.e.

Vie[l,n], lai|> Z|ai,j|-

J#i
Montrer que A est inversible.

Exercice 26
Soit n € N*. Pour tout A € M,,(C), on dit que A est une matrice stochastique si et seulement
si ses coefficients sont tous positifs et

Vie[ln], Y ai;=1
j=1

On note S 'ensemble des matrices stochastiques.

1. Montrer que S est un ensemble convexe, compact et stable par produit.

2. Montrer que les valeurs propres d’une matrice stochastique ont un module inférieur ou égal
al.

3. Soit A € S ayant tous ses coefficients strictement positifs. On note B la matrice de M,,_1(C)
formée en enlevant la derniére colonne et la derniére ligne de A.
(a) Montrer que B — I,,_1 est a diagonale strictement dominante.
(b) En déduire que dim(ker(A — I,)) = 1.
(¢) Montrer que 1 est la seule valeur propre de A de module 1.

Exercice 27

Soit n € N*. Pour tout A € M,,(C), on dit que A est une matrice circulante si et seulement s’il
existe ag,...,ap—1 € C tels que

ag ay T an—1
Gn—1 ag o Ap—2
A =
ay o Op-1 ago

On note %,, 'ensemble des matrices circulantes.
1. Montrer qu’il existe J € M,,(C), qu’on déterminera, telle que €, = C[J].
2. Exprimer les éléments propres de J.
3. Pour tout P € C[X], calculer det(P(J)).
4

. Soit p € N*. On pose P = ZZ;(l) X*. Donner une condition nécessaire et suffisante sur p
pour que P(J) soit inversible.

Exercice 28
Soit n € N*. Pour tout A € M, (R), on dit que A est & diagonale propre si et seulement si ses
valeurs propres sont réelles, et que ses éléments diagonaux sont ses valeurs propres comptées avec
leurs multiplicités. On note &, ’ensemble des matrices a diagonale propre.
1. Montrer que toute matrice de M,,(R) est la somme de deux matrices de &,.
2. Caractériser &.
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3. Déterminer les matrices antisymétriques réelles a diagonale propre.

4. Soit A € S, (R).

(a) On note Ay, ..., A\, les valeurs propres de A. Montrer que
n
2 2
> al = N
1<i,j<n i=1

(b) En déduire 'ensemble des matrices symétriques réelles a diagonale propre.

.................................... Q Indications s e st e e e esre e s e e s eene s

Exercice 1 :
Penser aux séries enticres, et au développement de (1 —t)™1 pour |t| < 1.

Exercice 3
Q1 : Considérer, pour a € R, x — P(x)e® et utiliser le théoréme de Rolle.

Exercice 5 :
Montrer que toute racine de P est de multiplicité paire.

Exercice 6 :
Q3 : Montrer que si P est pair, il existe Q € C[X] tel que P(X) = Q(X?%+1), puis procéder par
récurrence.

Exercice 7 :
Q2 (c) : Pour n € N, considérer le polynome Hy,(X) = 5 X(X —1)--- (X —n+ 1), et montrer
qu’il vérifie H,(Z) C Z.
Q4 : Montrer que ce sont les polynomes de la forme aX™, ot a € U et m € N.

Exercice 10 :
Q3 : Pourv € C(u), montrer que v coincide avec un polynéme en u sur la base (xo, ..., u" 1 (xg)).

Exercice 11 :
Raisonner par labsurde, et montrer qu’un tel hyperplan contiendrait alors toutes les matrices
nilpotentes.

Exercice 15 :
Procéder par récurrence et distinguer le cas ot la matrice est un multiple de l’identité. Dans les
autres cas, utiliser le résultat de lexercice précédent, donnant que si A € M,,(C) n’est pas une
homothétie, il existe un vecteur X tel que (X, AX) est libre.

Exercice 16 :
Se reporter a la définition de la comatrice donnée en début de chapitre.

Exercice 17 :
Montrer d’abord le résultat dans la cas ou A est inversible.

Exercice 22 :
Utiliser le théoréeme de Cayley-Hamilton, et passer par la trace et le déterminant.
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Exercice 24 :
Q2 (b) : Appliquer la question précédente a x a.

Exercice 25 :
Q1 : Pour A\ € Sp(A), prendre X un vecteur propre associé, et considérer i € [1,n] tel que
2] = (| X]|oo-

Exercice 26 :
Q1 : Pour une partie d’un espace de dimension finie, étre compacte est équivalent a étre fermée
et bornée. Se reporter au chapitre 23 (p. 391) pour plus de détails.
Q3 (a) : Voir Uexercice précédent pour la définition.

Exercice 27 :
Q2 : Pour k € [0,n — 1], considérer Xj, = (1wk -+ (WF)" DT onw = et .

Exercice 28 :
Q3 : Considérer AAT.
Q4 (a) : Calculer tr(A2).

............................ 8 Corrigésdesexercices e e s s s s s e e s s e s s s e s s s s s s s s s
Exercice 1

On suppose que 14 — xy est inversible, et on note z son inverse. Alors
(1a —yz)(1a +yza) = 1o + yza — yzr — yayza.

Or,
yryze = —y(la — zy)ze + yze = —yx + yzx.

On en déduit que
(1a —yx)(1a +yzx) = 14.

De méme, (14 + yzz)(1la —yx) = 14. Donc 14 — yx est inversible. O

Remarques \

Comment intuiter une telle formule ? On sait que pour tout ¢t € |—1,1],

+oo
1=t => 1"
n=0

On peut donc proposer le raisonnement suivant

+oo “+oo
(la—yx) ' =D ()" =la+y > (ay)" -z =1a+y(la—zy) o
n=0 n=0

Il reste ensuite a vérifier si cette formule convient. Evidemment, ce qu’on vient d’écrire
n’est pas correct. Il faudrait définir les séries dans un anneau, puis la convergence de
celles-ci, et le cas précédent ne s’appliquera peut-étre méme pas. Cependant, cette idée
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est a conserver pour d’autres exercices. En effet, dans le cas d'un exercice du chapitre 24
(p. 413), si a € A est nilpotent, on avait bien

(14 —a)” Za

puisque la somme est alors finie.

Exercice 2

e 1. Soit g € G. L’application h € G+ go h est une bijection de G dans G, d’inverse donné par
h € G+ g~toh. Ainsi, G = go G. Alors,

gop= |G|Zgoh Zh P
heG hEgoG

On en déduit que

p0p=L290p Zp p.
G127~ g

geG
Donc p est un projecteur de E.
® 2. (Q) Soit z € [, ker(g —id). Alors

ple) |G|g§9 |G|g;f‘””

Donc z € Im(p).
Soit z € Im(p). Pour tout g € G,

9(x) = g(p(x)) = (g o p)(z) = p(x) = =,

avec la question précédente. Donc z € ker(g — id). On en déduit que

ﬂ ker(g —id) = Im(p).

geG

Comme FE est de dimension finie, on passe a la dimension,

- d)) =rg(p) = tr(p) |G\ Z tr(g O

geG

Remarques

Dans la deuxiéme question, on a utilisé implicitement que rg(p) = tr(p). En effet, en
dimension finie le rang d’un projecteur est égal a sa trace. Pour le montrer, on considere
la décomposition ker(p) ® Im(p) = F, sachant que Im(p) = ker(p — id). Ainsi, la matrice
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représentative de p dans une base de E est semblable & une matrice de la forme

Irg(p) 0
0 0/

La trace et le rang étant un invariant de similitude, on en déduit que rg(p) = tr(p). Une
application de ce résultat, qu’on peut retrouver formulée telle quelle dans un exercice
d’oral, est : étant donné A € M,,(R) et p € N* tels que AP = I,,, montrer que

dim(ker(A — I,,)) = % > tr(Ab).
k=0

En supposant que p est 'entier non nul minimal tel que AP = I,,, alors H = {A* | k € N}
est un sous-groupe de GL,,(R) de cardinal p. Et on a évidemment que pour tout k € N,

ker(A —1I,,) C ker(A* — 1),

ce qui suffit & conclure. Dans le cas ou p n’est pas minimal, on peut I’écrire p = ¢r, avec
q > 2 et ou r est entier non nul minimal tel que A” = I,,. En réarrangeant la somme, on
trouve alors le résultat.

Exercice 3
e 1. Soit a € R. On définit f: R — R par
f(x) = P(x)e*™, pour tout = € R.

On note a1 < --- < a, les racines de P, de multiplicités my,...,m,, ou r € N*. On sait alors
que P’ + aP a au moins

(ma—1) 4+ + (my — 1) = deg(P) =
racines réelles comptées avec multiplicité, que sont aq,...,a,. Soit k € [0, —1]. On a

flar) =0 = flars).

Or f est dérivable sur |ay, a1 et continue sur [ag,ar4+1]. D’apres le théoréme de Rolle, on
dispose de by € Jag, axt1] tel que f'(bx) = 0. Or

£ (br) = (P'(b) + aP(by))e".

Donc (P’ + aP)(bg) = 0. Ce qui apporte r — 1 racines réelles supplémentaires, et monte le total
a deg(P) — 1. Si a = 0, cela montre déja que P’ 4+ aP est scindé ou constant. Sinon, supposons
que a > 0. Alors
lim f(z)=0,
Tr—r—00
par croissances comparées. f n’étant pas constante sur |—oo, b1}, on dispose de x1 € |—00, by] tel
que f(z1) # 0. Et on suppose que f(z1) > 0, par symétrie. Comme f tend vers 0 en —oo, on
dispose de A < b; tel que
f(z1)

Ve < A, f(z)< 3
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Par théoreme des valeurs intermédiaires sur [A,x1] et [x1,b1], on dispose de x5 € A, z1[ et
x3 € Jx1, b1 tels que
f(z1)

flaz) = =5 = f(za).

