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Chapitre 1

Algèbre

Dans tout ce chapitre, K désigne R ou C.

1. Définitions à connaître
Dans cette section, on rappelle quelques définitions qui serviront à traiter les exercices sui-

vants. On fixe E un K-espace vectoriel.

1.1. Définition. Soit u ∈ L (E). On appelle commutant de u l’ensemble

C(u) = {v ∈ L (E) | u ◦ v = v ◦ u}.

On peut définir la même notion avec les matrices, et on conserve la même notation.

1.2. Définition. Soit u un endomorphisme de E. On dit que u est diagonalisable si et seulement
s’il existe une base de E composée de vecteurs propres de u.

On rappelle cette définition, puisque le programme traite généralement la diagonalisation
dans des espaces vectoriels de dimension finie. On passe alors par les endomorphismes, puisqu’on
se limiterait en considérant seulement des matrices.

1.3. Définition. Soit (ui)i∈I une famille d’endomorphismes de E. On dit que la famille (ui)i∈I

est codiagonalisable si et seulement s’il existe une base de E composée de vecteurs propres com-
muns à tous les (ui)i∈I .

Fixons désormais n ∈ N∗, et reformulons les définitions précédentes en termes de matrices.

1.4. Définition. Soit (Ai)i∈I une famille de matrices de Mn(K). On dit que la famille (Ai)i∈I

est codiagonalisable dans Mn(K) si et seulement s’il existe P ∈ GLn(K) telle que

PAiP
−1 est diagonale pour tout i ∈ I.

On peut faire de même avec la trigonalisation, puisque nous travaillons en dimension finie.

1.5. Définition. Soit (Ai)i∈I une famille de matrices de Mn(K). On dit que la famille (Ai)i∈I

est cotrigonalisable dans Mn(K) si et seulement s’il existe P ∈ GLn(K) telle que

PAiP
−1 est triangulaire supérieure pour tout i ∈ I.

Lorsque E est de dimension finie, cette définition s’applique aux endomorphismes en consi-
dérant une base dans laquelle les matrices associées aux endomorphismes sont triangulaires su-
périeures. Le lecteur pourra se convaincre que les définitions en termes d’endomorphismes et de
matrices sont bien équivalentes. Dans la définition suivante, on prend n ≥ 2.

1.6. Définition. Soit A ∈ Mn(C). Pour tous i, j ∈ �1, n�, on note Ai,j la matrice de Mn(C)
formée en enlevant la i-ème ligne et la j-ème colonne de A. On appelle comatrice de A, et on
note com(A), la matrice de Mn(C) telle que

[com(A)]i,j = (−1)i+j det(Ai,j), pour tous i, j ∈ �1, n� .

9782340-111448_INT.indd   69782340-111448_INT.indd   6 29/12/2025   15:2429/12/2025   15:24



Chapitre 1

Algèbre

Dans tout ce chapitre, K désigne R ou C.

1. Définitions à connaître
Dans cette section, on rappelle quelques définitions qui serviront à traiter les exercices sui-

vants. On fixe E un K-espace vectoriel.

1.1. Définition. Soit u ∈ L (E). On appelle commutant de u l’ensemble

C(u) = {v ∈ L (E) | u ◦ v = v ◦ u}.

On peut définir la même notion avec les matrices, et on conserve la même notation.

1.2. Définition. Soit u un endomorphisme de E. On dit que u est diagonalisable si et seulement
s’il existe une base de E composée de vecteurs propres de u.

On rappelle cette définition, puisque le programme traite généralement la diagonalisation
dans des espaces vectoriels de dimension finie. On passe alors par les endomorphismes, puisqu’on
se limiterait en considérant seulement des matrices.

1.3. Définition. Soit (ui)i∈I une famille d’endomorphismes de E. On dit que la famille (ui)i∈I

est codiagonalisable si et seulement s’il existe une base de E composée de vecteurs propres com-
muns à tous les (ui)i∈I .

Fixons désormais n ∈ N∗, et reformulons les définitions précédentes en termes de matrices.

1.4. Définition. Soit (Ai)i∈I une famille de matrices de Mn(K). On dit que la famille (Ai)i∈I

est codiagonalisable dans Mn(K) si et seulement s’il existe P ∈ GLn(K) telle que

PAiP
−1 est diagonale pour tout i ∈ I.

On peut faire de même avec la trigonalisation, puisque nous travaillons en dimension finie.

1.5. Définition. Soit (Ai)i∈I une famille de matrices de Mn(K). On dit que la famille (Ai)i∈I

est cotrigonalisable dans Mn(K) si et seulement s’il existe P ∈ GLn(K) telle que

PAiP
−1 est triangulaire supérieure pour tout i ∈ I.

Lorsque E est de dimension finie, cette définition s’applique aux endomorphismes en consi-
dérant une base dans laquelle les matrices associées aux endomorphismes sont triangulaires su-
périeures. Le lecteur pourra se convaincre que les définitions en termes d’endomorphismes et de
matrices sont bien équivalentes. Dans la définition suivante, on prend n ≥ 2.

1.6. Définition. Soit A ∈ Mn(C). Pour tous i, j ∈ �1, n�, on note Ai,j la matrice de Mn(C)
formée en enlevant la i-ème ligne et la j-ème colonne de A. On appelle comatrice de A, et on
note com(A), la matrice de Mn(C) telle que

[com(A)]i,j = (−1)i+j det(Ai,j), pour tous i, j ∈ �1, n� .

1	 Algèbre 

9782340-111448_INT.indd   79782340-111448_INT.indd   7 29/12/2025   15:2429/12/2025   15:24



8 Partie 1. Exercices corrigés

On sait alors que par développement d’un déterminant sur les colonnes ou sur les lignes, on
a pour tous A ∈ Mn(K), et i, j ∈ �1, n�,

det(A) =
n∑

k=1
ai,k[com(A)]i,k et det(A) =

n∑
k=1

ak,j [com(A)]k,j .

Avant d’aborder ces exercices, on conseille au lecteur de se familiariser avec les trois derniers
chapitres de la partie 2. En particulier, les deux premiers exercices demandent de connaître les
notions abordées dans le chapitre 24 (p. 413).

2. Algèbre générale
Exercice 1

Soient (A, +, ×) un anneau et x, y ∈ A. Montrer que si 1A −xy est inversible, alors 1A −yx aussi.

Exercice 2
Soient E un K-espace vectoriel de dimension finie et G un sous-groupe de cardinal fini de GL(E).
On pose

p = 1
|G|

∑
g∈G

g.

1. Montrer que p est un projecteur de E.
2. En déduire que

⋂
g∈G

ker(g − id) = Im(p) et dim
( ⋂

g∈G

ker(g − id)
)

= 1
|G|

∑
g∈G

tr(g).

3. Polynômes
Exercice 3

Soient P, Q ∈ R[X] scindés. On écrit Q =
∑n

k=0 bkXk, où n ∈ N∗.
1. Montrer que pour tout a ∈ R, P ′ + aP est scindé ou constant sur R.
2. En déduire que

∑n
k=0 bkP (k) est scindé ou constant sur R.

Exercice 4
Déterminer l’ensemble des polynômes P ∈ C[X] tels que P (X2) = P (X)P (X − 1).

Exercice 5
Soit P ∈ R[X] tel que P (x) ≥ 0, pour tout x ∈ R. Montrer qu’il existe A, B ∈ R[X] tels que

P = A2 + B2.

Exercice 6
On dit qu’un polynôme de C[X] est pair (resp. impair) si et seulement s’il est combinaison linéaire
de monômes de degré pair (resp. impair). Soit P ∈ C[X] tel que P (X2 + 1) = (P (X))2 + 1.

1. Montrer que P est pair ou impair.
2. Montrer que si P est impair, alors P (X) = X.

Chapitre 1. Algèbre 9

3. En déduire que si P est non constant, il existe n ∈ N tel que

P (X) = (X2 + 1) ◦ · · · ◦ (X2 + 1)︸ ︷︷ ︸
n fois

.

Exercice 7
Soit P ∈ C[X]. On note U = {z ∈ C | |z| = 1}.

1. Montrer que P (C) = C.
2. Soit A une partie de C. Donner une condition nécessaire et suffisante sur P pour que

P (A) ⊂ A dans les cas suivants :

(a) A = R. (b) A = Q. (c) A = Z.

3. On suppose P non constant, on note d son degré, et on suppose que P (U) ⊂ U. Calculer de
deux manières différentes : ∫ 2π

0
P (eiθ)P (eiθ)e−idθ dθ.

4. En déduire l’ensemble des polynômes Q ∈ C[X] tels que Q(U) ⊂ U.

4. Algèbre linéaire
Exercice 8

Soient E, F et G trois K-espaces vectoriels de dimension finie.
1. Soient f ∈ L (E, F ) et g ∈ L (E, G). Donner une condition nécessaire et suffisante sur f et

g pour qu’il existe h ∈ L (F, G) telle que g = h ◦ f .
2. Soient g ∈ L (E, G) et h ∈ L (F, G). Donner une condition nécessaire et suffisante sur g et

h pour qu’il existe f ∈ L (E, F ) telle que g = h ◦ f .

Exercice 9
Soient E un K-espace vectoriel de dimension finie et u ∈ L (E). On pose

N =
⋃
k∈N

ker(uk) et J =
⋂
k∈N

Im(uk).

1. Montrer que la suite (ker(uk))k∈N est stationnaire.
2. Montrer que N et J sont des sous-espaces vectoriels de E, stables par u et supplémentaires.

Exercice 10
Soient n ∈ N∗ et E un R-espace vectoriel de dimension n. Pour tout u ∈ L (E), on dit que u est
cyclique si et seulement s’il existe x0 ∈ E tel que (x0, u(x0), . . . , un−1(x0)) est une base de E.
Soit u ∈ L (E).

1. Montrer que si u est nilpotent d’indice n, alors u est cyclique.
2. Montrer que si u admet n valeurs propres distinctes, alors u est cyclique.
3. On suppose que u est cyclique. Montrer que le commutant de u est Rn−1[u].

Exercice 11
Soit n ≥ 2. Montrer que tout hyperplan de Mn(K) contient une matrice inversible.
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8 Partie 1. Exercices corrigés
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10 Partie 1. Exercices corrigés

Exercice 12
Soient n ∈ N∗, et A, B ∈ Mn(R). On suppose que A et B sont semblables dans Mn(C). On se
donne ainsi une matrice P ∈ GLn(C) telle que

A = PBP −1.

On écrit P = R + iJ , avec R = Re(P ) et J = Im(P ) des matrices à coefficients réels.
1. Montrer qu’il existe t ∈ R tel que R + tJ ∈ GLn(R).
2. En déduire que A et B sont semblables dans Mn(R).

Exercice 13
Soient E un R-espace vectoriel de dimension finie, et p, q, r des projecteurs de E. On suppose
que p +

√
2q +

√
3r est un projecteur. Montrer que q et r sont nuls.

Exercice 14
Soient E un K-espace vectoriel et f ∈ L (E). On suppose que pour tout x ∈ E, (x, f(x)) est liée.
Montrer que f est une homothétie.

Exercice 15
Montrer qu’une matrice de trace nulle est semblable à une matrice à coefficients diagonaux nuls.

5. Déterminant
Exercice 16

Soient n ≥ 2 et A ∈ Mn(C).
1. Montrer que A com(A)T = com(A)T A = det(A)In.
2. Donner le rang de com(A) en fonction de celui de A.
3. Montrer qu’il existe P ∈ C[X] tel que P (A) = com(A)T .

Exercice 17
Soient n ∈ N∗, et A, B, C, D ∈ Mn(C). On suppose que AB = BA. Montrer que

∣∣∣∣
A B
C D

∣∣∣∣ = det(DA − CB).

Exercice 18
Soient n ∈ N∗ et A, B ∈ Mn(R) commutant. Montrer que det(A2 + B2) ≥ 0.

6. Réduction
Exercice 19

Soient n ∈ N∗ et A ∈ Mn(C).
1. Montrer que A est limite d’une suite de matrices diagonalisables de Mn(C).
2. En déduire une preuve du théorème de Cayley-Hamilton.

Exercice 20
Soient n ∈ N∗, et A, B ∈ Mn(C). Montrer que

χA = χB ⇐⇒ ∀k ∈ N, tr(Ak) = tr(Bk).

Chapitre 1. Algèbre 11

Exercice 21
Soient n ∈ N∗, P ∈ C[X] non constant et A ∈ Mn(C). On cherche à résoudre l’équation

P (M) = A, d’inconnue M ∈ Mn(C).

1. Montrer que si A est diagonalisable, l’équation admet toujours une solution.
2. Que dire si A n’est pas diagonalisable ?
3. Discuter l’équation dans le cas où n = 2 et P (X) = X2.

Exercice 22
On pose A = ( 1 1

1 1 ). Résoudre l’équation M2 + M = A, d’inconnue M ∈ M2(R).

Exercice 23
Soit E un K-espace vectoriel.