On peut donc appliquer le théoréme de Rolle & f sur |xs, z3[, et obtenir une nouvelle racine de
P’ + aP. Ainsi P’ + aP est scindé sur R. On fait de méme en +oo si a < 0. D’otu le résultat.
e 2. () étant scindé sur R, on ’écrit

n

Q(X):H(X—ri), oury,...,m, €R.
i=1

On note D l'opérateur de dérivation sur R[X]. On a

S 0P® = )(P) = (T[(D — riid)) (P) = [[(P' ~ r:P).
k=0

i=1 =1

Ce qui montre le caractere scindé ou constant comme produit de polynoémes scindés ou constants
d’apres la question précédente. O

Remarques 5

La premiere question est particulierement difficile, car il faut penser a introduire la bonne
fonction afin d’appliquer le théoréme de Rolle. Cependant, P’ + aP peut faire penser &
une équation différentielle, dont la solution est x +— e~%*. On peut ainsi faire apparaitre
une « dérivée exacte » en multipliant par x — e®®. La seconde question s’en déduit alors
aisément.

Exercice 4

ANALYSE : Soit P € C[X] un tel polynome. Si P est constant, on remarque que P =0 ou P = 1.
Sinon, soit 7 € C une racine de P. Alors P(r?) = P(r)P(r — 1) = 0. Donc 72 est racine de P. On
montre alors par récurrence que r2° est racine de P pour tout n € N*. Comme P a un nombre
fini de racines, on a nécessairement

r® =r®, pour certains m # n,
ce qui montre que r = 0 ou 7 est une racine de I'unité. Si 0 est racine de P, on a
P(1)=P(1)P(0) =0, puis P(4)=P(2)P(1)=0.

Donc 4 est racine de P, mais n’est ni nul ni une racine de 'unité. Donc 0 n’est pas racine de P.
Ainsi, on écrit r = €, avec § € [-, x[. Or,

P((r+1)2)=P(r+1)P(r+1—1)=P(r+1)P(r) =0,

donc (r+1)? est une racine de P, et aussi une racine de 1'unité en faisant le méme raisonnement.
En particulier, |r + 1| = 1. D’ou,

I=|r+12 =1+ (1+e ") =2+ 2cos(h).
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Ainsi, cos(0) = f%. Ce qui donne § = :I:%“. On pose j = ¢'% . Le raisonnement précédent montre
que les racines de P ne peuvent étre que j ou j2. On écrit alors

P(X) = MNX = )X = 5°)°,
avec A # 0 et a,b € N. On a d’une part,
P(X2) = A(X? = j)* (X% = j2)"

= MXZ =X - 52"

= AX = 7)"(X +5%)"(X = )X +5)",
car j* = j, et d’autre part,

P(X)P(X —1) = (X
=\ (X

— )X =X -1 =) X -1 =47

—3)"(X =X + 5" (X + )",

en exploitant que 1+ j + j2 = 0. Par identification des deux polynémes, on en déduit que A = 1
et a = b. Ainsi,

P(X) = (X —j)"(X - j*)".
SYNTHESE : La réciproque se fait en reprenant le calcul ci-dessus. De plus,
(X —DNX =) =X (+)X +°=X>+ X +1,
ce qui permet de simplifier I’ensemble des solutions en
S={0}U{(X*+X +1)*|aeN}L O

Remarques 5

En général, les équations sur les polyndémes s’abordent de la méme maniere : on détermine
les polynoémes constants solutions, on examine la cohérence du degré sur 1’équation, puis
on restreint ’ensemble des racines. Par exemple, considérons un polynéme P € C[X] tel
que

P(X®) =P(X +1)P(X —1).
Alors, si P est constant, P est égal a 0 ou 1. S’il n’est pas constant, on a
3deg(P) = deg(P(X?)) = deg(P(X +1)P(X — 1)) = 2deg(P),
donc deg(P) = 0. Ce qui conclut. Mais on peut rendre 'hypothése plus complexe avec
P(X?)=XP(X +1)P(X - 1),

qui montrera que P est nécessairement nul ou de degré 1, puis on résout un systéme.
Pour déterminer les racines dans cet exercice, on aurait aussi pu aborder une approche
géométrique. En effet, si r € C vérifie

[r+1f=1=r,
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cela signifie que r est situé sur le cercle de centre —1 et de rayon 1, et aussi sur le cercle
de centre 0 et de rayon 1. On identifie deux solutions qui sont bien j et j2.

Exercice 5

Supposons que P admette une racine réelle r. Alors, on écrit
P(X) = (X —n)"Q(X),

ot m est la multiplicité de r dans P et @ est un polynoéme réel tel que Q(r) # 0. Par continuité
de @ sur R, on dispose de € > 0 tel que @ est de signe constant sur [r — &,r 4 ¢]. Alors,

P(r+e)=emQ(r+¢) >0, et Plr—e) =(-1)""Qr—¢)>0.
Or Q(r +¢) et Q(r — ) sont de méme signe, donc (—1)"™ =1, et m est pair. On note donc

n

k
P(X) =[x =r)? (X —2)(X — =),

i=1 i=1
oury,....,Tn ER, 21,..., 2 € R, et n, k € N. On définit
n k
QX)=J[(x=r)* et RX)=][(X-z).
i=1 i=1
R € C[X], et on peut l’écrire R = A+ iB, ou A, B € R[X]. Ainsi,
P=Q?RR=Q*(A+iB)(A—iB) = Q*(A* + B?) = (QA)* + (QB)?,

avec QA, QB € R[X]. D’ou le résultat. a

Remarques

L’astuce de faire apparaitre le conjugué du polynéme peut étre utilisé pour montrer que
toute matrice complexe A est annulée par un polyndéme a coefficients réels. 1l suffit en
effet de considérer x4 - Xa.

Exercice 6
e 1. L’équation donne que
(P(-X))*+1=P(X?+1)=(P(X))*+1, donc (P(X)+P(—X))(P(X)—-P(-X))=0.

Le produit de polynémes étant intégre, on a P(X) = P(—X) ou P(X) = —P(—X). Dans le
premier cas, on montre par identification des coeflficients que P est pair, et dans le second cas
que P est impair.

e 2. On suppose que P est impair. On définit la suite (z,) par zo = 0, puis

Tpt1 = x% + 1, pour tout n € N.
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Comme P est impair, P(0) = 0. Or, pour tout n € N,
P(2n41) = Py +1) = (P(a,))* + 1.

On en déduit par récurrence immédiate que P(x,) = x,. Or, pour n € N,

9 1 ( 1)2 n 3 S 3
x —Ty, =2, - =(xn— = ->—.
n+1 n n n n 2 4= 4
En sommant on obtient que
n—1 3n
Ty = ;(Ik_t,_l — Qik) > Z n~>—+o>o +00.

En particulier, {z,, | n € N} est infini et tous ses éléments sont racines du polynéme P(X) — X,
qui est alors le polynoéme nul. D’ou P(X) = X.

e 3. Pour tout n € N, on pose H,, : pour tout @ € C[X] non constant tel que deg(Q) < 2™ et
Q(X%2+1)=(Q(X))?+1, il existe k € N tel que

QX)=(X? +1o---0(X%2+1).

k fois

INITIALISATION : Soit @ € C[X] non constant vérifiant I’équation, et avec deg(Q) < 1. Alors @
est de degré 1. Or @ est pair ou impair, et si par 'absurde ) était pair, alors il serait constant
ou au moins de degré 2. Ainsi @ est impair, et donc Q(X) = X. Hy est vraie.

HEREDITE : Soit n € N. On suppose H,. Soit Q@ € C[X] non constant vérifiant 1’équation, et
avec deg(Q) < 2"*1. Si deg(Q) < 27, on peut appliquer H,,. Sinon, @ est nécessairement pair,
car X est de degré inférieur a 2”. On peut donc écrire, avec le binéme de Newton,

:iaiXZi:iai(X2 1-1)° iZ() DI(X% 4+ 1) = R(X? + 1),
=0 =0 1=0 j=0

oum € N* ag,...,a, € Ret R € C[X]. On a alors, pour tout x € R,
(R(z®*+ 1)’ +1=(Q(2))*+1=Q(2* +1) = R((2* + 1)> + 1).
Pour tout y > 1, on peut écrire y = 22 + 1, ou z € R. D’out
(Ry)?+1=(R(z*+1)*+1=R((z*+1)>+1) = R(y* + 1).

Ainsi, les polynomes (R(X))%2+ 1 et R(X2+ 1) coincident sur une partie infinie de R, donc sont
égaux. Or,
2" > deg(Q) = deg(R(X? + 1)) = 2deg(R).

On en déduit que deg(R) < 2". Par hypothése de récurrence, on dispose de k € N tel que
R(X)=(X?+1)o---0(X?>+1).

k fois

Ainsi,
QX)=R(X*+1)=(X*+1o---0(X?+1).
k+1 fois

D’ou H,,41. Ce qui achéve la récurrence et montre le résultat. O
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Remarques

Dans cet exercice, on détermine le commutant de X2 + 1, puisque

C(X?+1)={PcC[X]| P(X?+1)=(P(X))?+1}.

On montre alors qu’a part les polynomes constants, ce sont les itérés de X2 + 1. Pour les
polynéme constants, il suffit de résoudre

z=22+1, d’inconnue z € C,

qui admet deux solutions. Cet exercice n’est pas évident, car les questions 1 et 2 sont
astucieuses, et la question 3 demande un peu d’intuition. S’il fallait retenir quelque chose
de cet exercice, c’est de bien exploiter le fait que deux polyndmes coincidant sur une
partie infinie sont égaux.

Exercice 7

e 1. Soit z € C. D’apreés le théoréme de d’Alembert-Gauss, le polynéme P(X) — z admet une
racine dans C. On note & € C I'une d’entre elles. Alors z = P(z) € P(C). D’ou P(C) = C, l'autre
inclusion étant évidente.

e 2. (a) On suppose que P(R) C R. On écrit P(X) = Y__,ax X", otn € Net ot ag, ..., a,
sont des complexes. Alors, pour tout x € R,

Zakxk = P(z) = P(x) = Z@xk,
k=0

k=0

car z est réel et P(x) aussi. On en déduit que ay = @i, pour tout k € [0,n], i.e. P € R[X].
Réciproquement si P € R[X], alors P(R) C R.

(b) On suppose que P(Q) C Q. Si P est constant, alors P € Q[X]. Sinon, on note n € N*
son degré. D’apres le théoréeme d’interpolation de Lagrange (p. 436), on a

P(X) = Z

N~

(i) T1 )j(__z € Q[X).
@ %

€Q[X]

Ainsi, P € Q[X].
Réciproquement si P € Q[X], alors P(Q) C Q.
(c) Pour tout n € N*, on définit

1

Ho(X) = —X(X = 1)+ (X —n+1),

et Ho(X) = 1. Soit n € N. Montrons que H,(Z) C Z. Si n = 0, c’est évident. Sinon, soit k € Z.
On a
K= 1) (k= (n— 1))

n!

H, (k) =
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* Si k > n, alors

H,(k) = (kk?'l),n' = (S) € Z. (1)

H,(k)=0¢Z.

« Sikelo,n—1],

* Si k <0, alors
Zn—k=1n—-k—-2)---(n—k—n)
n!

B n  (n—k—1)
= (=1 (n—k—1-n)n!

- (-1)”("51> € Z.

Dans tous les cas, Hy, (k) € Z. Donc H,,(Z) C Z. De plus, la famille (H,,)nen est a degré échelonné,
donc forme une base de C[X].

On suppose que P(Z) C Z. Supposons P non constant. On note n € N* son degré. (Hy)ren
étant une base de C[X], on dispose de ay, ..., a, € C tels que

n
X)= Zaka(X
k=0

Pour tout k € [0,n], on pose P, : « ag,...,ax € Z ».
INITIALISATION : ag = P(0) € Z, donc Py est vraie.
HEREDITE : Soit &k € [0,n — 1]. On suppose Pj. Alors,

k
Pk+1) = Zal (k+1) = g1 Hypr (k+ 1) + > a;Hi(k +1).
=0

Or, He1(B+1) = (’Zi}) =1, avec (1). Donc

ki1 = P(k+1) Zal (k+1) €Z,

comme somme et produits d’entiers, avec Py, et I’ hypothese sur P. D’out Piy1. Ce qui acheve la
récurrence. On en déduit que

Pe{agHo+ -+ apHp | k€N, ag,...,ar € Z}.

Si P est constant, il est constant a un entier, donc appartient a I’ensemble ci-dessus.
Réciproquement si P appartient & I’ensemble ci-dessus, alors P(Z) C Z.

e 3. Notons I la quantité a calculer. On écrit P(X) = EZ:O ar X" avec ag, . .., aq des complexes.
D’une part,
2r d d
I— / Z apet . Zme—ile e—id9 49
1=0

2
= > akal/ exp(i(k — 1 — d)8) d6.

0<k,l<d
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27 )
/ e dg = 0.
0

Et, on a pour tous k,l € [0,d], k — [ = d si et seulement si k = d et I = 0. On en déduit que

Or, pour tout n € Z*,

2w
I= ad(TO/ =D 49 = 27 a ag.
0
D’autre part, P(U) C U, donc
27 ) ) 27 )
= / |P(ei?)[2e~ 10 dg = / e~i0 g9 — 0,
0 0

On en déduit que aqag = 0, et comme P est de degré d, aqg # 0. Dot ag = 0, i.e. P(0) =0.

e 4. ANALYSE : Soit @ € C[X] tel que Q(U) C U. Déja, @ # 0, car 0 ¢ U. On note m la
multiplicité de 0 comme racine de @ (qui peut étre nulle). On dispose ainsi de R € C[X] tel que

Q(X) = X"R(X), ol R(0)#0.

Soit z € U. Alors,
|R(z)| = |2 R(2)| = |Q(z)| = 1.

Ainsi, R(U) C U. Si R n’était pas constant, la question précédente montrerait que R(0) = 0, ce
qui est absurde. Ainsi R est constant, et on a

Q(X)=aX™, ouacC.

Ensuite, a = Q(1) € U.

SYNTHESE : Réciproquement, soient a € U et m € N. On pose Q(X) = aX™. On a pour tout
z €U,

Q=) = la - |2[™ = 1.
Donc Q(U) € U. On peut conclure que

S={aX"™|aecU, meN}. O

Remarques

On aurait pu utiliser la méme approche fondée sur les polynémes de Lagrange pour les
questions 2 (a) et 2 (b), et méme la généraliser. En effet, si on prend L un sous-corps de
C, et P € C[X] tel que P(L) C L, alors on peut écrire

Tj— T
i=0 j=0""7 ¢
€l G
€L[X]
oun € Net zq,...,x, sont des éléments distincts de IL. La question suivante est bien plus

difficile, car on voudrait montrer que seuls les polynémes de Z[X] conviennent. Cependant,
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le polynome

X(X+1)

Quy) = ==

est un exemple simple vérifiant Q(Z) C Z. L’indication aurait pu étre intégrée directement
dans l'exercice, mais sans elle, il y a une possibilité de prise d’autonomie. Si vous n’avez
pas réussi, ce n’est pas grave : souvenez-vous de l'approche a adopter, et réessayez une
autre fois.

Enfin, pour la derniere question, on aurait aussi pu raisonner par récurrence sur le degré
du polynéme en exploitant ’annulation en 0 trouvée en question 3.

Exercice 8

o 1. On suppose qu’il existe h € Z(F,G) telle que g = ho f. Soit = € ker(f), alors
g9(x) = h(f(z)) = h(0F) = Oc,

donc z € ker(g). Dot ker(f) C ker(g).

Supposons que ker(f) C ker(g). Soit (eq,...,ep,) une base de ker(f), qu'on compléte en
(€1,...,€q) une base de ker(g), puis en (eq,...,en) une base de E. Alors (f(ept1),-.., f(em))
est une famille libre de F', qu’on compléte en (v1, ..., vk, f(ept+1);- .., f(em)) une base de F. On
définit h € Z(F,G) sur cette base de F par

h(vj) = 0g,  pour tout j € [1,k],
puis
h(f(e;)) = glej), pour tout j € [p+ 1,m].

Montrons que g et h o f coincide sur (ey,...,€y). Soit j € [1,m].

*x Sii € [1,p], e; € ker(f) C ker(g), et
h(f(ei)) = h(0F) = 0c = g(ei)-

* Siie [p+1,m], alors h(f(e;)) = g(e;) par définition.
Ainsi g = ho f, car ces applications linéaires coincident sur une base de E.
° 2. On suppose qu'’il existe f € Z(E, F) telle que g = ho f. Alors Im(g) C Im(h).
Supposons que Im(g) C Im(h). Soit (e1,...,emn) une base de E. Pour tout j € [1,m],

g(e;) € Im(g) C Im(h), donc on dispose de y; € F tel que h(y;) = g(e;). Alors, on définit
feZ(E,F) sur la base de E ci-dessus par

f(ej) =y;, pour tout j € [1,m].

Ainsi, pour tout j € [1,m],
h(f(e;)) = h(y;) = g(e;).

Ainsi g = h o f, car ces applications linéaires coincident sur une base de F. O
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Remarques

Ce type d’exercice demandant la construction d’une application linéaire ou d’une base
nécessite de la méthode et une bonne compréhension du résultat a démontrer. En plus,
le résultat de la premieére question pourrait étre utilisé dans d’autres oraux. Par ailleurs,
on aurait aussi pu généraliser ce résultat en ne supposant plus les espaces de dimension
finie. Il suffit pour cela d’indexer les bases par des familles d’indices I, J et K ; puisque
le théoréme de la base incomplete reste vrai en dimension quelconque.

Exercice 9

e 1. Pour tout k € N, ker(u¥) C ker(uF*1). Ainsi, la suite (dim(ker(u")))ren est une suite crois-
sante d’entiers positifs, majorée par dim(E), donc converge. Or toute suite d’entiers convergeant
est stationnaire. Ainsi, on dispose de p € N tel que

Yk >p, dim(ker(u*)) = dim(ker(u?)).

Or, pour k > p, ker(u¥) C ker(uP) et on a égalité des dimensions, donc ker(u*) = ker(uP). Ainsi
la suite (ker(u*))ren est stationnaire.

e 2. D’apres la question précédente, on dispose de p € N tel que pour k > p, ker(u*) = ker(uP).
Or, pour tout k € [0,p], ker(u*) C ker(uP). Donc,

N = ker(uP).
Pour tout k > p, d’apres le théoréme du rang appliqué a u¥,

dim(E) = dim(ker(u")) 4 rg(u*) = dim(ker(u?)) + rg(u®).

Le théoréme du rang appliqué a u? montre alors que rg(u®) = rg(u?). Or, Im(u¥) C Im(u?),
donc Im(u”) = Im(u”). De plus, pour tout j € [0,p], Im(u?) C Im(u’). Ainsi

J = ker(uP?).
On en déduit que N et J sont des sous-espaces vectoriels de E. Soit z € N.
u?(u(z)) = u(u”(z)) = u(0g) = 0,

donc u(x) € ker(uP) = N. Ainsi N est stable par u. Soit y € J. On dispose de x € E tel que
uP(z) = y. Alors,
u(y) = w(u(z)) = v’ (u(z)) € Im(u”) = J.

Ainsi J est stable par u. D’apres le théoréeme du rang appliqué a u?,
dim(E) = dim(ker(u”)) + rg(u?) = dim(N) + dim(J).

Montrons que N et J sont en somme directe. Soit y € NN J. y € J, donc on dispose de z € E
tel que y = uP(x). Or,

u* () = u’(y) = Op,

car y € N. Or ker(u?") = ker(uP) par définition de p, donc y = uP(z) = Og. Ainsi N et J sont
en somme directe. Avec 1’égalité des dimensions, on en déduit que N et J sont des sous-espaces
vectoriels de E, stable par u et supplémentaires. O



26 PARTIE 1. EXERCICES CORRIGES

Remarques \

Cet exercice est classique et a savoir traiter rapidement. En particulier, ce résultat montre
que toute matrice non nulle A € M,,(C) (n € N*) est semblable & une matrice de la forme

(0 o)

ou B € GL,(C) et p € N*.