1. Soient u et v deux endomorphismes de E.
(a) On suppose que u et v commutent. Montrer que les espaces propres de u sont stables

par v.
(b) On suppose que u est diagonalisable, et que v stabilise les espaces propres de u. Montrer

que u et v commutent.
2. En déduire que si (ui)i∈I est une famille codiagonalisable d’endomorphismes de E, alors

c’est une famille d’endomorphismes diagonalisables commutant deux à deux.
3. On se propose de montrer deux réciproques partielles. Soit (ui)i∈I une famille d’endomor-

phismes de E diagonalisables et commutant deux à deux.
(a) Montrer que si I est fini, (ui)i∈I est codiagonalisable.
(b) En déduire que si E est de dimension finie, (ui)i∈I est codiagonalisable.

Exercice 24
Soient n ∈ N∗ et A, B ∈ Mn(C). On définit l’endomorphisme u ∈ L (Mn(C)) par

u(M) = AM − MB, pour tout M ∈ Mn(C).

1. Montrer que si α ∈ Sp(A) et β ∈ Sp(B), alors α − β ∈ Sp(u).
2. Soient λ ∈ Sp(u) et M ∈ Mn(C) un vecteur propre associé.

(a) Montrer que pour tout P ∈ C[X], P (A)M = MP (B + λIn).
(b) En déduire qu’il existe α ∈ Sp(A) et β ∈ Sp(B) tels que λ = α − β.

3. En déduire Sp(u).
4. Donner une condition nécessaire et suffisante sur A et B pour qu’il existe une matrice

M ∈ Mn(C) non nulle telle que AM = MB.

Exercice 25
Soient n ∈ N∗ et A ∈ Mn(C). Pour tout i ∈ �1, n�, on pose

Di =
{

z ∈ C
∣∣∣ |z − ai,i| ≤

∑
j ̸=i

|ai,j |
}

.

1. Montrer que Sp(A) ⊂
⋃n

i=1 Di.
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}

.

1. Montrer que Sp(A) ⊂
⋃n

i=1 Di.
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12 Partie 1. Exercices corrigés

2. On suppose que A est à diagonale strictement dominante, i.e.

∀i ∈ �1, n� , |ai,i| >

j ̸=i

|ai,j |.

Montrer que A est inversible.

Exercice 26
Soit n ∈ N∗. Pour tout A ∈ Mn(C), on dit que A est une matrice stochastique si et seulement
si ses coefficients sont tous positifs et

∀i ∈ �1, n� ,
n

j=1
ai,j = 1.

On note S l’ensemble des matrices stochastiques.
1. Montrer que S est un ensemble convexe, compact et stable par produit.
2. Montrer que les valeurs propres d’une matrice stochastique ont un module inférieur ou égal

à 1.
3. Soit A ∈ S ayant tous ses coefficients strictement positifs. On note B la matrice de Mn−1(C)

formée en enlevant la dernière colonne et la dernière ligne de A.
(a) Montrer que B − In−1 est à diagonale strictement dominante.
(b) En déduire que dim(ker(A − In)) = 1.
(c) Montrer que 1 est la seule valeur propre de A de module 1.

Exercice 27
Soit n ∈ N∗. Pour tout A ∈ Mn(C), on dit que A est une matrice circulante si et seulement s’il
existe a0, . . . , an−1 ∈ C tels que

A =




a0 a1 · · · an−1
an−1 a0 · · · an−2

... . . . . . . ...
a1 · · · an−1 a0


 .

On note Cn l’ensemble des matrices circulantes.
1. Montrer qu’il existe J ∈ Mn(C), qu’on déterminera, telle que Cn = C[J ].
2. Exprimer les éléments propres de J .
3. Pour tout P ∈ C[X], calculer det(P (J)).
4. Soit p ∈ N∗. On pose P =

p−1
k=0 Xk. Donner une condition nécessaire et suffisante sur p

pour que P (J) soit inversible.

Exercice 28
Soit n ∈ N∗. Pour tout A ∈ Mn(R), on dit que A est à diagonale propre si et seulement si ses
valeurs propres sont réelles, et que ses éléments diagonaux sont ses valeurs propres comptées avec
leurs multiplicités. On note En l’ensemble des matrices à diagonale propre.

1. Montrer que toute matrice de Mn(R) est la somme de deux matrices de En.
2. Caractériser E2.

Chapitre 1. Algèbre 13

3. Déterminer les matrices antisymétriques réelles à diagonale propre.
4. Soit A ∈ Sn(R).

(a) On note λ1, . . . , λn les valeurs propres de A. Montrer que

∑
1≤i,j≤n

a2
i,j =

n∑
i=1

λ2
i .

(b) En déduire l’ensemble des matrices symétriques réelles à diagonale propre.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . � Indications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Exercice 1 :

Penser aux séries entières, et au développement de (1 − t)−1 pour |t| < 1.

Exercice 3
Q1 : Considérer, pour a ∈ R, x → P (x)eax et utiliser le théorème de Rolle.

Exercice 5 :
Montrer que toute racine de P est de multiplicité paire.

Exercice 6 :
Q3 : Montrer que si P est pair, il existe Q ∈ C[X] tel que P (X) = Q(X2 + 1), puis procéder par
récurrence.

Exercice 7 :
Q2 (c) : Pour n ∈ N, considérer le polynôme Hn(X) = 1

n! X(X − 1) · · · (X − n + 1), et montrer
qu’il vérifie Hn(Z) ⊂ Z.
Q4 : Montrer que ce sont les polynômes de la forme aXm, où a ∈ U et m ∈ N.

Exercice 10 :
Q3 : Pour v ∈ C(u), montrer que v coïncide avec un polynôme en u sur la base (x0, . . . , un−1(x0)).

Exercice 11 :
Raisonner par l’absurde, et montrer qu’un tel hyperplan contiendrait alors toutes les matrices
nilpotentes.

Exercice 15 :
Procéder par récurrence et distinguer le cas où la matrice est un multiple de l’identité. Dans les
autres cas, utiliser le résultat de l’exercice précédent, donnant que si A ∈ Mn(C) n’est pas une
homothétie, il existe un vecteur X tel que (X, AX) est libre.

Exercice 16 :
Se reporter à la définition de la comatrice donnée en début de chapitre.

Exercice 17 :
Montrer d’abord le résultat dans la cas où A est inversible.

Exercice 22 :
Utiliser le théorème de Cayley-Hamilton, et passer par la trace et le déterminant.
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12 Partie 1. Exercices corrigés

2. On suppose que A est à diagonale strictement dominante, i.e.

∀i ∈ �1, n� , |ai,i| >

j ̸=i

|ai,j |.

Montrer que A est inversible.

Exercice 26
Soit n ∈ N∗. Pour tout A ∈ Mn(C), on dit que A est une matrice stochastique si et seulement
si ses coefficients sont tous positifs et

∀i ∈ �1, n� ,
n

j=1
ai,j = 1.

On note S l’ensemble des matrices stochastiques.
1. Montrer que S est un ensemble convexe, compact et stable par produit.
2. Montrer que les valeurs propres d’une matrice stochastique ont un module inférieur ou égal

à 1.
3. Soit A ∈ S ayant tous ses coefficients strictement positifs. On note B la matrice de Mn−1(C)

formée en enlevant la dernière colonne et la dernière ligne de A.
(a) Montrer que B − In−1 est à diagonale strictement dominante.
(b) En déduire que dim(ker(A − In)) = 1.
(c) Montrer que 1 est la seule valeur propre de A de module 1.

Exercice 27
Soit n ∈ N∗. Pour tout A ∈ Mn(C), on dit que A est une matrice circulante si et seulement s’il
existe a0, . . . , an−1 ∈ C tels que

A =




a0 a1 · · · an−1
an−1 a0 · · · an−2

... . . . . . . ...
a1 · · · an−1 a0


 .

On note Cn l’ensemble des matrices circulantes.
1. Montrer qu’il existe J ∈ Mn(C), qu’on déterminera, telle que Cn = C[J ].
2. Exprimer les éléments propres de J .
3. Pour tout P ∈ C[X], calculer det(P (J)).
4. Soit p ∈ N∗. On pose P =

p−1
k=0 Xk. Donner une condition nécessaire et suffisante sur p

pour que P (J) soit inversible.

Exercice 28
Soit n ∈ N∗. Pour tout A ∈ Mn(R), on dit que A est à diagonale propre si et seulement si ses
valeurs propres sont réelles, et que ses éléments diagonaux sont ses valeurs propres comptées avec
leurs multiplicités. On note En l’ensemble des matrices à diagonale propre.

1. Montrer que toute matrice de Mn(R) est la somme de deux matrices de En.
2. Caractériser E2.

Chapitre 1. Algèbre 13

3. Déterminer les matrices antisymétriques réelles à diagonale propre.
4. Soit A ∈ Sn(R).

(a) On note λ1, . . . , λn les valeurs propres de A. Montrer que

∑
1≤i,j≤n

a2
i,j =

n∑
i=1

λ2
i .

(b) En déduire l’ensemble des matrices symétriques réelles à diagonale propre.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . � Indications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Exercice 1 :

Penser aux séries entières, et au développement de (1 − t)−1 pour |t| < 1.

Exercice 3
Q1 : Considérer, pour a ∈ R, x → P (x)eax et utiliser le théorème de Rolle.

Exercice 5 :
Montrer que toute racine de P est de multiplicité paire.

Exercice 6 :
Q3 : Montrer que si P est pair, il existe Q ∈ C[X] tel que P (X) = Q(X2 + 1), puis procéder par
récurrence.

Exercice 7 :
Q2 (c) : Pour n ∈ N, considérer le polynôme Hn(X) = 1

n! X(X − 1) · · · (X − n + 1), et montrer
qu’il vérifie Hn(Z) ⊂ Z.
Q4 : Montrer que ce sont les polynômes de la forme aXm, où a ∈ U et m ∈ N.

Exercice 10 :
Q3 : Pour v ∈ C(u), montrer que v coïncide avec un polynôme en u sur la base (x0, . . . , un−1(x0)).

Exercice 11 :
Raisonner par l’absurde, et montrer qu’un tel hyperplan contiendrait alors toutes les matrices
nilpotentes.

Exercice 15 :
Procéder par récurrence et distinguer le cas où la matrice est un multiple de l’identité. Dans les
autres cas, utiliser le résultat de l’exercice précédent, donnant que si A ∈ Mn(C) n’est pas une
homothétie, il existe un vecteur X tel que (X, AX) est libre.

Exercice 16 :
Se reporter à la définition de la comatrice donnée en début de chapitre.

Exercice 17 :
Montrer d’abord le résultat dans la cas où A est inversible.

Exercice 22 :
Utiliser le théorème de Cayley-Hamilton, et passer par la trace et le déterminant.
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14 Partie 1. Exercices corrigés

Exercice 24 :
Q2 (b) : Appliquer la question précédente à χA.

Exercice 25 :
Q1 : Pour λ ∈ Sp(A), prendre X un vecteur propre associé, et considérer i ∈ �1, n� tel que
|xi| = ∥X∥∞.

Exercice 26 :
Q1 : Pour une partie d’un espace de dimension finie, être compacte est équivalent à être fermée
et bornée. Se reporter au chapitre 23 (p. 391) pour plus de détails.
Q3 (a) : Voir l’exercice précédent pour la définition.

Exercice 27 :
Q2 : Pour k ∈ �0, n − 1�, considérer Xk = (1 ωk · · · (ωk)n−1)T , où ω = ei 2π

n .

Exercice 28 :
Q3 : Considérer AAT .
Q4 (a) : Calculer tr(A2).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . � Corrigés des exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Exercice 1

On suppose que 1A − xy est inversible, et on note z son inverse. Alors

(1A − yx)(1A + yzx) = 1A + yzx − yx − yxyzx.

Or,
yxyzx = −y(1A − xy)zx + yzx = −yx + yzx.

On en déduit que
(1A − yx)(1A + yzx) = 1A.

De même, (1A + yzx)(1A − yx) = 1A. Donc 1A − yx est inversible. □

Remarques

Comment intuiter une telle formule ? On sait que pour tout t ∈ ]−1, 1[,

(1 − t)−1 =
+∞∑
n=0

tn.

On peut donc proposer le raisonnement suivant

(1A − yx)−1 =
+∞∑
n=0

(yx)n = 1A + y

+∞∑
n=0

(xy)n · x = 1A + y(1A − xy)−1x.

Il reste ensuite à vérifier si cette formule convient. Évidemment, ce qu’on vient d’écrire
n’est pas correct. Il faudrait définir les séries dans un anneau, puis la convergence de
celles-ci, et le cas précédent ne s’appliquera peut-être même pas. Cependant, cette idée

Chapitre 1. Algèbre 15

est à conserver pour d’autres exercices. En effet, dans le cas d’un exercice du chapitre 24
(p. 413), si a ∈ A est nilpotent, on avait bien

(1A − a)−1 =
+∞∑
n=0

an,

puisque la somme est alors finie.

Exercice 2

• 1. Soit g ∈ G. L’application h ∈ G → g ◦ h est une bijection de G dans G, d’inverse donné par
h ∈ G → g−1 ◦ h. Ainsi, G = g ◦ G. Alors,

g ◦ p = 1
|G|

∑
h∈G

g ◦ h = 1
|G|

∑
h∈g◦G

h = p.

On en déduit que
p ◦ p = 1

|G|
∑
g∈G

g ◦ p = 1
|G|

∑
g∈G

p = p.