Exercice 10

e 1. On suppose que u est nilpotent d’indice n. En particulier, u” 1 # 02 (). On dispose ainsi
de z € E tel que u"~!(z) # 0. Montrons que B = (z,u(z),...,u""!(z)) est une base de E.
Soient Ag, ..., A1 € R tels que

Aox + ...+ )\n_lunfl(x) =0g.
On suppose par 'absurde qu’il existe i € [0,n — 1] tel que \; # 0. On pose
j=min{k € [0,n — 1] | A\x # 0}.
Ainsi, _
N (x) 4+ .o+ Ay gu"H(2) = 0p.
Or, u™ = 0. (), donc on compose par u™ 177 & gauche, ce qui donne

Aju" ! (z) = 0p,

ce qui est absurde, car u"~!(z) # 0g. Ainsi B est libre et comporte n = dim(F) vecteurs, donc
est une base. D’ou le résultat.

e 2. On suppose que u admet n valeurs propres distinctes. Soit (e, ..., e,) une base de vecteurs
propres de F, associée aux valeurs propres Aq,..., A, toutes distinctes. On pose

r=e;+...+te,.
Par récurrence immédiate, il vient que pour tout k € N,

ub(z) = Ney + ...+ Nee,,.

On pose B = (z,u(x),...,u""1(x)), et on considére des réels ag, ..., a,_1 tels que
n—1 n—1 n n n—1 )
0 = 3 aud(a) = 32 D aikje = 3 (T aiki e
=0 i=0 j=1 j=1 i=0
Par liberté de la famille (eq,...,e,), il vient que pour tout j € [1,n],

n—1
Z az)\; =0.
=0
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En posant
I\ At
1 X gt
V = . )
D WD

on remarque que V(ag...a,—1)T = (0...0)T. Or V est une matrice de Vandermonde inversible,
car les (\;)1<i<n sont tous distincts. On en déduit que ag = - -+ = ap—1 = 0. Ainsi B est libre et
comporte n = dim(FE) vecteurs, donc est une base. D’ou le résultat.

e 3. Comme u est cyclique, on dispose de z € E tel que (z,...,u" !(z)) est une base de E. Soit
v € C(u). v(x) € E, donc on dispose de ag,...,a,—1 € R tels que

v(z) = i apul (z).
k=0
Or, pour tout j € [0,n — 1],
n—1 n—1
oW (1) = ! (v(@) = 3w (W (@) = (D apu ) (u? ().
k=0 k=0

. —1 .. , N
Ainsi, v et Y}, axu® coincident sur une base de E, donc sont égaux. D’ott v € R,_1[u]. La
réciproque étant évidente, on en déduit que

C(u) =Ry—1]u]. O

Remarques 5

On peut aller légerement plus loin dans la derniére question, en donnant la dimension de
C(u). En effet, (id,u,...,u" 1) est une famille génératrice de R,,_1[u], qui est aussi libre.
Pour le montrer, on prend Ag, ..., A,_1 des réels tels que

Xoid + A\u+ ...+ )\n_lu"_l = OE(E)

Alors en évaluant en z et en utilisant que (z,u(x),...,u""1(x)) est une base de E, on en
déduit que les coefficients sont tous nuls. Enfin, on peut établir une bijection entre C(u)
et E avec 'application linéaire v € C(u) + v(x) € E.

Exercice 11

Supposons par l'absurde qu’il existe un hyperplan H C M, (K) ne contenant aucune matrice
inversible. I, € H, donc H @ Vect(l,,) = M, (K). Soit N une matrice nilpotente. On écrit

N=h+ M, avechec H.
Soit X € ker(h) non nul, car h est non inversible. On a NX = hX + AX = AX. En itérant,

0=N"X = \"X,
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donc A =0. Donc N = h € H. Ainsi, H contient toutes les matrices nilpotentes. Or,

0 Onfl 0 Infl _ 0 Infl
(3 %)+ (0 )= ) e ot

Et cette matrice devrait appartenir & H, car elle est somme de matrices nilpotentes, qui sont des
éléments de H. Absurde. D’ou le résultat. O

Exercice 12

e 1. det(R+ X J) est un polynome réel non nul, car ne s’annulant pas en ¢, donc il existe t € R
tel que det(R + tJ) # 0. Ainsi, R+ tJ € GL,(R).

e2. Ona
AR+ 1AJ = AP =PB = RB+iJB.

En identifiant partie réelle et partie imaginaire, on en déduit que AR = RB et AJ = JB. Ainsi,
A(R+tJ) = B(R+tJ), puis
A= (R+tJ)B(R+tJ)™

d’ou le résultat. O

Remarques 5

Ce résultat peut servir a résoudre élégamment certains problémes. Par exemple, considé-
rons n € N* 0 €10,2n[ et A € M, (R) tels que

A% —2cos(0)A+ 1, = 0,.

Alors (X — e)(X — e~%) est un polynéme scindé & racines simples dans C annulant A,
car e #£ e~ Comme A est une matrice & coefficients réels, on en déduit que e et e =%
ont méme multiplicité comme valeur propre de A. Ainsi, on peut diagonaliser A comme

ei@

A=P-diag(9,...,0)- P!, ou0O= (0

0
e_ig) et P S GLn((C)
Ce qui montre par ailleurs que n est nécessairement pair. Posons alors

_ [cos(f) —sin(0) . Y
R(9) = <sin(t9) cos() ) PUIs R, (0) = diag(R(h), ..., R(0)) € M, (C).
Comme R(6) est semblable dans M3(C) & ©, on en déduit que R,,(6) est semblable dans
M, (C) a

diag(®,...,0),

et donc & A par transitivité de la similitude. Maintenant, A et R,,(6) sont deux matrices
a coefficients réels, semblables dans M,,(C), donc elles sont semblables dans M, (R). La
réciproque étant évidente, cela résout 1’équation matricielle proposée. On a ainsi étendu
notre probléme aux nombres complexes, afin de montrer que A agissait comme une rota-
tion d’angle @ sur divers plans de M,, 1(R).
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Exercice 13

La trace d’un projecteur est un entier naturel, comme vu en remarque de ’exercice 2. Ainsi,
tr(p) + vV2tr(q) + V3tr(r) = k € N.
D’ou,
3tr(r)® = (V3tr(r)? = (k — tr(p) — V21r(g)* = (k — t2(p))? — 2V2tr(q) + 2 tr(g)”.

Or /2 est irrationnel, donc nécessairement tr(¢) = 0. Sinon, on pourrait écrire v/2 comme
quotient de deux nombres entiers. Or rg(q) = tr(¢) = 0, d’ott ¢ est nul. Il reste donc

tr(p) + V3tr(r) = k.

Or /3 est irrationnel, donc nécessairement tr(r) = 0, puis 7 est nul. O

Exercice 14

Soit € E non nul. (z, f(x)) est liée et x est non nul, donc on dispose de A € K tel que f(z) = Az.
Soit y € E.

* On suppose que (z,y) est liée. On dispose de a € K tel que y = ax. Ainsi,
fly) =af(z) =arz =y

* On suppose que (x,y) est libre. En particulier, y # 0 et  + y # 0, donc on dispose de
a,b € K tels que

fly)=ay et fla+y) =0b-(z+y)
D’une part,
fle+y) = flx)+ fly) = Az +ay.
D’autre part, f(z +y) = bx + by. D’on

Ax + ay = bx + by.

Par liberté de la famille, b= X et a = b. Donc a = A, et f(y) = Ay.
Dans tous les cas, f(y) = A\y. Donc f est une homothétie. a

Remarques

Cet exercice est un grand classique & maitriser.

Exercice 15

Pour tout n € N*, on pose H, : « Toute matrice A € M,,(C) telle que tr(A) = 0 est semblable
a une matrice dont les coefficients diagonaux sont tous nuls ».

INITIALISATION : La seule matrice de trace nulle de M;(C) est (0), qui est donc bien semblable
a une matrice dont les coefficients diagonaux sont tous nuls. Donc H; est vraie.

HEREDITE : Soit n € N*. On suppose H,,. Soit A € M,,+1(C) telle que tr(A4) = 0. Si A est une
homothétie, il existe A € C tel que A = Al,,11, puis A = 0, car tr(4) = 0. Ce qui prouve le
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résultat dans ce cas. Sinon, on dispose de X € M,,111(C) tel que (X, AX) est libre, d’apres
Pexercice précédent. On complete cette famille en une base B de M,,11,1(C). Dans cette base,

I’action de A s’écrit
0 L
v=(e 5):

ou B e M,(C), L € M;,(C),C € M, 1(C). Comme A et M sont semblables et que tr(A4) = 0,
on sait que tr(M) = 0. Ainsi, tr(B) = 0. Par hypothése de récurrence, B est semblable & une
matrice dont les coefficients diagonaux sont tous nuls, qu’on note B’. On dispose de P € GL,,(C)
tel que B = PB'P~!. Alors,

v ([t 0 0 LP\(1 0
~“\o p)\pPtc B)\0 P1)

Or la matrice du milieu dans le membre de droite posséde tous ses coefficients diagonaux nuls,
et M lui est semblable. Or A et M sont semblables, donc A est semblable & une matrice dont les
coefficients diagonaux sont tous nuls. Ce qui montre H,, et achéve la récurrence. O

Remarques N

Comment penser & introduire la famille (X, AX) ? On essaye de se ramener & une matrice
de taille plus petite, I’idéal serait donc d’avoir un zéro en haut a gauche. Pour cela, on
veut construire une base commencant par (X, AX). Seulement, cette famille n’est pas
toujours libre. En effet, A pourrait étre une homothétie d’apres I'exercice précédent. Une
fois cette difficulté écartée, la suite se fait naturellement.

Exercice 16

e 1. Soient 4,5 € [1,n]. On a
[Acom(A)T];; = Zai,k[com(A)]j,k.

On note B la matrice formée de A en remplagant la j-iéme ligne par la i-éme ligne. Dans ce cas,
le membre de droite est le développement du déterminant de B selon sa j-éme ligne. Cependant,
si ¢ # j, B n’est pas inversible, car possede deux lignes égales. Ainsi,

[Acom(A ” = ZaZ k[com(A Z b; kxlcom(B)];r = det(B) = 0,
k=1
avec le rappel sur la comatrice du début de chapitre. Si i = j,
[Acom(A)T];; = Z a; i [com(A)]; , = det(A),

par développement du déterminant sur la i-eme ligne. On en déduit que
Acom(A)T = det(A)I,

et on fait de méme pour la seconde égalité.
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e 2. Sirg(A) =mn, det(A) # 0, et dans ce cas com(A) est inversible. D’ou
rg(com(A4)) = n.
Sirg(A) = n — 1, par théoréme du rang dim(ker(A)) = 1. Or, Acom(A)? = 0, donc
Im(com(4)7) C ker(4), puis  rg(com(4)) = rg(com(4)) < 1.

Ensuite, on note (Cy,...,C,) les colonnes de A. Comme A est de rang n — 1, on peut supposer
sans perte de généralité que (C1,...,Cp—1) est libre. On peut ainsi compléter cette famille en
une base (C1,...,C,-1,C}) de M, 1(C). On note B la matrice formée de ces colonnes, qui est
alors inversible. Par développement du déterminant sur la derniére colonne de B,

det(B) = > brnlcom(B)lkn = Y _ by nlcom(A)k n,
k=1 k=1

car pour k € [1,n], la matrice de taille n — 1 extraite de A en enlevant la derniére colonne et
la k-iéme ligne, et celle extraite de B en enlevant la derniere colonne et la k-iéme ligne sont les
mémes, car A et B différent uniquement de la derniere colonne. Ainsi, com(A) posseéde au moins
un coefficient non nul, sinon on aurait det(B) = 0. Donc rg(com(A4)) > 1. D’ou

rg(com(4)) = 1.

Sirg(A) < n — 2, alors toute famille de n — 1 colonnes de A est liée, et tous les déterminants
extraits de A en enlevant une ligne et une colonne sont donc nuls. D’ott com(A4) = 0, et

rg(com(A)) = 0.

e 3. On pose Py (X) = (—1)"% € C[X]. On obtient alors que
APs(A) = (-1)"(xa(0)I, — xa(A)) = (=)™ (=1)" det(A)I,, = det(A)I,,

d’apres le théoréme de Cayley-Hamilton. Si A est inversible, comme A com(A)” = det(A)I,,, on
en déduit que P4(A) = com(A)T. Sinon,

M — Py (M) et M — com(M)T

sont des applications polynomiales en les coefficients des matrices, donc continues. Or ces deux
applications coincident sur GL,,(C), qui est dense dans M,,(C). On en déduit alors que

PA(A) = com(A)T. O

1

[ )
Le programme de mathématiques des classes préparatoires ne se concentrant pas sur
la partie déterminant, cet exercice peut étre particulierement ardu. On conseille de le
reprendre & téte reposé si vous ne ’avez pas réussi. En effet, comme la comatrice ne fait

pas partie du programme de PCSI, un exercice sur celle-ci pourrait tomber aux oraux de
PC ou de PSI. Il est donc utile de maitriser les subtilités associées.
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Pour la troisiéme question, le fait que les matrices inversibles soient denses dans les
matrices est un grand classique. Il suffit en effet de considérer la suite

1
A,=A+-1I,, pourtout p e N*.
p

A possédant un nombre fini de valeurs propres, les (A4,)yen+ sont inversibles & partir d'un
certain rang, et la suite converge bien vers A. Notons enfin que dans le cas ou A est
inversible,

Al = 1 com(A)T.

det(A)

Or l'application déterminant est polynémiale en les coefficients des matrices, et de méme
pour 'application comatrice. Ainsi I'application

GL,(K) — GL,(K)
A — AL

est continue.

Exercice 17

Supposons A inversible. Alors

I, 0.\ (A BY_ (A B
—cA™' 1,)'\¢ D)~ \0, D-CA'B)"

En passant au déterminant et en reconnaissant des matrices triangulaires par blocs, on obtient

A B
¢ D

‘ =det(A)det(D — CA™'B) = det(DA — CA™'BA) = det(DA — CB),
avec AB = BA. Ainsi la relation est vraie quand A est inversible. Dans le cas quelconque, on
approche A par la suite de matrices définie par Ay = A+ %In, pour tout k € N*. C’est une suite

de matrices inversibles a partir d’un certain rang, commutant avec B et convergeant vers A. On
en déduit le résultat par continuité du déterminant. O

Remarques \

On utilise ici a nouveau la densité des matrices inversibles, qui montre comment on peut
se restreindre & ces matrices afin d’avoir un résultat concernant des matrices quelconques.
Il faut cependant bien faire attention que la suite de matrices par laquelle on approche A
commute bien avec B. Pour le cas inversible, de nombreuses décompositions sont possibles,

comme
A BY (A -B\_ [ I 0,
¢ o) \o, a)~\ca? pA-cB)
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Exercice 18
Comme A et B commutent, A% + B? = (A +iB)(A —iB). Doy,

det(A? + B?) = det(A 4 iB) det(A — iB) = det(A 4 iB)det(A + iB) = |det(A 4+ iB)|*> > 0,
car A et B sont a coefficients réels. O

Remarques

Cet exercice repose uniquement sur le fait que pour tout M € M,,(C), det(M) = det(M).
En effet, la formule du déterminant donne

det(M) = Z E(U) *Me1),1 " Mo(n),ns
cES,

d’ou

det(M) = Z E(U) *Me1),1 " Mo(n)n = det(M)7
ceG,

car pour 0 € &, ¢(0) = %1, donc est réel. Si vous n’avez jamais vu la formule du
déterminant et que ce £(0), qui donne la signature de la permutation o, ne vous dit rien,
apprenez simplement le résultat. En effet, la connaissance de la définition d’une signature
ne vous apportera rien, hormis un peu de culture, c’est d’ailleurs pour cela qu’elle n’a ni
été reprise dans la partie 2 ni dans les définitions de ce début de chapitre. Vous pouvez
évidemment vous renseigner plus amplement dans d’autres ouvrages, ou demander & votre
professeur.

Exercice 19

e 1. Soient n > 1 et A € M, (C). On trigonalise A selon A = PTP~1 avec P € GL,(C) et
T € M, (C), qu’on écrit

A (%)
T= ,  OUAL,...,\, €C.
(0) An
Pour tout k& € N*, on définit
A+ % (*)
Tk = c. .
(0) M+ o

Soient i, j € [1,n] avec i # j. Si \; = A;, alors
Ai + ! # N+ ! tout k € N*
i+ —— i+ — our tou .
TE i T Tk P
Sinon, on peut supposer que A; < \; sans perte de généralité, et on dispose de N; ; € N* tel que

AN

1
Vk > N j, OSE >
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Ainsi, pour tout k > N, j,

As +

k+i 2 k+j

Ainsi, & partir du rang N = max{N;; | ¢,j € [1,n]}, les (Tk)r>n possedent tous n valeurs
propres distinctes, donc sont diagonalisables. Or (T} )gen+ converge vers T. Donc (PTP~1)>n
est une suite de matrice diagonalisables, convergeant vers A par continuité du produit matriciel.
D’ou le résultat.
e 2. On définit
p: M,(C) — M,(C)
M —r xm(M).

 est continue comme application polynomiale en les coefficients des matrices. Soit M une matrice
diagonalisable de M,,(C), qu’on écrit

M = Pdiag(\i,..., \y)P 7Y,

avec Ai,..., A, € C. Alors

Xar(X) = det(XT, — M) = det(X T, — diag(A1, ..., An)) = [ [(X = o).
i=1

D’on,

X (M) =T[(M = N\iL) = P-T[(diag(A1, ..., An) = AiLn) - P~1 =0y,

i=1 i=1

car les matrices au centre du produit sont diagonales, donc commutent. Ainsi ¢ est nulle sur
les matrices diagonalisables, qui sont denses dans ’ensemble des matrices. Donc ¢ est nulle par
continuité. En particulier y 4(A4) = 0,,. D’ou le théoréme de Cayley-Hamilton. O

Remarques 5

En oral, 'examinateur vous aurait stirement fait passer le détail du fait que les matrices
exhibées posseédent bien n valeurs propres distinctes a partir d’un certain rang, mais sachez
le démontrer au cas ou c¢’est demandé. Enfin, attention a la manipulation du produit dans
la seconde question : on n’a pas sorti P et P~! du produit parce qu’elles commutent
avec les autres matrices, mais parce que ces matrices se compensent deux a deux dans le
produit.

Pour se convaincre que le produit fait bien 0,,, il suffit de remarquer que quand on multiplie
deux matrices diagonales, on le fait coefficient par coefficient. Or, ici il y a n matrices
diagonales, et pour tout ¢ € [1,n], on peut toujours en trouver une qui a un coefficient
nul en position (i,1).

Exercice 20

On suppose que x4 = xp. Alors A et B ont les mémes valeurs propres avec les mémes
multiplicités. Or pour tout k£ € N,

tI‘(Ak) = Z ml)\f
i=1
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avec A,..., A les valeurs propres de A, et my, ..., m, leurs multiplicités respectives. Or ces
valeurs sont les mémes pour B. D’oti tr(A*) = tr(B*).
On suppose que pour tout k € N, tr(A¥) = tr(B*). Par linéarité de la trace,

tr(P(A)) = tr(P(B)), pour tout P € C[X].