Donc p est un projecteur de E.
• 2. ⊂⊂⊂ Soit x ∈

⋂
g∈G ker(g − id). Alors

p(x) = 1
|G|

∑
g∈G

g(x) = 1
|G|

∑
g∈G

x = x.

Donc x ∈ Im(p).
⊃⊃⊃ Soit x ∈ Im(p). Pour tout g ∈ G,

g(x) = g(p(x)) = (g ◦ p)(x) = p(x) = x,

avec la question précédente. Donc x ∈ ker(g − id). On en déduit que
⋂

g∈G

ker(g − id) = Im(p).

Comme E est de dimension finie, on passe à la dimension,

dim
( ⋂

g∈G

ker(g − id)
)

= rg(p) = tr(p) = 1
|G|

∑
g∈G

tr(g). □

Remarques

Dans la deuxième question, on a utilisé implicitement que rg(p) = tr(p). En effet, en
dimension finie le rang d’un projecteur est égal à sa trace. Pour le montrer, on considère
la décomposition ker(p) ⊕ Im(p) = E, sachant que Im(p) = ker(p − id). Ainsi, la matrice
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14 Partie 1. Exercices corrigés

Exercice 24 :
Q2 (b) : Appliquer la question précédente à χA.

Exercice 25 :
Q1 : Pour λ ∈ Sp(A), prendre X un vecteur propre associé, et considérer i ∈ �1, n� tel que
|xi| = ∥X∥∞.

Exercice 26 :
Q1 : Pour une partie d’un espace de dimension finie, être compacte est équivalent à être fermée
et bornée. Se reporter au chapitre 23 (p. 391) pour plus de détails.
Q3 (a) : Voir l’exercice précédent pour la définition.

Exercice 27 :
Q2 : Pour k ∈ �0, n − 1�, considérer Xk = (1 ωk · · · (ωk)n−1)T , où ω = ei 2π

n .

Exercice 28 :
Q3 : Considérer AAT .
Q4 (a) : Calculer tr(A2).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . � Corrigés des exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Exercice 1

On suppose que 1A − xy est inversible, et on note z son inverse. Alors

(1A − yx)(1A + yzx) = 1A + yzx − yx − yxyzx.

Or,
yxyzx = −y(1A − xy)zx + yzx = −yx + yzx.

On en déduit que
(1A − yx)(1A + yzx) = 1A.

De même, (1A + yzx)(1A − yx) = 1A. Donc 1A − yx est inversible. □

Remarques

Comment intuiter une telle formule ? On sait que pour tout t ∈ ]−1, 1[,

(1 − t)−1 =
+∞∑
n=0

tn.

On peut donc proposer le raisonnement suivant

(1A − yx)−1 =
+∞∑
n=0

(yx)n = 1A + y

+∞∑
n=0

(xy)n · x = 1A + y(1A − xy)−1x.

Il reste ensuite à vérifier si cette formule convient. Évidemment, ce qu’on vient d’écrire
n’est pas correct. Il faudrait définir les séries dans un anneau, puis la convergence de
celles-ci, et le cas précédent ne s’appliquera peut-être même pas. Cependant, cette idée

Chapitre 1. Algèbre 15

est à conserver pour d’autres exercices. En effet, dans le cas d’un exercice du chapitre 24
(p. 413), si a ∈ A est nilpotent, on avait bien

(1A − a)−1 =
+∞∑
n=0

an,

puisque la somme est alors finie.

Exercice 2

• 1. Soit g ∈ G. L’application h ∈ G → g ◦ h est une bijection de G dans G, d’inverse donné par
h ∈ G → g−1 ◦ h. Ainsi, G = g ◦ G. Alors,

g ◦ p = 1
|G|

∑
h∈G

g ◦ h = 1
|G|

∑
h∈g◦G

h = p.

On en déduit que
p ◦ p = 1

|G|
∑
g∈G

g ◦ p = 1
|G|

∑
g∈G

p = p.

Donc p est un projecteur de E.
• 2. ⊂⊂⊂ Soit x ∈

⋂
g∈G ker(g − id). Alors

p(x) = 1
|G|

∑
g∈G

g(x) = 1
|G|

∑
g∈G

x = x.

Donc x ∈ Im(p).
⊃⊃⊃ Soit x ∈ Im(p). Pour tout g ∈ G,

g(x) = g(p(x)) = (g ◦ p)(x) = p(x) = x,

avec la question précédente. Donc x ∈ ker(g − id). On en déduit que
⋂

g∈G

ker(g − id) = Im(p).

Comme E est de dimension finie, on passe à la dimension,

dim
( ⋂

g∈G

ker(g − id)
)

= rg(p) = tr(p) = 1
|G|

∑
g∈G

tr(g). □

Remarques

Dans la deuxième question, on a utilisé implicitement que rg(p) = tr(p). En effet, en
dimension finie le rang d’un projecteur est égal à sa trace. Pour le montrer, on considère
la décomposition ker(p) ⊕ Im(p) = E, sachant que Im(p) = ker(p − id). Ainsi, la matrice
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16 Partie 1. Exercices corrigés

représentative de p dans une base de E est semblable à une matrice de la forme
(

Irg(p) 0
0 0

)
.

La trace et le rang étant un invariant de similitude, on en déduit que rg(p) = tr(p). Une
application de ce résultat, qu’on peut retrouver formulée telle quelle dans un exercice
d’oral, est : étant donné A ∈ Mn(R) et p ∈ N∗ tels que Ap = In, montrer que

dim(ker(A − In)) = 1
p

p−1∑
k=0

tr(Ak).

En supposant que p est l’entier non nul minimal tel que Ap = In, alors H = {Ak | k ∈ N}
est un sous-groupe de GLn(R) de cardinal p. Et on a évidemment que pour tout k ∈ N,

ker(A − In) ⊂ ker(Ak − In),

ce qui suffit à conclure. Dans le cas où p n’est pas minimal, on peut l’écrire p = qr, avec
q ≥ 2 et où r est l’entier non nul minimal tel que Ar = In. En réarrangeant la somme, on
trouve alors le résultat.

Exercice 3

• 1. Soit a ∈ R. On définit f : R → R par

f(x) = P (x)eax, pour tout x ∈ R.

On note a1 < · · · < ar les racines de P , de multiplicités m1, . . . , mr, où r ∈ N∗. On sait alors
que P ′ + aP a au moins

(m1 − 1) + · · · + (mr − 1) = deg(P ) − r

racines réelles comptées avec multiplicité, que sont a1, . . . , ar. Soit k ∈ �0, r − 1�. On a

f(ak) = 0 = f(ak+1).

Or f est dérivable sur ]ak, ak+1[ et continue sur [ak, ak+1]. D’après le théorème de Rolle, on
dispose de bk ∈ ]ak, ak+1[ tel que f ′(bk) = 0. Or

f ′(bk) = (P ′(bk) + aP (bk))eabk .

Donc (P ′ + aP )(bk) = 0. Ce qui apporte r − 1 racines réelles supplémentaires, et monte le total
à deg(P ) − 1. Si a = 0, cela montre déjà que P ′ + aP est scindé ou constant. Sinon, supposons
que a > 0. Alors

lim
x→−∞

f(x) = 0,

par croissances comparées. f n’étant pas constante sur ]−∞, b1], on dispose de x1 ∈ ]−∞, b1] tel
que f(x1) ̸= 0. Et on suppose que f(x1) > 0, par symétrie. Comme f tend vers 0 en −∞, on
dispose de A ≤ b1 tel que

∀x ≤ A, f(x) <
f(x1)

2 .

Chapitre 1. Algèbre 17

Par théorème des valeurs intermédiaires sur [A, x1] et [x1, b1], on dispose de x2 ∈ ]A, x1[ et
x3 ∈ ]x1, b1[ tels que

f(x2) = f(x1)
2 = f(x3).

On peut donc appliquer le théorème de Rolle à f sur ]x2, x3[, et obtenir une nouvelle racine de
P ′ + aP . Ainsi P ′ + aP est scindé sur R. On fait de même en +∞ si a < 0. D’où le résultat.
• 2. Q étant scindé sur R, on l’écrit

Q(X) =
n∏

i=1
(X − ri), où r1, . . . , rn ∈ R.

On note D l’opérateur de dérivation sur R[X]. On a
n∑

k=0
bkP (k) = Q(D)(P ) =

( n∏
i=1

(D − riid)
)

(P ) =
n∏

i=1
(P ′ − riP ).

Ce qui montre le caractère scindé ou constant comme produit de polynômes scindés ou constants
d’après la question précédente. □

Remarques

La première question est particulièrement difficile, car il faut penser à introduire la bonne
fonction afin d’appliquer le théorème de Rolle. Cependant, P ′ + aP peut faire penser à
une équation différentielle, dont la solution est x → e−ax. On peut ainsi faire apparaître
une « dérivée exacte » en multipliant par x → eax. La seconde question s’en déduit alors
aisément.

Exercice 4

Analyse : Soit P ∈ C[X] un tel polynôme. Si P est constant, on remarque que P = 0 ou P = 1.
Sinon, soit r ∈ C une racine de P . Alors P (r2) = P (r)P (r − 1) = 0. Donc r2 est racine de P . On
montre alors par récurrence que r2n est racine de P pour tout n ∈ N∗. Comme P a un nombre
fini de racines, on a nécessairement

r2m

= r2n

, pour certains m ̸= n,

ce qui montre que r = 0 ou r est une racine de l’unité. Si 0 est racine de P , on a

P (1) = P (1)P (0) = 0, puis P (4) = P (2)P (1) = 0.

Donc 4 est racine de P , mais n’est ni nul ni une racine de l’unité. Donc 0 n’est pas racine de P .
Ainsi, on écrit r = eiθ, avec θ ∈ [−π, π[. Or,

P ((r + 1)2) = P (r + 1)P (r + 1 − 1) = P (r + 1)P (r) = 0,

donc (r +1)2 est une racine de P , et aussi une racine de l’unité en faisant le même raisonnement.
En particulier, |r + 1| = 1. D’où,

1 = |r + 1|2 = (1 + eiθ)(1 + e−iθ) = 2 + 2 cos(θ).
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représentative de p dans une base de E est semblable à une matrice de la forme
(

Irg(p) 0
0 0

)
.

La trace et le rang étant un invariant de similitude, on en déduit que rg(p) = tr(p). Une
application de ce résultat, qu’on peut retrouver formulée telle quelle dans un exercice
d’oral, est : étant donné A ∈ Mn(R) et p ∈ N∗ tels que Ap = In, montrer que

dim(ker(A − In)) = 1
p

p−1∑
k=0

tr(Ak).

En supposant que p est l’entier non nul minimal tel que Ap = In, alors H = {Ak | k ∈ N}
est un sous-groupe de GLn(R) de cardinal p. Et on a évidemment que pour tout k ∈ N,

ker(A − In) ⊂ ker(Ak − In),

ce qui suffit à conclure. Dans le cas où p n’est pas minimal, on peut l’écrire p = qr, avec
q ≥ 2 et où r est l’entier non nul minimal tel que Ar = In. En réarrangeant la somme, on
trouve alors le résultat.

Exercice 3

• 1. Soit a ∈ R. On définit f : R → R par

f(x) = P (x)eax, pour tout x ∈ R.

On note a1 < · · · < ar les racines de P , de multiplicités m1, . . . , mr, où r ∈ N∗. On sait alors
que P ′ + aP a au moins

(m1 − 1) + · · · + (mr − 1) = deg(P ) − r

racines réelles comptées avec multiplicité, que sont a1, . . . , ar. Soit k ∈ �0, r − 1�. On a

f(ak) = 0 = f(ak+1).

Or f est dérivable sur ]ak, ak+1[ et continue sur [ak, ak+1]. D’après le théorème de Rolle, on
dispose de bk ∈ ]ak, ak+1[ tel que f ′(bk) = 0. Or

f ′(bk) = (P ′(bk) + aP (bk))eabk .

Donc (P ′ + aP )(bk) = 0. Ce qui apporte r − 1 racines réelles supplémentaires, et monte le total
à deg(P ) − 1. Si a = 0, cela montre déjà que P ′ + aP est scindé ou constant. Sinon, supposons
que a > 0. Alors

lim
x→−∞

f(x) = 0,

par croissances comparées. f n’étant pas constante sur ]−∞, b1], on dispose de x1 ∈ ]−∞, b1] tel
que f(x1) ̸= 0. Et on suppose que f(x1) > 0, par symétrie. Comme f tend vers 0 en −∞, on
dispose de A ≤ b1 tel que

∀x ≤ A, f(x) <
f(x1)

2 .
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Par théorème des valeurs intermédiaires sur [A, x1] et [x1, b1], on dispose de x2 ∈ ]A, x1[ et
x3 ∈ ]x1, b1[ tels que

f(x2) = f(x1)
2 = f(x3).

On peut donc appliquer le théorème de Rolle à f sur ]x2, x3[, et obtenir une nouvelle racine de
P ′ + aP . Ainsi P ′ + aP est scindé sur R. On fait de même en +∞ si a < 0. D’où le résultat.
• 2. Q étant scindé sur R, on l’écrit

Q(X) =
n∏

i=1
(X − ri), où r1, . . . , rn ∈ R.