Soit A € Sp(A). Par théoréme d’interpolation de Lagrange (p. 436), on dispose d’un polynéme
Q tel que Q(A\) =1 et Q(u) = 0 pour tout u € (Sp(A4) USp(B)) — {A}. Alors,

mya = t1(Q(A)) = tr(Q(B)) = mx,p,

donc A € Sp(B) et A a la méme multiplicité dans x4 et dans yp. Ceci étant vrai pour toute
valeur propre de A, on en déduit que x4 = x B, car x4 et xp ont méme degré. O

Remarques

La preuve sur 'inversibilité des matrices de Vandermonde utilisant parfois I'interpolation
de Lagrange, on aurait aussi pu approcher le sens réciproque par une telle méthode.
Cependant, I'utilisation de I'interpolation de Lagrange est plus élégante et efficace.

Par ailleurs, cet exercice donne une caractérisation intéressante des matrices nilpotentes.
En effet, une matrice A € M,,(C) est nilpotente si et seulement si Sp(A) = {0}, i.e.
xa(X)=X" = x0, (X). On en déduit que A est nilpotente si et seulement si

Vk e N*,  tr(AF) = 0.

Exercice 21

e 1. On suppose que A est diagonalisable. On écrit
A= Qdiag(A1,...,\)Q 7Y,

ou @ € GL,(C) et Aq,...,\, € C. Pour tout i € [1,n], on dispose de x; € C tel que P(z;) = A,
d’apres le théoréme de d’Alembert-Gauss appliqué & P(X) — A;. On pose

M = Qdiag(zq, . .. ,xn)Q_l,

de sorte que
P(M) = Qdiag(P(z1), ..., P(z,)Q " = A.

Ce qui montre l'existence d’une solution.

e 2. Sin =1, on se raméne au théoréme de d’Alembert-Gauss, et on a toujours une solution. Si
n > 2, on suppose que A est nilpotente non nulle et que P(X) = X™. Si par ’absurde on avait
M € M, (C) tel que

M" = A,
alors M serait nilpotente. Mais d’apres le théoreme de Cayley-Hamilton, on a M™ = 0,,. Absurde,
car A est non nulle.

e 3. Supposons avoir M € Ms(C) une solution de I’équation. On va distinguer plusieurs cas
selon les valeurs propres de A.
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x Si les valeurs propres de A sont distinctes :

Dans ce cas, A est diagonalisable, et on ’écrit

_ A0
4=Q (0 ﬂ) Q.
ot Q@ € GLy(C) et A\, u € C distinctes. On pose B = Q1M Q. Ainsi,
B =@ re=q ey 7).
U
D’aprés le théoréme de Cayley-Hamilton, B? = tr(B)B — det(B)I,. Si par 'absurde tr(B)

était nulle, alors
A0
_dCt(B)IQ = <O M) s

donc A = —det(B) = u, absurde. Ainsi tr(B) # 0, et on en déduit que B est diagonale. On
écrit B = diag(a,b), ou a,b € C. Alors
2=\ et b2=p.

Tout complexe admettant une racine carrée complexe, on note ry une racine carrée de \ et
ro une racine carrée de . En revenant a M, on obtient que

5= {Q (510” 55@) Q7' |erea € {1, 1}},

puisque réciproquement, ces matrices vérifient bien ’équation. On remarque par ailleurs que
I’ensemble des solutions comporte trois ou quatre matrices, selon que 0 est valeur propre de
A ou non.

Si A est diagonalisable et posseéde une seule valeur propre :

Il vient alors que A est un multiple de Is, et on dispose de a € C tel que A = al,. Alors,
tr(M)M — det(M)Iy = M? = als,

d’apres le théoréme de Cayley-Hamilton. Si tr(M) # 0, on en déduit que M est diagonale.
Puis en notant € C une racine carrée de a, on a

elr 0
M e {( 0 627") £€1,€2 € {—1,1}}.

Si tr(M) = 0, on dispose de z,y,z € C tels que

M = <QZC —yx> ., puis on calcule M? = (2® 4+ yz) L.

On identifie donc 22 + yz = a. Ainsi,

weq (s )

Ce qui nous donne ’ensemble total des solutions

S:{(i y:r) xz,y,z € C, x2+yz:a}u{(€6r 6(2)7’> 51,526{—1,1}},

puisque réciproquement ces solutions conviennent bien, et ot r est une racine carrée de a.

x,y,z € C, x2+yz—a}.
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x Si A n’est pas diagonalisable et posséde une seule valeur propre :
On trigonalise A dans Mo (C), et on Iécrit

a=q(f Lo

ol Q € GLy(C) et a € C. On peut en effet mettre un 1 en haut & droite, quitte & dilater le
second vecteur de la nouvelle base. On pose B = Q~'M Q. Ainsi,

B2 _ Q_1M2Q _ Q—lAQ _ (8 i) .
D’apres le théoréme de Cayley-Hamilton, B2 = tr(B)B — det(B)I,. Si par I'absurde tr(B)

est nulle, alors
1
—det(B)I, = (8 a) .

Ainsi tr(B) # 0, et B est triangulaire supérieure. On dispose de z,y, z € C tels que

2
_(* v : 2_ (7 yle+2)\ _ fao 1
M—(O z)’ puis on calcule M _(O 42 )_<O 0l

Par identification, 22 = @ = z2. Or, on doit avoir = + z # 0, et 22 — 22 = 0, donc = 2.

On remarque par ailleurs que si par ’absurde a = 0, alors x = 0, et 1 = y(z + z) = 0. Donc
a # 0, autrement dit A n’est pas nilpotente non nulle. La suite de la résolution donne que

=5 7)o}

ol r est une racine carré de a. On vérifie que ces deux matrices conviennent bien.

On peut donc conclure que I’équation admet des solutions si et seulement si A n’est pas nilpotente
non nulle. Le nombre de solutions est

x 3 ou 4, si A possede deux valeurs propres distinctes.

* infini, si A est un multiple de I'identité.

* 2 sinon. ]

— j ~

Il peut étre assez surprenant de voir une infinité de solutions quand A est un multiple
de l'identité, puisqu’on pourrait s’attendre a avoir uniquement les solutions du second
ensemble de 'union. Intuitivement, I'infinité de solutions provient de toutes les symétries
du plan dans le cas ou A est non nulle. Dans le cas ou A est nulle, ’ensemble correspond
simplement aux matrices nilpotentes.

Dans la résolution, attention a bien distinguer le cas ou la trace est nulle, puisque dans
le cas ou A est multiple de I'identité, on a bien de telles solutions. Cette résolution est
détaillée et méthodique, et montre I'intérét, en tout cas en taille 2, des outils de réduction
a notre disposition. Pour la partie ou A possédait deux valeurs propres distinctes, on
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aurait pu faire appel a ’exercice 10, et au fait que A et M commutent :
AM = M3 = MA,

afin de conclure que M était une fonction linéaire de A. Mais les conditions sur les
coefficients auraient donné lieu a de nombreuses disjonctions de cas.

Exercice 22

Supposons avoir M € My(R) une solution. Dans ce cas, avec le théoréeme de Cayley-Hamilton,

on obtient
A=M*+M = (1+tr(M))M — det(M)I5,

puis
(14 det(M) 1
(I+tr(M)M = < 1 1+det(M)> . (2)
On applique la trace et le déterminant. Ce qui nous donne
(1+ tr(M)) tr(M) = 2(1 4 det(M)), 3)
(1 +tr(M))?det(M) = (2+det(M))det(M).
% Sidet(M)=0:
Alors tr(M)? + tr(M) — 2 = 0, donc tr(M) € {—2,1}. Avec (2), on en déduit que
1 1 1/1 1
M(l 1) o M2<1 1>'
* Sidet(M) #0:
La deuxiéme équation de (3) donne
det(M) = (1 +tr(M))* — 2. (4)

On réinjecte dans la premiére équation de (3),
(14 tr(M)) tr(M) = 2((1 + tr(M))?* = 1) = 2tr(M)(2 + tr(M)).

- Sitr(M) =0. Avec (4), on a det(M) = —1. Ainsi (2) donne

u-(00).

- Sinon, 1 4 tr(M) =4+ 2tr(M), donc tr(M) = —3. On a ainsi det(M) = 2. Avec (2),

on a 1
31
M__2<1 3)'

S = {—A, %A, A Iy, f%AfIQ}. 0

Les calculs réciproques étant évidents, on a
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Remarques

Cet exercice permet de montrer une autre méthode pour résoudre des équations matri-
cielles, sans passer par les coefficients.

Exercice 23
e 1. (a) Soient A\ une valeur propre de u et & un vecteur propre associé. Alors
u(v(z)) = v(u(z)) = v(Az) = dv(z).

Ainsi v(z) est vecteur propre de u pour A. D’ou le résultat.

(b) Soit (€;);er une base de E formée de vecteurs propres de u, et (\;);cs les valeurs propres
associées. Pour tout ¢ € I,

u(v(e;)) = Av(e;) = v(he;) = v(u(e;)).

Ainsi u o v et v ou coincident sur une base de E, donc sont égales.

e 2. Soit (u;);er une famille codiagonalisable d’endomorphismes de E. On dispose de (e;) e s une
base de E composée de vecteurs propres communs & tous les (u;);er, dont on note ((A; j)jet)ier
les familles de valeurs propres associées. Soient k,l € I et m € J. On a

uk(ul(em)) == uk(Al,mem) == Ak,WLAl,Tnern == Ak,mul(em)-

Ainsi, u(em) est un vecteur propre de uy pour la valeur propre Ap . On en déduit que w;
stabilise les espaces propres de ug. Or uy est diagonalisable. Donc u; et ux commutent. D’ou le
résultat.

¢ 3. (a) Pour tout n € N*, on pose H, : « toute famille de n endomorphismes d’un K-espace
vectoriel, qui sont diagonalisables et commutent deux a deux, est codiagonalisable ».

INITIALISATION : H; est évidemment vraie.

HEREDITE : Soit n € N*. On suppose H,,. Soient V un K-espace vectoriel et v, . . . , v, une famille
de n+ 1 endomorphismes de V' diagonalisables et commutant deux a deux. En particulier, vy est
diagonalisable et on note (Vx)xesp(uo) S€s espaces propres. Soit A € Sp(vp). D’aprés la question
1 (a),

v; stabilise E\, pour tout ¢ € [1,n] .

Or v; est diagonalisable, donc la restriction de v; & E) est diagonalisable. Ainsi la famille des

restrictions (v1, ..., v, ) est une famille de n endomorphismes de V) diagonalisables et commutant
deux a deux. D’apreés H,,, on dispose de B) une base de vecteurs propres des restrictions des
(U1,...,0,) & Vi. Or, vy est diagonalisable, donc
B= |J B
AE€Sp(vo)
est une base de E formée de vecteurs propres communs a v, et aux v1,. .., v,. Donc (vg,...,v,)

est codiagonalisable. Ainsi H,, 11 est vraie. Ce qui achéve la récurrence et montre le résultat.
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(b) Comme E est de dimension finie, le rang de la famille (u;);e est finie. On peut ainsi extraire
une famille (uq,...,u,) d’endomorphismes telle que tous les autres en soient une combinaison
linéaire. Cette sous-famille est finie et comporte des endomorphismes diagonalisables et commu-
tant deux a deux. Ainsi, cette sous-famille est codiagonalisable d’apres la question précédente.

On note B une base de E formée de vecteurs propres communs aux uq,...,u,. Or, pour tout
iel,

u; € Vect(ug, ..., un),
donc B est une famille de vecteurs propres de wu;. Ainsi, (u;);cs est codiagonalisable. O

Remarques

Cet exercice est un peu technique, et ne vous serait stirement pas demandé en dimension
quelconque. Cependant, il permet de mieux comprendre ce que ’on manipule, et surtout :
le résultat démontré peut étre tres intéressant a réutiliser.

Exercice 24

e 1. Soient o € Sp(A4) et § € Sp(B). On dispose de X un vecteur propre de A pour a, et ¥ un
vecteur propre de BT pour . En effet, B et BT ont les mémes valeurs propres. Alors,

u(XYT) = AXYT - XYT'B = (AX)YT - X(BTY)! =aXYT - BXY"T = (a - B)XYT.

Or X et Y sont non nuls, et XY7 = (x:yj)1<i,j<n, donc XYT possede au moins une coordonnée
non nulle. Ainsi « — 8 € Sp(u).

e 2. (a) Ona AM = MB+ AM = M(B + \,,). Pour tout k € N, on pose Hy, :
AFM = M(B + \IL,)*.
INITIALISATION : Hj est évidente, et Hy est vraie par hypothese.
HEREDITE : Soit k& € N*. On suppose Hy,.
AMIN = AR - AM = AFM(B + \I,) = M(B + \1,)" - (B + \,,),

donc Hpy1 est vraie. Ce qui achéve la récurrence et montre le résultat par linéarité.
(b) On choisit pour polynéme le polynéme caractéristique de A, de sorte que

MXA(B +Al,) = XA(A)M =0p.

Si par I'absurde, xa(B + Al,) était inversible, on aurait M = 0,,. Ainsi,

xaB+AL)= [[ B+(A=a)L,)m™
a€Sp(A)

est non inversible, donc un des facteurs de ce produit aussi. On dispose ainsi de « € Sp(A) tel
que B+ (A — a)1, est non inversible. Ainsi § = —(\ — «) est une valeur propre de B. Or,

A=a-—pf.

D’ou le résultat.
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e 3. On déduit des questions 1 et 2 que
Sp(u) = {a— B | o € Sp(A4), B € Sp(B)}.

e 4. Cette condition est équivalente au fait que v admette 0 comme valeur propre. Mais d’apres
la question précédente, u admet 0 comme valeur propre si et seulement si A et B ont une valeur
propre commune. La condition nécessaire et suffisante recherchée est donc

Sp(A) N Sp(B) # 0. O

Exercice 25

e 1. Soient A € Sp(A) et X € M,,1(C) un vecteur propre associé. On dispose de i € [1,n] tel
que |z;| = || X||co. Alors,

)\(Ei = [AX]l’l = Zam—xj,

j=1
d’ou
N = ail - sl = D asgas| <Y laig) - o] < Jwal Yl
i i i

Or |z;| > 0, donc en simplifiant par ce réel, on a
A —aiil < lail.
J#i
D’ott A € D;. On en déduit le résultat.
e 2. Supposons que 0 € Sp(A). D’apres la question précédente, on dispose de i € [1,n] tel que

laiil = 10— aii| < laijl,
J#i
ce qui contredit I’hypothése. Donc A est inversible. O

Remarques \

Par ailleurs, on considérant A”, on montre aussi que Sp(4) C J;—, D}, ou

D= {zeC|ls— ol < Ylasal}

J#i

Ce résultat permet de localiser les valeurs propres d’une matrice, et s’appelle le théoréme
de Gerschgorin.

Exercice 26

e 1. Déja, S est non vide, car I,, est une matrice stochastique. Soient A, B € S et t € [0, 1]. On
a pour tout ¢ € [1,n],

n

(taij+ (1 —=t)bij) =ty aij+(1—1)> bij=t+(1—t)=L
J Jj=1

1 j=1
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De plus, les coefficients de tA + (1 — t) B sont positifs. Donc tA + (1 —t)B € S. Ce qui montre
la convexité. Tous les coefficients d’une matrice stochastique sont entre 0 et 1, ce qui montre le
caractére borné de S, en considérant la norme infinie. Soit (A, )nen une suite de S convergeant
vers A € M,,(C). Alors, pour tous n € N et ¢ € [1,n],

n

D= i, Sl =t 11

par convergence coefficient a coefficient. On en déduit aussi que tous les coefficients de A sont
positifs. Ainsi A € S. L’ensemble S est donc fermé borné, c’est-a-dire compact en dimension
finie (p. 391). Enfin, soient A, B € S. A et B étant a coeflicients positifs, leur produit aussi.
Maintenant, pour i € [1,n],

n

DIEITED ) SUFUNES S  SU8) B BTSS!
j=1 k=1

j=1 j=1k=1 k=1

Donc AB € S. D’ou le résultat.

e 2. Soient A € §, A € C une valeur propre de A, et X un vecteur propre associé. Pour tout

i€ [1,n],
n n
A il = [TAXTial = D aig2s] < D ail| X[l < 1X -
j=1 j=1
En particulier, on peut choisir ¢ € [1,n] tel que |z;| = || X |00, €t comme X est non nul, on a
|A| < 1. D’ou le résultat.
e 3. (a) Soitie[l,n—1].
n n—1
1 — Q45 = Zai,j > Zaz,j,
j=1 j=1
jFi Ead

car a;n, > 0. Or 1 — a;; est positif et A est a coefficients positifs, donc

[B In 1]2 7

717a“>Z‘B Ln-)ig)-
J?fz

Donc B — I,,_1 est a diagonale strictement dominante.

(b) D’apres le résultat de l'exercice précédent, B — I,,_1 est inversible. On en déduit que
dim(ker(A — I,,)) < 1. En effet, si la dimension était strictement supérieur & 1, l'espace en-
gendré par les colonnes de A — I, serait de dimension inférieur ou égale a n — 2. Cela signifie qu’il
existerait une combinaison linéaire non nulle des n — 1 premieres colonnes donnant la colonne
nulle, autrement dit B — I,,_1 ne serait pas inversible. D’ou

dim(ker(A - I,)) <1
Or, en notant X = (1 --- 1), on a pour tout i € [1,n],

[AX]zl = Zai’j =1= Z;.

Jj=1
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Ainsi, AX = X. D’ou
dim(ker(A —I,,)) = 1.

(¢) Soit A € Sp(A) de module 1. En reprenant la preuve de l’exercice précédent, on montre qu’il
existe ¢ € [1,n] tel que
|A — am| S Zam- =1- Q5.
J#i
Ainsi,
I=N=A=aii+aii| <|A—aii| +ai; <1,

avec 1’équation précédente. On a donc égalité dans I'inégalité triangulaire. Comme a;; # 0, on
dispose de p € R tel que

A= = pag ;.

En particulier, A est un réel positif. Donc A = 1. D’ou le résultat. |

Remarques 5

Les matrices stochastiques sont particulierement intéressantes en probabilité, puisqu’elles
peuvent encoder une marche aléatoire. Donnons-nous par exemple n points du plan, qu’on
numérote de 1 & n, et p: [1,n] — [0, 1] une probabilité sur cet ensemble. On note 7 son
vecteur de probabilité associé, c’est-a-dire que

m; = p(i), pour tout i € [1,n].

On place une puce au temps ¢t = 0 sur un des points du plan, selon la probabilité p. Puis,
pour tous 4,5 € [1,n], on note a;; la probabilité qu’a la puce de passer du point ¢ au
point j, d’un temps a un autre. Par formule des probabilités totales, on obtient

n
Zai’j =1, pour tout i € [1,n].
Jj=1

Et les probabilités étant toujours positives, la matrice A associée est donc une matrice
stochastique. Il vient par récurrence immédiate que la distribution de probabilité de la
place de la puce au temps t = n suit la loi

7" = A"g,

puisqu’on passe d’'un temps a un autre a 'aide de la matrice A. On peut alors étudier la
convergence éventuelle de la suite (ﬁ("))neN, pour avoir la loi « & l'infini » de la place
de la puce. Si la suite converge, et qu’on note 7(°>) le vecteur de probabilité associé, on

remarque que

Ar(®) = A+ lim A"r= lim A"t'g = 7o),
n—-+4o00 n—+400

par continuité du produit matriciel. Le vecteur 7(>) est donc un vecteur propre pour A,
associé & la valeur propre 1. Dans le cas ot A est & coefficients strictement positifs, 7(°°)
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est unique, car 'espace ker(A — I,) est de dimension 1, et qu’on doit avoir

n

Zﬂgoo) =1.

i=1

Ainsi, peu importe le vecteur de probabilité initial, si on a convergence, la loi & I'infini est
nécessairement donnée par 7).