On note D l’opérateur de dérivation sur R[X]. On a
n∑

k=0
bkP (k) = Q(D)(P ) =

( n∏
i=1

(D − riid)
)

(P ) =
n∏

i=1
(P ′ − riP ).

Ce qui montre le caractère scindé ou constant comme produit de polynômes scindés ou constants
d’après la question précédente. □

Remarques

La première question est particulièrement difficile, car il faut penser à introduire la bonne
fonction afin d’appliquer le théorème de Rolle. Cependant, P ′ + aP peut faire penser à
une équation différentielle, dont la solution est x → e−ax. On peut ainsi faire apparaître
une « dérivée exacte » en multipliant par x → eax. La seconde question s’en déduit alors
aisément.

Exercice 4

Analyse : Soit P ∈ C[X] un tel polynôme. Si P est constant, on remarque que P = 0 ou P = 1.
Sinon, soit r ∈ C une racine de P . Alors P (r2) = P (r)P (r − 1) = 0. Donc r2 est racine de P . On
montre alors par récurrence que r2n est racine de P pour tout n ∈ N∗. Comme P a un nombre
fini de racines, on a nécessairement

r2m

= r2n

, pour certains m ̸= n,

ce qui montre que r = 0 ou r est une racine de l’unité. Si 0 est racine de P , on a

P (1) = P (1)P (0) = 0, puis P (4) = P (2)P (1) = 0.

Donc 4 est racine de P , mais n’est ni nul ni une racine de l’unité. Donc 0 n’est pas racine de P .
Ainsi, on écrit r = eiθ, avec θ ∈ [−π, π[. Or,

P ((r + 1)2) = P (r + 1)P (r + 1 − 1) = P (r + 1)P (r) = 0,

donc (r +1)2 est une racine de P , et aussi une racine de l’unité en faisant le même raisonnement.
En particulier, |r + 1| = 1. D’où,

1 = |r + 1|2 = (1 + eiθ)(1 + e−iθ) = 2 + 2 cos(θ).
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Ainsi, cos(θ) = − 1
2 . Ce qui donne θ = ± 2π

3 . On pose j = ei 2π
3 . Le raisonnement précédent montre

que les racines de P ne peuvent être que j ou j2. On écrit alors

P (X) = λ(X − j)a(X − j2)b,

avec λ ̸= 0 et a, b ∈ N. On a d’une part,

P (X2) = λ(X2 − j)a(X2 − j2)b

= λ(X2 − j4)a(X2 − j2)b

= λ(X − j2)a(X + j2)a(X − j)b(X + j)b,

car j4 = j, et d’autre part,

P (X)P (X − 1) = λ2(X − j)a(X − j2)b(X − 1 − j)a(X − 1 − j2)b

= λ2(X − j)a(X − j2)b(X + j2)a(X + j)b,

en exploitant que 1 + j + j2 = 0. Par identification des deux polynômes, on en déduit que λ = 1
et a = b. Ainsi,

P (X) = (X − j)a(X − j2)a.

Synthèse : La réciproque se fait en reprenant le calcul ci-dessus. De plus,

(X − j)(X − j2) = X2 − (j + j2)X + j3 = X2 + X + 1,

ce qui permet de simplifier l’ensemble des solutions en

S = {0} ∪ {(X2 + X + 1)a | a ∈ N}. □

Remarques

En général, les équations sur les polynômes s’abordent de la même manière : on détermine
les polynômes constants solutions, on examine la cohérence du degré sur l’équation, puis
on restreint l’ensemble des racines. Par exemple, considérons un polynôme P ∈ C[X] tel
que

P (X3) = P (X + 1)P (X − 1).
Alors, si P est constant, P est égal à 0 ou 1. S’il n’est pas constant, on a

3 deg(P ) = deg(P (X3)) = deg(P (X + 1)P (X − 1)) = 2 deg(P ),

donc deg(P ) = 0. Ce qui conclut. Mais on peut rendre l’hypothèse plus complexe avec

P (X3) = XP (X + 1)P (X − 1),

qui montrera que P est nécessairement nul ou de degré 1, puis on résout un système.
Pour déterminer les racines dans cet exercice, on aurait aussi pu aborder une approche
géométrique. En effet, si r ∈ C vérifie

|r + 1| = 1 = |r|,

Chapitre 1. Algèbre 19

cela signifie que r est situé sur le cercle de centre −1 et de rayon 1, et aussi sur le cercle
de centre 0 et de rayon 1. On identifie deux solutions qui sont bien j et j2.

Exercice 5

Supposons que P admette une racine réelle r. Alors, on écrit

P (X) = (X − r)mQ(X),

où m est la multiplicité de r dans P et Q est un polynôme réel tel que Q(r) ̸= 0. Par continuité
de Q sur R, on dispose de ε > 0 tel que Q est de signe constant sur [r − ε, r + ε]. Alors,

P (r + ε) = εmQ(r + ε) ≥ 0, et P (r − ε) = (−1)mεmQ(r − ε) ≥ 0.

Or Q(r + ε) et Q(r − ε) sont de même signe, donc (−1)m = 1, et m est pair. On note donc

P (X) =
n∏

i=1
(X − ri)2 ·

k∏
i=1

(X − zi)(X − zi),

où r1, . . . , rn ∈ R, z1, . . . , zk ̸∈ R, et n, k ∈ N. On définit

Q(X) =
n∏

i=1
(X − ri)2 et R(X) =

k∏
i=1

(X − zi).

R ∈ C[X], et on peut l’écrire R = A + iB, où A, B ∈ R[X]. Ainsi,

P = Q2RR = Q2(A + iB)(A − iB) = Q2(A2 + B2) = (QA)2 + (QB)2,

avec QA, QB ∈ R[X]. D’où le résultat. □

Remarques

L’astuce de faire apparaître le conjugué du polynôme peut être utilisé pour montrer que
toute matrice complexe A est annulée par un polynôme à coefficients réels. Il suffit en
effet de considérer χA · χA.

Exercice 6

• 1. L’équation donne que

(P (−X))2 + 1 = P (X2 + 1) = (P (X))2 + 1, donc (P (X) + P (−X))(P (X) − P (−X)) = 0.

Le produit de polynômes étant intègre, on a P (X) = P (−X) ou P (X) = −P (−X). Dans le
premier cas, on montre par identification des coefficients que P est pair, et dans le second cas
que P est impair.
• 2. On suppose que P est impair. On définit la suite (xn) par x0 = 0, puis

xn+1 = x2
n + 1, pour tout n ∈ N.
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Ainsi, cos(θ) = − 1
2 . Ce qui donne θ = ± 2π

3 . On pose j = ei 2π
3 . Le raisonnement précédent montre

que les racines de P ne peuvent être que j ou j2. On écrit alors

P (X) = λ(X − j)a(X − j2)b,

avec λ ̸= 0 et a, b ∈ N. On a d’une part,

P (X2) = λ(X2 − j)a(X2 − j2)b

= λ(X2 − j4)a(X2 − j2)b

= λ(X − j2)a(X + j2)a(X − j)b(X + j)b,

car j4 = j, et d’autre part,

P (X)P (X − 1) = λ2(X − j)a(X − j2)b(X − 1 − j)a(X − 1 − j2)b

= λ2(X − j)a(X − j2)b(X + j2)a(X + j)b,

en exploitant que 1 + j + j2 = 0. Par identification des deux polynômes, on en déduit que λ = 1
et a = b. Ainsi,

P (X) = (X − j)a(X − j2)a.

Synthèse : La réciproque se fait en reprenant le calcul ci-dessus. De plus,

(X − j)(X − j2) = X2 − (j + j2)X + j3 = X2 + X + 1,

ce qui permet de simplifier l’ensemble des solutions en

S = {0} ∪ {(X2 + X + 1)a | a ∈ N}. □

Remarques

En général, les équations sur les polynômes s’abordent de la même manière : on détermine
les polynômes constants solutions, on examine la cohérence du degré sur l’équation, puis
on restreint l’ensemble des racines. Par exemple, considérons un polynôme P ∈ C[X] tel
que

P (X3) = P (X + 1)P (X − 1).
Alors, si P est constant, P est égal à 0 ou 1. S’il n’est pas constant, on a

3 deg(P ) = deg(P (X3)) = deg(P (X + 1)P (X − 1)) = 2 deg(P ),

donc deg(P ) = 0. Ce qui conclut. Mais on peut rendre l’hypothèse plus complexe avec

P (X3) = XP (X + 1)P (X − 1),

qui montrera que P est nécessairement nul ou de degré 1, puis on résout un système.
Pour déterminer les racines dans cet exercice, on aurait aussi pu aborder une approche
géométrique. En effet, si r ∈ C vérifie

|r + 1| = 1 = |r|,
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cela signifie que r est situé sur le cercle de centre −1 et de rayon 1, et aussi sur le cercle
de centre 0 et de rayon 1. On identifie deux solutions qui sont bien j et j2.

Exercice 5

Supposons que P admette une racine réelle r. Alors, on écrit

P (X) = (X − r)mQ(X),

où m est la multiplicité de r dans P et Q est un polynôme réel tel que Q(r) ̸= 0. Par continuité
de Q sur R, on dispose de ε > 0 tel que Q est de signe constant sur [r − ε, r + ε]. Alors,

P (r + ε) = εmQ(r + ε) ≥ 0, et P (r − ε) = (−1)mεmQ(r − ε) ≥ 0.

Or Q(r + ε) et Q(r − ε) sont de même signe, donc (−1)m = 1, et m est pair. On note donc

P (X) =
n∏

i=1
(X − ri)2 ·

k∏
i=1

(X − zi)(X − zi),

où r1, . . . , rn ∈ R, z1, . . . , zk ̸∈ R, et n, k ∈ N. On définit

Q(X) =
n∏

i=1
(X − ri)2 et R(X) =

k∏
i=1

(X − zi).

R ∈ C[X], et on peut l’écrire R = A + iB, où A, B ∈ R[X]. Ainsi,

P = Q2RR = Q2(A + iB)(A − iB) = Q2(A2 + B2) = (QA)2 + (QB)2,

avec QA, QB ∈ R[X]. D’où le résultat. □

Remarques

L’astuce de faire apparaître le conjugué du polynôme peut être utilisé pour montrer que
toute matrice complexe A est annulée par un polynôme à coefficients réels. Il suffit en
effet de considérer χA · χA.

Exercice 6

• 1. L’équation donne que

(P (−X))2 + 1 = P (X2 + 1) = (P (X))2 + 1, donc (P (X) + P (−X))(P (X) − P (−X)) = 0.

Le produit de polynômes étant intègre, on a P (X) = P (−X) ou P (X) = −P (−X). Dans le
premier cas, on montre par identification des coefficients que P est pair, et dans le second cas
que P est impair.
• 2. On suppose que P est impair. On définit la suite (xn) par x0 = 0, puis

xn+1 = x2
n + 1, pour tout n ∈ N.
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Comme P est impair, P (0) = 0. Or, pour tout n ∈ N,

P (xn+1) = P (x2
n + 1) = (P (xn))2 + 1.

On en déduit par récurrence immédiate que P (xn) = xn. Or, pour n ∈ N,

xn+1 − xn = x2
n − xn + 1 =

(
xn − 1

2

)2
+ 3

4 ≥ 3
4 .

En sommant on obtient que

xn =
n−1∑
k=0

(xk+1 − xk) ≥ 3n

4 −−→
n→+∞

+∞.

En particulier, {xn | n ∈ N} est infini et tous ses éléments sont racines du polynôme P (X) − X,
qui est alors le polynôme nul. D’où P (X) = X.
• 3. Pour tout n ∈ N, on pose Hn : pour tout Q ∈ C[X] non constant tel que deg(Q) ≤ 2n et
Q(X2 + 1) = (Q(X))2 + 1, il existe k ∈ N tel que

Q(X) = (X2 + 1) ◦ · · · ◦ (X2 + 1)︸ ︷︷ ︸
k fois

.

Initialisation : Soit Q ∈ C[X] non constant vérifiant l’équation, et avec deg(Q) ≤ 1. Alors Q
est de degré 1. Or Q est pair ou impair, et si par l’absurde Q était pair, alors il serait constant
ou au moins de degré 2. Ainsi Q est impair, et donc Q(X) = X. H0 est vraie.
Hérédité : Soit n ∈ N. On suppose Hn. Soit Q ∈ C[X] non constant vérifiant l’équation, et
avec deg(Q) ≤ 2n+1. Si deg(Q) ≤ 2n, on peut appliquer Hn. Sinon, Q est nécessairement pair,
car X est de degré inférieur à 2n. On peut donc écrire, avec le binôme de Newton,

Q(X) =
m∑

i=0
aiX

2i =
m∑

i=0
ai(X2 + 1 − 1)i =

m∑
i=0

i∑
j=0

(
i

j

)
(−1)i−j(X2 + 1)j = R(X2 + 1),

où m ∈ N∗, a0, . . . , am ∈ R et R ∈ C[X]. On a alors, pour tout x ∈ R,

(R(x2 + 1))2 + 1 = (Q(x))2 + 1 = Q(x2 + 1) = R((x2 + 1)2 + 1).

Pour tout y ≥ 1, on peut écrire y = z2 + 1, où z ∈ R. D’où

(R(y))2 + 1 = (R(z2 + 1))2 + 1 = R((z2 + 1)2 + 1) = R(y2 + 1).

Ainsi, les polynômes (R(X))2 + 1 et R(X2 + 1) coïncident sur une partie infinie de R, donc sont
égaux. Or,

2n+1 ≥ deg(Q) = deg(R(X2 + 1)) = 2 deg(R).
On en déduit que deg(R) ≤ 2n. Par hypothèse de récurrence, on dispose de k ∈ N tel que

R(X) = (X2 + 1) ◦ · · · ◦ (X2 + 1)︸ ︷︷ ︸
k fois

.

Ainsi,
Q(X) = R(X2 + 1) = (X2 + 1) ◦ · · · ◦ (X2 + 1)︸ ︷︷ ︸

k+1 fois

.

D’où Hn+1. Ce qui achève la récurrence et montre le résultat. □
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Remarques

Dans cet exercice, on détermine le commutant de X2 + 1, puisque

C(X2 + 1) = {P ∈ C[X] | P (X2 + 1) = (P (X))2 + 1}.

On montre alors qu’à part les polynômes constants, ce sont les itérés de X2 + 1. Pour les
polynôme constants, il suffit de résoudre

z = z2 + 1, d’inconnue z ∈ C,

qui admet deux solutions. Cet exercice n’est pas évident, car les questions 1 et 2 sont
astucieuses, et la question 3 demande un peu d’intuition. S’il fallait retenir quelque chose
de cet exercice, c’est de bien exploiter le fait que deux polynômes coïncidant sur une
partie infinie sont égaux.

Exercice 7

• 1. Soit z ∈ C. D’après le théorème de d’Alembert-Gauss, le polynôme P (X) − z admet une
racine dans C. On note x ∈ C l’une d’entre elles. Alors z = P (x) ∈ P (C). D’où P (C) = C, l’autre
inclusion étant évidente.
• 2. (a) ⇒ On suppose que P (R) ⊂ R. On écrit P (X) =

∑n
k=0 akXk, où n ∈ N et où a0, . . . , an

sont des complexes. Alors, pour tout x ∈ R,
n∑

k=0
akxk = P (x) = P (x) =

n∑
k=0

akxk,

car x est réel et P (x) aussi. On en déduit que ak = ak pour tout k ∈ �0, n�, i.e. P ∈ R[X].
⇐ Réciproquement si P ∈ R[X], alors P (R) ⊂ R.
(b) ⇒ On suppose que P (Q) ⊂ Q. Si P est constant, alors P ∈ Q[X]. Sinon, on note n ∈ N∗

son degré. D’après le théorème d’interpolation de Lagrange (p. 436), on a

P (X) =
n∑

i=0
P (i)︸︷︷︸

∈Q

·
n∏

j=0
j ̸=i

X − i

j − i

︸ ︷︷ ︸
∈Q[X]

∈ Q[X].

Ainsi, P ∈ Q[X].
⇐ Réciproquement si P ∈ Q[X], alors P (Q) ⊂ Q.
(c) Pour tout n ∈ N∗, on définit

Hn(X) = 1
n!X(X − 1) · · · (X − n + 1),

et H0(X) = 1. Soit n ∈ N. Montrons que Hn(Z) ⊂ Z. Si n = 0, c’est évident. Sinon, soit k ∈ Z.
On a

Hn(k) = k(k − 1) · · · (k − (n − 1))
n! .

9782340-111448_INT.indd   209782340-111448_INT.indd   20 29/12/2025   15:2429/12/2025   15:24



20 Partie 1. Exercices corrigés

Comme P est impair, P (0) = 0. Or, pour tout n ∈ N,

P (xn+1) = P (x2
n + 1) = (P (xn))2 + 1.

On en déduit par récurrence immédiate que P (xn) = xn. Or, pour n ∈ N,

xn+1 − xn = x2
n − xn + 1 =

(
xn − 1

2

)2
+ 3

4 ≥ 3
4 .

En sommant on obtient que

xn =
n−1∑
k=0

(xk+1 − xk) ≥ 3n

4 −−→
n→+∞

+∞.

En particulier, {xn | n ∈ N} est infini et tous ses éléments sont racines du polynôme P (X) − X,
qui est alors le polynôme nul. D’où P (X) = X.
• 3. Pour tout n ∈ N, on pose Hn : pour tout Q ∈ C[X] non constant tel que deg(Q) ≤ 2n et
Q(X2 + 1) = (Q(X))2 + 1, il existe k ∈ N tel que

Q(X) = (X2 + 1) ◦ · · · ◦ (X2 + 1)︸ ︷︷ ︸
k fois

.

Initialisation : Soit Q ∈ C[X] non constant vérifiant l’équation, et avec deg(Q) ≤ 1. Alors Q
est de degré 1. Or Q est pair ou impair, et si par l’absurde Q était pair, alors il serait constant
ou au moins de degré 2. Ainsi Q est impair, et donc Q(X) = X. H0 est vraie.
Hérédité : Soit n ∈ N. On suppose Hn. Soit Q ∈ C[X] non constant vérifiant l’équation, et
avec deg(Q) ≤ 2n+1. Si deg(Q) ≤ 2n, on peut appliquer Hn. Sinon, Q est nécessairement pair,
car X est de degré inférieur à 2n. On peut donc écrire, avec le binôme de Newton,

Q(X) =
m∑

i=0
aiX

2i =
m∑

i=0
ai(X2 + 1 − 1)i =

m∑
i=0

i∑
j=0

(
i

j

)
(−1)i−j(X2 + 1)j = R(X2 + 1),

où m ∈ N∗, a0, . . . , am ∈ R et R ∈ C[X]. On a alors, pour tout x ∈ R,

(R(x2 + 1))2 + 1 = (Q(x))2 + 1 = Q(x2 + 1) = R((x2 + 1)2 + 1).

Pour tout y ≥ 1, on peut écrire y = z2 + 1, où z ∈ R. D’où

(R(y))2 + 1 = (R(z2 + 1))2 + 1 = R((z2 + 1)2 + 1) = R(y2 + 1).

Ainsi, les polynômes (R(X))2 + 1 et R(X2 + 1) coïncident sur une partie infinie de R, donc sont
égaux. Or,

2n+1 ≥ deg(Q) = deg(R(X2 + 1)) = 2 deg(R).
On en déduit que deg(R) ≤ 2n. Par hypothèse de récurrence, on dispose de k ∈ N tel que
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k fois

.

Ainsi,
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k+1 fois

.

D’où Hn+1. Ce qui achève la récurrence et montre le résultat. □
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Remarques

Dans cet exercice, on détermine le commutant de X2 + 1, puisque

C(X2 + 1) = {P ∈ C[X] | P (X2 + 1) = (P (X))2 + 1}.

On montre alors qu’à part les polynômes constants, ce sont les itérés de X2 + 1. Pour les
polynôme constants, il suffit de résoudre

z = z2 + 1, d’inconnue z ∈ C,

qui admet deux solutions. Cet exercice n’est pas évident, car les questions 1 et 2 sont
astucieuses, et la question 3 demande un peu d’intuition. S’il fallait retenir quelque chose
de cet exercice, c’est de bien exploiter le fait que deux polynômes coïncidant sur une
partie infinie sont égaux.

Exercice 7

• 1. Soit z ∈ C. D’après le théorème de d’Alembert-Gauss, le polynôme P (X) − z admet une
racine dans C. On note x ∈ C l’une d’entre elles. Alors z = P (x) ∈ P (C). D’où P (C) = C, l’autre
inclusion étant évidente.
• 2. (a) ⇒ On suppose que P (R) ⊂ R. On écrit P (X) =

∑n
k=0 akXk, où n ∈ N et où a0, . . . , an

sont des complexes. Alors, pour tout x ∈ R,
n∑

k=0
akxk = P (x) = P (x) =

n∑
k=0

akxk,

car x est réel et P (x) aussi. On en déduit que ak = ak pour tout k ∈ �0, n�, i.e. P ∈ R[X].
⇐ Réciproquement si P ∈ R[X], alors P (R) ⊂ R.
(b) ⇒ On suppose que P (Q) ⊂ Q. Si P est constant, alors P ∈ Q[X]. Sinon, on note n ∈ N∗

son degré. D’après le théorème d’interpolation de Lagrange (p. 436), on a

P (X) =
n∑

i=0
P (i)︸︷︷︸

∈Q

·
n∏

j=0
j ̸=i

X − i

j − i

︸ ︷︷ ︸
∈Q[X]

∈ Q[X].

Ainsi, P ∈ Q[X].
⇐ Réciproquement si P ∈ Q[X], alors P (Q) ⊂ Q.
(c) Pour tout n ∈ N∗, on définit

Hn(X) = 1
n!X(X − 1) · · · (X − n + 1),

et H0(X) = 1. Soit n ∈ N. Montrons que Hn(Z) ⊂ Z. Si n = 0, c’est évident. Sinon, soit k ∈ Z.
On a

Hn(k) = k(k − 1) · · · (k − (n − 1))
n! .
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∗ Si k ≥ n, alors
Hn(k) = k!

(k − n)! n! =
(

k

n

)
∈ Z. (1)

∗ Si k ∈ �0, n − 1�,
Hn(k) = 0 ∈ Z.

∗ Si k < 0, alors

Hn(k) = (−1)n (n − k − 1)(n − k − 2) · · · (n − k − n)
n!

= (−1)n (n − k − 1)!
(n − k − 1 − n)! n!

= (−1)n

(
n − k − 1

n

)
∈ Z.

Dans tous les cas, Hn(k) ∈ Z. Donc Hn(Z) ⊂ Z. De plus, la famille (Hn)n∈N est à degré échelonné,
donc forme une base de C[X].
⇒ On suppose que P (Z) ⊂ Z. Supposons P non constant. On note n ∈ N∗ son degré. (Hk)k∈N
étant une base de C[X], on dispose de a0, . . . , an ∈ C tels que

P (X) =
n∑

k=0
akHk(X).

Pour tout k ∈ �0, n�, on pose Pn : « a0, . . . , ak ∈ Z ».
Initialisation : a0 = P (0) ∈ Z, donc P0 est vraie.
Hérédité : Soit k ∈ �0, n − 1�. On suppose Pk. Alors,

P (k + 1) =
n∑

i=0
aiHi(k + 1) = ak+1Hk+1(k + 1) +

k∑
i=0

aiHi(k + 1).

Or, Hk+1(k + 1) =
(

k+1
k+1

)
= 1, avec (1). Donc

ak+1 = P (k + 1) −
k∑

i=0
aiHi(k + 1) ∈ Z,

comme somme et produits d’entiers, avec Pk et l’hypothèse sur P . D’où Pk+1. Ce qui achève la
récurrence. On en déduit que

P ∈ {a0H0 + · · · + akHk | k ∈ N, a0, . . . , ak ∈ Z}.

Si P est constant, il est constant à un entier, donc appartient à l’ensemble ci-dessus.
⇐ Réciproquement si P appartient à l’ensemble ci-dessus, alors P (Z) ⊂ Z.
• 3. Notons I la quantité à calculer. On écrit P (X) =

∑d
k=0 akXk, avec a0, . . . , ad des complexes.

D’une part,

I =
∫ 2π

0

d∑
k=0

akeikθ ·
d∑

l=0
ale

−ilθ · e−idθ dθ

=
∑

0≤k,l≤d

akal

∫ 2π

0
exp(i(k − l − d)θ) dθ.
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Or, pour tout n ∈ Z∗, ∫ 2π

0
einθ dθ = 0.

Et, on a pour tous k, l ∈ �0, d�, k − l = d si et seulement si k = d et l = 0. On en déduit que

I = ada0

∫ 2π

0
ei(d−d)θ dθ = 2πada0.

D’autre part, P (U) ⊂ U, donc

I =
∫ 2π

0
|P (eiθ)|2e−idθ dθ =

∫ 2π

0
e−idθ dθ = 0.

On en déduit que ada0 = 0, et comme P est de degré d, ad ̸= 0. D’où a0 = 0, i.e. P (0) = 0.
• 4. Analyse : Soit Q ∈ C[X] tel que Q(U) ⊂ U. Déjà, Q ̸= 0, car 0 ̸∈ U. On note m la
multiplicité de 0 comme racine de Q (qui peut être nulle). On dispose ainsi de R ∈ C[X] tel que

Q(X) = XmR(X), où R(0) ̸= 0.

Soit z ∈ U. Alors,
|R(z)| = |zmR(z)| = |Q(z)| = 1.

Ainsi, R(U) ⊂ U. Si R n’était pas constant, la question précédente montrerait que R(0) = 0, ce
qui est absurde. Ainsi R est constant, et on a

Q(X) = aXm, où a ∈ C.

Ensuite, a = Q(1) ∈ U.
Synthèse : Réciproquement, soient a ∈ U et m ∈ N. On pose Q(X) = aXm. On a pour tout
z ∈ U,

|Q(z)| = |a| · |z|m = 1.