Exercice 27

e 1. On pose
_ 0 Infl
= (0 B,
Il vient alors que si A est une matrice circulante associée aux coeflicients aq, ..., a,_1, on a
n—1
A=Y "a,J" € CLI].
k=0

Réciproquement, J et toutes ses puissances sont des matrices circulantes, donc 6,, = C[J], car
%, est un espace vectoriel.

e 2. On remarque que J" = I,,. Ainsi, J est annulé par un polynoéme scindé a racines simples,
donc est diagonalisable. On note

U, ={w"|ke[0,n—1]}, otw=¢e"".

Soit k € [0,n — 1]. On définit X = (1 w* --- (w*)"1)T. 11 vient alors que

wh 1
L L
JX), = =wh =Wk Xy,
(wk)n—l (wk)n72
1 wk

car w™! = w1 Or les éléments de (w*)g<k<n—1 sont tous distincts. Ce qui donne les éléments

propres de J.

e 3. Soit P € C[X]. (Xo,...,X,—1) est une base de vecteurs propres de J, ¢’en est donc aussi une
de P(J). Les valeurs propres associées sont alors (P(1), P(w),..., P(w™1). Or, le déterminant
d’une matrice est le produit de ses valeurs propres avec multiplicités, donc

n—1

det(P(J))) = [] P(w*).

k=0
e 4. Supposons que n # 1. Soit j € [1,n — 1]. Comme w’ # 1, on a
= wiP —1

Plw') =) (W) ==—.

k=0
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Or P(1) = p # 0. Avec la question précédente, on en déduit que
det(P(J)) =0 <= Jje[l,n—1], Pw)=0
— Fel,n-1], w¥=1
2mpj _
=
<~ Jjel,n—-1], pj=0 (modn)
< pged(p,n) # 1.
Montrons la derniére équivalence.
Supposons qu’il existe j € [1,n — 1] tel que pj = 0 (mod n). Alors, n divise pj. Si par
I’absurde n et p étaient premiers entre eux, n diviserait j par lemme de Gauss. Ce qui n’est pas
possible, car j € [1,n — 1].
On suppose que p et n ne sont pas premiers entre eux. Ainsi,
n p

<~ Jjel,n—-1], 0 (mod 2m)

pr———=n-———— =0 (mod n),
pged(p, n) pged(p, n) ( )
—_———
eN
avec sty € [1,n — 1], car pged(p,n) > 1. D’ou le résultat.

On peut alors conclure que P(J) est inversible si et seulement p et n sont premiers entre eux.
Si n = 1, la question précédente donne que det(P(J)) = P(1) = p # 0, donc P(J) est toujours
inversible. Comme 1 est premier avec tous les nombres entiers, on a la méme conclusion. O

Remarques 5

Remarquons que comme les valeurs propres de J sont les éléments de U,, le polynome
caractéristique de J est donc X™ — 1. Profitons aussi de cette remarque pour noter que
six#1,

n—1

r—1"
k=1

En prenant la limite pour x tendant vers 1, on obtient

n—1

[[a—-w*) =n.

k=1

Ainsi, certains calculs de produits ou de sommes peuvent se ramener astucieusement a la
factorisation d’un polyndéme, puis a son évaluation en un point précis.

Exercice 28
e 1. Soit A € M, (R). On a
0 0 a1 ... ... Qnnp

A= az 1 . . 0

aip .- Qpp—1 0O 0 . 0 apn
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Or les deux matrices sont triangulaires, donc leurs valeurs propres sont sur leurs diagonales. D’ou
le résultat.

e 2. ANALYSE : Soit M € &. On écrit M = (‘; Z), ou a,b,c,d € R. Ainsi,

X (X) = (X —a)(X —b) — be.
Or M est & diagonale propre, donc xpr(a) = 0. D’ott bc = 0, et b = 0 ou ¢ = 0. Donc M est
triangulaire.

SYNTHESE : Réciproquement, les matrices triangulaires sont & diagonale propre. Donc &; est
l’ensemble des matrices triangulaires de Ms(R).

e 3. ANALYSE : Soit A € &, antisymétrique. La diagonale de A est nulle, donc la seule valeur
propre de A est 0. On en déduit par le théoréeme de Cayley-Hamilton que A est nilpotente. Or
AAT est symétrique réelle, donc diagonalisable. Mais

(AAT)TL _ (_AQ)TL _ (_1)7LA271 _ On

AAT est diagonalisable et nilpotente, donc AAT = 0,,. Ce qui signifie que tr(AAT) = 0. Or
M +— tr(MM?T) est une norme sur M,,(R). Donc A = 0,,.

SYNTHESE : Réciproquement, la matrice nulle est antisymétrique et & diagonale propre.

e 4. (a) D’une part, tr(A42%) est égale & la somme des valeurs propres de A2. Comme A est
symétrique réelle, A est diagonalisable, et on en déduit que les valeurs propres de A? sont
A2, 02 Don

tr(A%) =Y A7
i=1

D’autre part,

n

(A% = [A%i = > ajaa= Y. alj,

i=1 1<ij<n 1<ij<n

car A est symétrique. En comparant les deux égalités, on obtient le résultat.

(b) On sait que pour tout ¢ € [1,n], a;; = A;, quitte & réordonner les valeurs propres. D’ot,

n

n n
2 _ 2 2 _ 2 2 _
E ;5 = E ;5 — E Q= E Ay — E ai; = 0.
i=1 i=1 i=1

1<ij<n 1<ij<n
i

On a une somme de nombres positifs qui est nulle, donc
Vi,jE[[l,’ﬂ]], 7’#] = aiajZO'

Donc A est diagonale. Réciproquement les matrices diagonales sont symétriques réelles et a
diagonale propre. Ce qui caractérise &, N S, (R). O
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Remarques

La question 3 peut laisser place & un argument encore plus intéressant. En effet, on a
montré que &, NA,(R) = {0g}. Ainsi, si on prend F un sous-espace vectoriel de M,,(R)
inclus dans &,, on a

dim(F) 4 dim(A,(R)) = dim(F & A, (R)) < n?.
Or dim(A,(R)) = @, donc

n(n+1)

i <
dim(F) < 5

Cette borne supérieure est atteinte si F' désigne I'ensemble des matrices triangulaires
supérieures. On s’attendait évidemment a ce que &, ne soit pas un espace vectoriel dés la
premiére question.







CHAPITRE 2

Espaces préhilbertiens réels

1. Définitions a connaitre

1.1. Définition. Soient (E,(-,-)) un espace préhilbertien réel et uw € £(E). On dit qu’un endo-
morphisme v de E est un adjoint de u si et seulement

Ve,y € B, (u(x),y) = (,0(y))-

Si un endomorphisme admet un adjoint, celui-ci est unique.

2. Sujet : Polynomes orthogonaux

Soit I un intervalle réel. On appelle fonction de masse sur I toute fonction continue non nulle
w: I — Ry telle que pour tout n € N, x — z"w(x) est intégrable sur I. On note M(I) ’ensemble
des fonctions de masse sur I. Pour tous w € M(I), et P,Q € R[X], on pose

(P, Q)w = /IP(x)Q(x)w(x) dx.

I. Premieres propriétés
Soit w € M(I).
1. Montrer que (,-),, définit un produit scalaire sur R[X].

2. Montrer qu’il existe une unique famille de polynomes unitaires (P,),ecn orthogonale pour
le produit scalaire (-, )., et telle que pour tout n € N, deg(P,,) = n.

3. Soit n € N. On note p le nombre de racines réelles distinctes de multiplicité impaire de P,

dans I. On note 1, ..., 7, ces racines et on pose Q(X) = [T_; (X —ry).

(a) Montrer que QP, est de signe constant sur I.
(b) En déduire que P, posséde n racines distinctes dans I.

4. Pour n € N, on note U,[X] 'ensemble des polyndmes unitaires de degré n. Déterminer

/P(t)Qw(t) dt.
I

min
PeU,[X]
II. Polynémes d’Hermite

Dans cette partie, ] =R et w: = — e~ Pour tout n € N, on pose H,: = > (—1)”6I2w(") (z).
5. Vérifier que w est une fonction de masse sur I.

6. Montrer que pour tout n € N, H,, est un polyndéme de degré n, et

Hyy i =2XH, — H..
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7. Pour tout n € N, déterminer le coefficient dominant de H,.

8. Montrer que pour tous n € N et P € R[X],
(Hp, Py = (Ho, P™) .

9. En déduire que (H,,)nen est une famille orthogonale pour (-, -)y,.
10. Calculer ||Hp || pour tout n € N.

11. Justifier que w est développable en série entiere au voisinage de tout point de R, et en
déduire que pour tous z,t € R,

= tn 2
Z Hy(z)— = et
n!

n=0

I11. Polynémes de Tchebychev

1

Dans cette partie, I =]—1,1[ et w: 2 — ——.

12. Vérifier que w est une fonction de masse sur 1.

13. Montrer que pour tout n € N, il existe un unique polynoéme T;, tel que
V8 e R, T,(cos(d)) = cos(nb).
14. Montrer que pour tout n € N,
Thio=2XTh1 — T,

15. Pour tout n € N, déterminer le coefficient dominant et le degré de T,.
16. Montrer que (T},)nen est une famille orthogonale pour (-, ).

17. Calculer ||}, ||, pour tout n € N.

18. Montrer que pour tous z € [—1,1] et t € R,

+oo s
Z To(2)— = cos(tv/1 — a2)e™.
o n!

3. Adjoints

Exercice 1
Soient (E, (-,-)) un espace préhilbertien réel, et f, g deux applications de E dans E telles que

Ve,y € B, (f(2),y) = (,9(y))-

1. Montrer que f et g sont des applications linéaires.
2. On suppose que E est de dimension finie.
(a) Etablir des relations entre ker(f), Im(f), ker(g) et Im(g).

(b) Soit F' un sous-espace vectoriel de E. Montrer que F' est stable par f si et seulement si
F est stable par g.