Donc Q(U) ⊂ U. On peut conclure que

S = {aXm | a ∈ U, m ∈ N}. □

Remarques

On aurait pu utiliser la même approche fondée sur les polynômes de Lagrange pour les
questions 2 (a) et 2 (b), et même la généraliser. En effet, si on prend L un sous-corps de
C, et P ∈ C[X] tel que P (L) ⊂ L, alors on peut écrire

P (X) =
n∑

i=0
P (xi)︸ ︷︷ ︸

∈L

·
n∏

j=0
j ̸=i

X − xi

xj − xi

︸ ︷︷ ︸
∈L[X]

∈ L[X],

où n ∈ N et x1, . . . , xn sont des éléments distincts de L. La question suivante est bien plus
difficile, car on voudrait montrer que seuls les polynômes de Z[X] conviennent. Cependant,
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le polynôme
Q(X) = X(X + 1)

2
est un exemple simple vérifiant Q(Z) ⊂ Z. L’indication aurait pu être intégrée directement
dans l’exercice, mais sans elle, il y a une possibilité de prise d’autonomie. Si vous n’avez
pas réussi, ce n’est pas grave : souvenez-vous de l’approche à adopter, et réessayez une
autre fois.
Enfin, pour la dernière question, on aurait aussi pu raisonner par récurrence sur le degré
du polynôme en exploitant l’annulation en 0 trouvée en question 3.

Exercice 8

• 1. ⇒ On suppose qu’il existe h ∈ L (F, G) telle que g = h ◦ f . Soit x ∈ ker(f), alors

g(x) = h(f(x)) = h(0F ) = 0G,

donc x ∈ ker(g). D’où ker(f) ⊂ ker(g).
⇐ Supposons que ker(f) ⊂ ker(g). Soit (e1, . . . , ep) une base de ker(f), qu’on complète en
(e1, . . . , eq) une base de ker(g), puis en (e1, . . . , em) une base de E. Alors (f(ep+1), . . . , f(em))
est une famille libre de F , qu’on complète en (v1, . . . , vk, f(ep+1), . . . , f(em)) une base de F . On
définit h ∈ L (F, G) sur cette base de F par

h(vj) = 0G, pour tout j ∈ �1, k� ,

puis
h(f(ej)) = g(ej), pour tout j ∈ �p + 1, m� .

Montrons que g et h ◦ f coïncide sur (e1, . . . , em). Soit j ∈ �1, m�.
∗ Si i ∈ �1, p�, ei ∈ ker(f) ⊂ ker(g), et

h(f(ei)) = h(0F ) = 0G = g(ei).

∗ Si i ∈ �p + 1, m�, alors h(f(ei)) = g(ei) par définition.
Ainsi g = h ◦ f , car ces applications linéaires coïncident sur une base de E.
• 2. ⇒ On suppose qu’il existe f ∈ L (E, F ) telle que g = h ◦ f . Alors Im(g) ⊂ Im(h).
⇐ Supposons que Im(g) ⊂ Im(h). Soit (e1, . . . , em) une base de E. Pour tout j ∈ �1, m�,
g(ej) ∈ Im(g) ⊂ Im(h), donc on dispose de yj ∈ F tel que h(yj) = g(ej). Alors, on définit
f ∈ L (E, F ) sur la base de E ci-dessus par

f(ej) = yj , pour tout j ∈ �1, m� .

Ainsi, pour tout j ∈ �1, m�,
h(f(ej)) = h(yj) = g(ej).

Ainsi g = h ◦ f , car ces applications linéaires coïncident sur une base de E. □
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Remarques

Ce type d’exercice demandant la construction d’une application linéaire ou d’une base
nécessite de la méthode et une bonne compréhension du résultat à démontrer. En plus,
le résultat de la première question pourrait être utilisé dans d’autres oraux. Par ailleurs,
on aurait aussi pu généraliser ce résultat en ne supposant plus les espaces de dimension
finie. Il suffit pour cela d’indexer les bases par des familles d’indices I, J et K ; puisque
le théorème de la base incomplète reste vrai en dimension quelconque.

Exercice 9

• 1. Pour tout k ∈ N, ker(uk) ⊂ ker(uk+1). Ainsi, la suite (dim(ker(uk)))k∈N est une suite crois-
sante d’entiers positifs, majorée par dim(E), donc converge. Or toute suite d’entiers convergeant
est stationnaire. Ainsi, on dispose de p ∈ N tel que

∀k ≥ p, dim(ker(uk)) = dim(ker(up)).

Or, pour k ≥ p, ker(uk) ⊂ ker(up) et on a égalité des dimensions, donc ker(uk) = ker(up). Ainsi
la suite (ker(uk))k∈N est stationnaire.
• 2. D’après la question précédente, on dispose de p ∈ N tel que pour k ≥ p, ker(uk) = ker(up).
Or, pour tout k ∈ �0, p�, ker(uk) ⊂ ker(up). Donc,

N = ker(up).

Pour tout k ≥ p, d’après le théorème du rang appliqué à uk,

dim(E) = dim(ker(uk)) + rg(uk) = dim(ker(up)) + rg(uk).

Le théorème du rang appliqué à up montre alors que rg(uk) = rg(up). Or, Im(uk) ⊂ Im(up),
donc Im(uk) = Im(up). De plus, pour tout j ∈ �0, p�, Im(up) ⊂ Im(uj). Ainsi

J = ker(up).

On en déduit que N et J sont des sous-espaces vectoriels de E. Soit x ∈ N .

up(u(x)) = u(up(x)) = u(0E) = 0E ,

donc u(x) ∈ ker(up) = N . Ainsi N est stable par u. Soit y ∈ J . On dispose de x ∈ E tel que
up(x) = y. Alors,

u(y) = u(up(x)) = up(u(x)) ∈ Im(up) = J.

Ainsi J est stable par u. D’après le théorème du rang appliqué à up,

dim(E) = dim(ker(up)) + rg(up) = dim(N) + dim(J).

Montrons que N et J sont en somme directe. Soit y ∈ N ∩ J . y ∈ J , donc on dispose de x ∈ E
tel que y = up(x). Or,

u2p(x) = up(y) = 0E ,

car y ∈ N . Or ker(u2p) = ker(up) par définition de p, donc y = up(x) = 0E . Ainsi N et J sont
en somme directe. Avec l’égalité des dimensions, on en déduit que N et J sont des sous-espaces
vectoriels de E, stable par u et supplémentaires. □
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26 Partie 1. Exercices corrigés

Remarques

Cet exercice est classique et à savoir traiter rapidement. En particulier, ce résultat montre
que toute matrice non nulle A ∈ Mn(C) (n ∈ N∗) est semblable à une matrice de la forme

(
B 0
0 0

)
,

où B ∈ GLp(C) et p ∈ N∗.

Exercice 10

• 1. On suppose que u est nilpotent d’indice n. En particulier, un−1 ̸= 0L (E). On dispose ainsi
de x ∈ E tel que un−1(x) ̸= 0E . Montrons que B = (x, u(x), . . . , un−1(x)) est une base de E.
Soient λ0, . . . , λn−1 ∈ R tels que

λ0x + . . . + λn−1un−1(x) = 0E .

On suppose par l’absurde qu’il existe i ∈ �0, n − 1� tel que λi ̸= 0. On pose

j = min{k ∈ �0, n − 1� | λk ̸= 0}.

Ainsi,
λjuj(x) + . . . + λn−1un−1(x) = 0E .

Or, un = 0L (E), donc on compose par un−1−j à gauche, ce qui donne

λjun−1(x) = 0E ,

ce qui est absurde, car un−1(x) ̸= 0E . Ainsi B est libre et comporte n = dim(E) vecteurs, donc
est une base. D’où le résultat.
• 2. On suppose que u admet n valeurs propres distinctes. Soit (e1, . . . , en) une base de vecteurs
propres de E, associée aux valeurs propres λ1, . . . , λn toutes distinctes. On pose

x = e1 + . . . + en.

Par récurrence immédiate, il vient que pour tout k ∈ N,

uk(x) = λk
1e1 + . . . + λk

nen.

On pose B = (x, u(x), . . . , un−1(x)), et on considère des réels a0, . . . , an−1 tels que

0E =
n−1∑
i=0

aiu
i(x) =

n−1∑
i=0

n∑
j=1

aiλ
i
jej =

n∑
j=1

(n−1∑
i=0

aiλ
i
j

)
ej .

Par liberté de la famille (e1, . . . , en), il vient que pour tout j ∈ �1, n�,

n−1∑
i=0

aiλ
i
j = 0.

Chapitre 1. Algèbre 27

En posant

V =




1 λ1 . . . λn−1
1

1 λ2 . . . λn−1
2

...
...

...
1 λn . . . λn−1

n


 ,

on remarque que V (a0 . . . an−1)T = (0 . . . 0)T . Or V est une matrice de Vandermonde inversible,
car les (λi)1≤i≤n sont tous distincts. On en déduit que a0 = · · · = an−1 = 0. Ainsi B est libre et
comporte n = dim(E) vecteurs, donc est une base. D’où le résultat.
• 3. Comme u est cyclique, on dispose de x ∈ E tel que (x, . . . , un−1(x)) est une base de E. Soit
v ∈ C(u). v(x) ∈ E, donc on dispose de a0, . . . , an−1 ∈ R tels que

v(x) =
n−1
k=0

akuk(x).

Or, pour tout j ∈ �0, n − 1�,

v(uj(x)) = uj(v(x)) =
n−1
k=0

akuj(uk(x)) =
n−1

k=0
akuk


(uj(x)).

Ainsi, v et
n−1

k=0 akuk coïncident sur une base de E, donc sont égaux. D’où v ∈ Rn−1[u]. La
réciproque étant évidente, on en déduit que

C(u) = Rn−1[u]. □

Remarques

On peut aller légèrement plus loin dans la dernière question, en donnant la dimension de
C(u). En effet, (id, u, . . . , un−1) est une famille génératrice de Rn−1[u], qui est aussi libre.
Pour le montrer, on prend λ0, . . . , λn−1 des réels tels que

λ0id + λ1u + . . . + λn−1un−1 = 0L (E).

Alors en évaluant en x et en utilisant que (x, u(x), . . . , un−1(x)) est une base de E, on en
déduit que les coefficients sont tous nuls. Enfin, on peut établir une bijection entre C(u)
et E avec l’application linéaire v ∈ C(u) → v(x) ∈ E.

Exercice 11

Supposons par l’absurde qu’il existe un hyperplan H ⊂ Mn(K) ne contenant aucune matrice
inversible. In ̸∈ H, donc H ⊕ Vect(In) = Mn(K). Soit N une matrice nilpotente. On écrit

N = h + λIn, avec h ∈ H.

Soit X ∈ ker(h) non nul, car h est non inversible. On a NX = hX + λX = λX. En itérant,

0 = NnX = λnX,
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on remarque que V (a0 . . . an−1)T = (0 . . . 0)T . Or V est une matrice de Vandermonde inversible,
car les (λi)1≤i≤n sont tous distincts. On en déduit que a0 = · · · = an−1 = 0. Ainsi B est libre et
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Ainsi, v et
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k=0 akuk coïncident sur une base de E, donc sont égaux. D’où v ∈ Rn−1[u]. La
réciproque étant évidente, on en déduit que

C(u) = Rn−1[u]. □

Remarques

On peut aller légèrement plus loin dans la dernière question, en donnant la dimension de
C(u). En effet, (id, u, . . . , un−1) est une famille génératrice de Rn−1[u], qui est aussi libre.
Pour le montrer, on prend λ0, . . . , λn−1 des réels tels que
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Supposons par l’absurde qu’il existe un hyperplan H ⊂ Mn(K) ne contenant aucune matrice
inversible. In ̸∈ H, donc H ⊕ Vect(In) = Mn(K). Soit N une matrice nilpotente. On écrit
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Soit X ∈ ker(h) non nul, car h est non inversible. On a NX = hX + λX = λX. En itérant,
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28 Partie 1. Exercices corrigés

donc λ = 0. Donc N = h ∈ H. Ainsi, H contient toutes les matrices nilpotentes. Or,
(

0 0n−1
1 0

)
+

(
0 In−1
0 0

)
=

(
0 In−1
1 0

)
∈ GLn(K).

Et cette matrice devrait appartenir à H, car elle est somme de matrices nilpotentes, qui sont des
éléments de H. Absurde. D’où le résultat. □

Exercice 12

• 1. det(R + XJ) est un polynôme réel non nul, car ne s’annulant pas en i, donc il existe t ∈ R
tel que det(R + tJ) ̸= 0. Ainsi, R + tJ ∈ GLn(R).
• 2. On a

AR + iAJ = AP = PB = RB + iJB.

En identifiant partie réelle et partie imaginaire, on en déduit que AR = RB et AJ = JB. Ainsi,
A(R + tJ) = B(R + tJ), puis

A = (R + tJ)B(R + tJ)−1,

d’où le résultat. □

Remarques

Ce résultat peut servir à résoudre élégamment certains problèmes. Par exemple, considé-
rons n ∈ N∗, θ ∈ ]0, 2π[ et A ∈ Mn(R) tels que

A2 − 2 cos(θ)A + In = 0n.

Alors (X − eiθ)(X − e−iθ) est un polynôme scindé à racines simples dans C annulant A,
car eiθ ̸= e−iθ. Comme A est une matrice à coefficients réels, on en déduit que eiθ et e−iθ

ont même multiplicité comme valeur propre de A. Ainsi, on peut diagonaliser A comme

A = P · diag(Θ, . . . , Θ) · P −1, où Θ =
(

eiθ 0
0 e−iθ

)
et P ∈ GLn(C).

Ce qui montre par ailleurs que n est nécessairement pair. Posons alors

R(θ) =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
, puis Rn(θ) = diag(R(θ), . . . , R(θ)) ∈ Mn(C).

Comme R(θ) est semblable dans M2(C) à Θ, on en déduit que Rn(θ) est semblable dans
Mn(C) à

diag(Θ, . . . , Θ),

et donc à A par transitivité de la similitude. Maintenant, A et Rn(θ) sont deux matrices
à coefficients réels, semblables dans Mn(C), donc elles sont semblables dans Mn(R). La
réciproque étant évidente, cela résout l’équation matricielle proposée. On a ainsi étendu
notre problème aux nombres complexes, afin de montrer que A agissait comme une rota-
tion d’angle θ sur divers plans de Mn,1(R).

Chapitre 1. Algèbre 29

Exercice 13

La trace d’un projecteur est un entier naturel, comme vu en remarque de l’exercice 2. Ainsi,

tr(p) +
√

2 tr(q) +
√

3 tr(r) = k ∈ N.

D’où,

3 tr(r)2 = (
√

3 tr(r))2 = (k − tr(p) −
√

2 tr(q))2 = (k − tr(p))2 − 2
√

2 tr(q) + 2 tr(q)2.

Or
√

2 est irrationnel, donc nécessairement tr(q) = 0. Sinon, on pourrait écrire
√

2 comme
quotient de deux nombres entiers. Or rg(q) = tr(q) = 0, d’où q est nul. Il reste donc

tr(p) +
√

3 tr(r) = k.

Or
√

3 est irrationnel, donc nécessairement tr(r) = 0, puis r est nul. □

Exercice 14

Soit x ∈ E non nul. (x, f(x)) est liée et x est non nul, donc on dispose de λ ∈ K tel que f(x) = λx.
Soit y ∈ E.

∗ On suppose que (x, y) est liée. On dispose de a ∈ K tel que y = ax. Ainsi,

f(y) = af(x) = aλx = λy.

∗ On suppose que (x, y) est libre. En particulier, y ̸= 0 et x + y ̸= 0, donc on dispose de
a, b ∈ K tels que

f(y) = ay et f(x + y) = b · (x + y).
D’une part,

f(x + y) = f(x) + f(y) = λx + ay.

D’autre part, f(x + y) = bx + by. D’où

λx + ay = bx + by.

Par liberté de la famille, b = λ et a = b. Donc a = λ, et f(y) = λy.
Dans tous les cas, f(y) = λy. Donc f est une homothétie. □

Remarques

Cet exercice est un grand classique à maîtriser.

Exercice 15

Pour tout n ∈ N∗, on pose Hn : « Toute matrice A ∈ Mn(C) telle que tr(A) = 0 est semblable
à une matrice dont les coefficients diagonaux sont tous nuls ».
Initialisation : La seule matrice de trace nulle de M1(C) est (0), qui est donc bien semblable
à une matrice dont les coefficients diagonaux sont tous nuls. Donc H1 est vraie.
Hérédité : Soit n ∈ N∗. On suppose Hn. Soit A ∈ Mn+1(C) telle que tr(A) = 0. Si A est une
homothétie, il existe λ ∈ C tel que A = λIn+1, puis A = 0n, car tr(A) = 0. Ce qui prouve le
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Exercice 14
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résultat dans ce cas. Sinon, on dispose de X ∈ Mn+1,1(C) tel que (X, AX) est libre, d’après
l’exercice précédent. On complète cette famille en une base B de Mn+1,1(C). Dans cette base,
l’action de A s’écrit

M =
(

0 L
C B

)
,

où B ∈ Mn(C), L ∈ M1,n(C), C ∈ Mn,1(C). Comme A et M sont semblables et que tr(A) = 0,
on sait que tr(M) = 0. Ainsi, tr(B) = 0. Par hypothèse de récurrence, B est semblable à une
matrice dont les coefficients diagonaux sont tous nuls, qu’on note B′. On dispose de P ∈ GLn(C)
tel que B = PB′P −1. Alors,

M =
(

1 0
0 P

) (
0 LP

P −1C B′

) (
1 0
0 P −1

)
.

Or la matrice du milieu dans le membre de droite possède tous ses coefficients diagonaux nuls,
et M lui est semblable. Or A et M sont semblables, donc A est semblable à une matrice dont les
coefficients diagonaux sont tous nuls. Ce qui montre Hn et achève la récurrence. □

Remarques

Comment penser à introduire la famille (X, AX) ? On essaye de se ramener à une matrice
de taille plus petite, l’idéal serait donc d’avoir un zéro en haut à gauche. Pour cela, on
veut construire une base commençant par (X, AX). Seulement, cette famille n’est pas
toujours libre. En effet, A pourrait être une homothétie d’après l’exercice précédent. Une
fois cette difficulté écartée, la suite se fait naturellement.

Exercice 16

• 1. Soient i, j ∈ �1, n�. On a

[A com(A)T ]i,j =
n∑

k=1
ai,k[com(A)]j,k.

On note B la matrice formée de A en remplaçant la j-ième ligne par la i-ème ligne. Dans ce cas,
le membre de droite est le développement du déterminant de B selon sa j-ème ligne. Cependant,
si i ̸= j, B n’est pas inversible, car possède deux lignes égales. Ainsi,

[A com(A)T ]i,j =
n∑

k=1
ai,k[com(A)]j,k =

n∑
k=1

bj,k[com(B)]j,k = det(B) = 0,

avec le rappel sur la comatrice du début de chapitre. Si i = j,

[A com(A)T ]i,i =
n∑

k=1
ai,k[com(A)]i,k = det(A),

par développement du déterminant sur la i-ème ligne. On en déduit que

A com(A)T = det(A)In,

et on fait de même pour la seconde égalité.
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• 2. Si rg(A) = n, det(A) ̸= 0, et dans ce cas com(A) est inversible. D’où

rg(com(A)) = n.

Si rg(A) = n − 1, par théorème du rang dim(ker(A)) = 1. Or, A com(A)T = 0n, donc

Im(com(A)T ) ⊂ ker(A), puis rg(com(A)) = rg(com(A)T ) ≤ 1.

Ensuite, on note (C1, . . . , Cn) les colonnes de A. Comme A est de rang n − 1, on peut supposer
sans perte de généralité que (C1, . . . , Cn−1) est libre. On peut ainsi compléter cette famille en
une base (C1, . . . , Cn−1, C ′

n) de Mn,1(C). On note B la matrice formée de ces colonnes, qui est
alors inversible. Par développement du déterminant sur la dernière colonne de B,

det(B) =
n∑

k=1
bk,n[com(B)]k,n =

n∑
k=1

bk,n[com(A)]k,n,

car pour k ∈ �1, n�, la matrice de taille n − 1 extraite de A en enlevant la dernière colonne et
la k-ième ligne, et celle extraite de B en enlevant la dernière colonne et la k-ième ligne sont les
mêmes, car A et B diffèrent uniquement de la dernière colonne. Ainsi, com(A) possède au moins
un coefficient non nul, sinon on aurait det(B) = 0. Donc rg(com(A)) ≥ 1. D’où

rg(com(A)) = 1.

Si rg(A) ≤ n − 2, alors toute famille de n − 1 colonnes de A est liée, et tous les déterminants
extraits de A en enlevant une ligne et une colonne sont donc nuls. D’où com(A) = 0n, et

rg(com(A)) = 0.

• 3. On pose PA(X) = (−1)n χA(0)−χA(X)
X ∈ C[X]. On obtient alors que

APA(A) = (−1)n(χA(0)In − χA(A)) = (−1)n(−1)n det(A)In = det(A)In,

d’après le théorème de Cayley-Hamilton. Si A est inversible, comme A com(A)T = det(A)In, on
en déduit que PA(A) = com(A)T . Sinon,

M → PM (M) et M → com(M)T

sont des applications polynômiales en les coefficients des matrices, donc continues. Or ces deux
applications coïncident sur GLn(C), qui est dense dans Mn(C). On en déduit alors que

PA(A) = com(A)T . □

Remarques

Le programme de mathématiques des classes préparatoires ne se concentrant pas sur
la partie déterminant, cet exercice peut être particulièrement ardu. On conseille de le
reprendre à tête reposé si vous ne l’avez pas réussi. En effet, comme la comatrice ne fait
pas partie du programme de PCSI, un exercice sur celle-ci pourrait tomber aux oraux de
PC ou de PSI. Il est donc utile de maîtriser les subtilités associées.
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résultat dans ce cas. Sinon, on dispose de X ∈ Mn+1,1(C) tel que (X, AX) est libre, d’après
l’exercice précédent. On complète cette famille en une base B de Mn+1,1(C). Dans cette base,
l’action de A s’écrit

M =
(

0 L
C B

)
,

où B ∈ Mn(C), L ∈ M1,n(C), C ∈ Mn,1(C). Comme A et M sont semblables et que tr(A) = 0,
on sait que tr(M) = 0. Ainsi, tr(B) = 0. Par hypothèse de récurrence, B est semblable à une
matrice dont les coefficients diagonaux sont tous nuls, qu’on note B′. On dispose de P ∈ GLn(C)
tel que B = PB′P −1. Alors,

M =
(

1 0
0 P

) (
0 LP

P −1C B′

) (
1 0
0 P −1

)
.

Or la matrice du milieu dans le membre de droite possède tous ses coefficients diagonaux nuls,
et M lui est semblable. Or A et M sont semblables, donc A est semblable à une matrice dont les
coefficients diagonaux sont tous nuls. Ce qui montre Hn et achève la récurrence. □

Remarques

Comment penser à introduire la famille (X, AX) ? On essaye de se ramener à une matrice
de taille plus petite, l’idéal serait donc d’avoir un zéro en haut à gauche. Pour cela, on
veut construire une base commençant par (X, AX). Seulement, cette famille n’est pas
toujours libre. En effet, A pourrait être une homothétie d’après l’exercice précédent. Une
fois cette difficulté écartée, la suite se fait naturellement.

Exercice 16

• 1. Soient i, j ∈ �1, n�. On a

[A com(A)T ]i,j =
n∑

k=1
ai,k[com(A)]j,k.

On note B la matrice formée de A en remplaçant la j-ième ligne par la i-ème ligne. Dans ce cas,
le membre de droite est le développement du déterminant de B selon sa j-ème ligne. Cependant,
si i ̸= j, B n’est pas inversible, car possède deux lignes égales. Ainsi,

[A com(A)T ]i,j =
n∑

k=1
ai,k[com(A)]j,k =

n∑
k=1

bj,k[com(B)]j,k = det(B) = 0,

avec le rappel sur la comatrice du début de chapitre. Si i = j,

[A com(A)T ]i,i =
n∑

k=1
ai,k[com(A)]i,k = det(A),

par développement du déterminant sur la i-ème ligne. On en déduit que

A com(A)T = det(A)In,

et on fait de même pour la seconde égalité.
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• 2. Si rg(A) = n, det(A) ̸= 0, et dans ce cas com(A) est inversible. D’où

rg(com(A)) = n.

Si rg(A) = n − 1, par théorème du rang dim(ker(A)) = 1. Or, A com(A)T = 0n, donc

Im(com(A)T ) ⊂ ker(A), puis rg(com(A)) = rg(com(A)T ) ≤ 1.

Ensuite, on note (C1, . . . , Cn) les colonnes de A. Comme A est de rang n − 1, on peut supposer
sans perte de généralité que (C1, . . . , Cn−1) est libre. On peut ainsi compléter cette famille en
une base (C1, . . . , Cn−1, C ′

n) de Mn,1(C). On note B la matrice formée de ces colonnes, qui est
alors inversible. Par développement du déterminant sur la dernière colonne de B,

det(B) =
n∑

k=1
bk,n[com(B)]k,n =

n∑
k=1

bk,n[com(A)]k,n,

car pour k ∈ �1, n�, la matrice de taille n − 1 extraite de A en enlevant la dernière colonne et
la k-ième ligne, et celle extraite de B en enlevant la dernière colonne et la k-ième ligne sont les
mêmes, car A et B diffèrent uniquement de la dernière colonne. Ainsi, com(A) possède au moins
un coefficient non nul, sinon on aurait det(B) = 0. Donc rg(com(A)) ≥ 1. D’où

rg(com(A)) = 1.

Si rg(A) ≤ n − 2, alors toute famille de n − 1 colonnes de A est liée, et tous les déterminants
extraits de A en enlevant une ligne et une colonne sont donc nuls. D’où com(A) = 0n, et

rg(com(A)) = 0.

• 3. On pose PA(X) = (−1)n χA(0)−χA(X)
X ∈ C[X]. On obtient alors que

APA(A) = (−1)n(χA(0)In − χA(A)) = (−1)n(−1)n det(A)In = det(A)In,

d’après le théorème de Cayley-Hamilton. Si A est inversible, comme A com(A)T = det(A)In, on
en déduit que PA(A) = com(A)T . Sinon,

M → PM (M) et M → com(M)T

sont des applications polynômiales en les coefficients des matrices, donc continues. Or ces deux
applications coïncident sur GLn(C), qui est dense dans Mn(C). On en déduit alors que

PA(A) = com(A)T . □

Remarques

Le programme de mathématiques des classes préparatoires ne se concentrant pas sur
la partie déterminant, cet exercice peut être particulièrement ardu. On conseille de le
reprendre à tête reposé si vous ne l’avez pas réussi. En effet, comme la comatrice ne fait
pas partie du programme de PCSI, un exercice sur celle-ci pourrait tomber aux oraux de
PC ou de PSI. Il est donc utile de maîtriser les subtilités associées.
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Pour la troisième question, le fait que les matrices inversibles soient denses dans les
matrices est un grand classique. Il suffit en effet de considérer la suite

Ap = A + 1
p

In, pour tout p ∈ N∗.

A possédant un nombre fini de valeurs propres, les (Ap)p∈N∗ sont inversibles à partir d’un
certain rang, et la suite converge bien vers A. Notons enfin que dans le cas où A est
inversible,

A−1 = 1
det(A) com(A)T .

Or l’application déterminant est polynômiale en les coefficients des matrices, et de même
pour l’application comatrice. Ainsi l’application

GLn(K) −→ GLn(K)
A −→ A−1

est continue.

Exercice 17

Supposons A inversible. Alors
(

In 0n

−CA−1 In

)
·
(

A B
C D

)
=

(
A B
0n D − CA−1B

)
.

En passant au déterminant et en reconnaissant des matrices triangulaires par blocs, on obtient
∣∣∣∣
A B
C D

∣∣∣∣ = det(A) det(D − CA−1B) = det(DA − CA−1BA) = det(DA − CB),

avec AB = BA. Ainsi la relation est vraie quand A est inversible. Dans le cas quelconque, on
approche A par la suite de matrices définie par Ak = A + 1

k In, pour tout k ∈ N∗. C’est une suite
de matrices inversibles à partir d’un certain rang, commutant avec B et convergeant vers A. On
en déduit le résultat par continuité du déterminant. □

Remarques

On utilise ici à nouveau la densité des matrices inversibles, qui montre comment on peut
se restreindre à ces matrices afin d’avoir un résultat concernant des matrices quelconques.
Il faut cependant bien faire attention que la suite de matrices par laquelle on approche A
commute bien avec B. Pour le cas inversible, de nombreuses décompositions sont possibles,
comme

(
A B
C D

)
·
(

A−1 −B
0n A

)
=

(
In 0n

CA−1 DA − CB

)
.
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Exercice 18

Comme A et B commutent, A2 + B2 = (A + iB)(A − iB). D’où,

det(A2 + B2) = det(A + iB) det(A − iB) = det(A + iB)det(A + iB) = |det(A + iB)|2 ≥ 0,

car A et B sont à coefficients réels. □

Remarques

Cet exercice repose uniquement sur le fait que pour tout M ∈ Mn(C), det(M) = det(M).
En effet, la formule du déterminant donne

det(M) =


σ∈Sn

ε(σ) · mσ(1),1 · · · mσ(n),n,

d’où
det(M) =


σ∈Sn

ε(σ) · mσ(1),1 · · · mσ(n),n = det(M),

car pour σ ∈ Sn, ε(σ) = ±1, donc est réel. Si vous n’avez jamais vu la formule du
déterminant et que ce ε(σ), qui donne la signature de la permutation σ, ne vous dit rien,
apprenez simplement le résultat. En effet, la connaissance de la définition d’une signature
ne vous apportera rien, hormis un peu de culture, c’est d’ailleurs pour cela qu’elle n’a ni
été reprise dans la partie 2 ni dans les définitions de ce début de chapitre. Vous pouvez
évidemment vous renseigner plus amplement dans d’autres ouvrages, ou demander à votre
professeur.

Exercice 19

• 1. Soient n ≥ 1 et A ∈ Mn(C). On trigonalise A selon A = PTP −1, avec P ∈ GLn(C) et
T ∈ Mn(C), qu’on écrit

T =




λ1 (∗)
. . .

(0) λn


 , où λ1, . . . , λn ∈ C.

Pour tout k ∈ N∗, on définit

Tk =




λ1 + 1
k (∗)

. . .
(0) λn + 1

k+n


 .

Soient i, j ∈ �1, n� avec i ̸= j. Si λi = λj , alors

λi + 1
k + i

̸= λj + 1
k + j

, pour tout k ∈ N∗.

Sinon, on peut supposer que λi < λj sans perte de généralité, et on dispose de Ni,j ∈ N∗ tel que

∀k ≥ Ni,j , 0 ≤ 1
k

<
λj − λi

2 .
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Pour la troisième question, le fait que les matrices inversibles soient denses dans les
matrices est un grand classique. Il suffit en effet de considérer la suite

Ap = A + 1
p

In, pour tout p ∈ N∗.

A possédant un nombre fini de valeurs propres, les (Ap)p∈N∗ sont inversibles à partir d’un
certain rang, et la suite converge bien vers A. Notons enfin que dans le cas où A est
inversible,

A−1 = 1
det(A) com(A)T .

Or l’application déterminant est polynômiale en les coefficients des matrices, et de même
pour l’application comatrice. Ainsi l’application

GLn(K) −→ GLn(K)
A −→ A−1

est continue.

Exercice 17

Supposons A inversible. Alors
(

In 0n

−CA−1 In

)
·
(

A B
C D

)
=

(
A B
0n D − CA−1B

)
.

En passant au déterminant et en reconnaissant des matrices triangulaires par blocs, on obtient
∣∣∣∣
A B
C D

∣∣∣∣ = det(A) det(D − CA−1B) = det(DA − CA−1BA) = det(DA − CB),

avec AB = BA. Ainsi la relation est vraie quand A est inversible. Dans le cas quelconque, on
approche A par la suite de matrices définie par Ak = A + 1

k In, pour tout k ∈ N∗. C’est une suite
de matrices inversibles à partir d’un certain rang, commutant avec B et convergeant vers A. On
en déduit le résultat par continuité du déterminant. □

Remarques

On utilise ici à nouveau la densité des matrices inversibles, qui montre comment on peut
se restreindre à ces matrices afin d’avoir un résultat concernant des matrices quelconques.
Il faut cependant bien faire attention que la suite de matrices par laquelle on approche A
commute bien avec B. Pour le cas inversible, de nombreuses décompositions sont possibles,
comme

(
A B
C D

)
·
(

A−1 −B
0n A

)
=

(
In 0n

CA−1 DA − CB

)
.
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Exercice 18

Comme A et B commutent, A2 + B2 = (A + iB)(A − iB). D’où,

det(A2 + B2) = det(A + iB) det(A − iB) = det(A + iB)det(A + iB) = |det(A + iB)|2 ≥ 0,

car A et B sont à coefficients réels. □

Remarques

Cet exercice repose uniquement sur le fait que pour tout M ∈ Mn(C), det(M) = det(M).
En effet, la formule du déterminant donne

det(M) =


σ∈Sn

ε(σ) · mσ(1),1 · · · mσ(n),n,

d’où
det(M) =


σ∈Sn

ε(σ) · mσ(1),1 · · · mσ(n),n = det(M),

car pour σ ∈ Sn, ε(σ) = ±1, donc est réel. Si vous n’avez jamais vu la formule du
déterminant et que ce ε(σ), qui donne la signature de la permutation σ, ne vous dit rien,
apprenez simplement le résultat. En effet, la connaissance de la définition d’une signature
ne vous apportera rien, hormis un peu de culture, c’est d’ailleurs pour cela qu’elle n’a ni
été reprise dans la partie 2 ni dans les définitions de ce début de chapitre. Vous pouvez
évidemment vous renseigner plus amplement dans d’autres ouvrages, ou demander à votre
professeur.

Exercice 19

• 1. Soient n ≥ 1 et A ∈ Mn(C). On trigonalise A selon A = PTP −1, avec P ∈ GLn(C) et
T ∈ Mn(C), qu’on écrit

T =




λ1 (∗)
. . .

(0) λn


 , où λ1, . . . , λn ∈ C.

Pour tout k ∈ N∗, on définit

Tk =




λ1 + 1
k (∗)

. . .
(0) λn + 1

k+n


 .

Soient i, j ∈ �1, n� avec i ̸= j. Si λi = λj , alors

λi + 1
k + i

̸= λj + 1
k + j

, pour tout k ∈ N∗.

Sinon, on peut supposer que λi < λj sans perte de généralité, et on dispose de Ni,j ∈ N∗ tel que

∀k ≥ Ni,j , 0 ≤ 1
k

<
λj − λi

2 .
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Ainsi, pour tout k ≥ Ni,j ,

λi + 1
k + i

<
λi + λj

2 < λj + 1
k + j

.

Ainsi, à partir du rang N = max{Ni,j | i, j ∈ �1, n�}, les (Tk)k≥N possèdent tous n valeurs
propres distinctes, donc sont diagonalisables. Or (Tk)k∈N∗ converge vers T . Donc (PTkP −1)k≥N

est une suite de matrice diagonalisables, convergeant vers A par continuité du produit matriciel.
D’où le résultat.
• 2. On définit

φ : Mn(C) −→ Mn(C)
M −→ χM (M).

φ est continue comme application polynômiale en les coefficients des matrices. Soit M une matrice
diagonalisable de Mn(C), qu’on écrit

M = P diag(λ1, . . . , λn)P −1,

avec λ1, . . . , λn ∈ C. Alors

χM (X) = det(XIn − M) = det(XIn − diag(λ1, . . . , λn)) =
n∏

i=1
(X − λi).

D’où,

χM (M) =
n∏

i=1
(M − λiIn) = P ·

n∏
i=1

(diag(λ1, . . . , λn) − λiIn) · P −1 = 0n,

car les matrices au centre du produit sont diagonales, donc commutent. Ainsi φ est nulle sur
les matrices diagonalisables, qui sont denses dans l’ensemble des matrices. Donc φ est nulle par
continuité. En particulier χA(A) = 0n. D’où le théorème de Cayley-Hamilton. □

Remarques

En oral, l’examinateur vous aurait sûrement fait passer le détail du fait que les matrices
exhibées possèdent bien n valeurs propres distinctes à partir d’un certain rang, mais sachez
le démontrer au cas où c’est demandé. Enfin, attention à la manipulation du produit dans
la seconde question : on n’a pas sorti P et P −1 du produit parce qu’elles commutent
avec les autres matrices, mais parce que ces matrices se compensent deux à deux dans le
produit.
Pour se convaincre que le produit fait bien 0n, il suffit de remarquer que quand on multiplie
deux matrices diagonales, on le fait coefficient par coefficient. Or, ici il y a n matrices
diagonales, et pour tout i ∈ �1, n�, on peut toujours en trouver une qui a un coefficient
nul en position (i, i).

Exercice 20

⇒ On suppose que χA = χB . Alors A et B ont les mêmes valeurs propres avec les mêmes
multiplicités. Or pour tout k ∈ N,

tr(Ak) =
r∑

i=1
miλ

k
i

Chapitre 1. Algèbre 35

avec λ1, . . . , λr les valeurs propres de A, et m1, . . . , mr leurs multiplicités respectives. Or ces
valeurs sont les mêmes pour B. D’où tr(Ak) = tr(Bk).
⇐ On suppose que pour tout k ∈ N, tr(Ak) = tr(Bk). Par linéarité de la trace,

tr(P (A)) = tr(P (B)), pour tout P ∈ C[X].

Soit λ ∈ Sp(A). Par théorème d’interpolation de Lagrange (p. 436), on dispose d’un polynôme
Q tel que Q(λ) = 1 et Q(µ) = 0 pour tout µ ∈ (Sp(A) ∪ Sp(B)) − {λ}. Alors,

mλ,A = tr(Q(A)) = tr(Q(B)) = mλ,B ,

donc λ ∈ Sp(B) et λ a la même multiplicité dans χA et dans χB . Ceci étant vrai pour toute
valeur propre de A, on en déduit que χA = χB , car χA et χB ont même degré. □

Remarques

La preuve sur l’inversibilité des matrices de Vandermonde utilisant parfois l’interpolation
de Lagrange, on aurait aussi pu approcher le sens réciproque par une telle méthode.
Cependant, l’utilisation de l’interpolation de Lagrange est plus élégante et efficace.
Par ailleurs, cet exercice donne une caractérisation intéressante des matrices nilpotentes.
En effet, une matrice A ∈ Mn(C) est nilpotente si et seulement si Sp(A) = {0}, i.e.
χA(X) = Xn = χ0n

(X). On en déduit que A est nilpotente si et seulement si

∀k ∈ N∗, tr(Ak) = 0.

Exercice 21

• 1. On suppose que A est diagonalisable. On écrit

A = Q diag(λ1, . . . , λn)Q−1,

où Q ∈ GLn(C) et λ1, . . . , λn ∈ C. Pour tout i ∈ �1, n�, on dispose de xi ∈ C tel que P (xi) = λi,
d’après le théorème de d’Alembert-Gauss appliqué à P (X) − λi. On pose

M = Q diag(x1, . . . , xn)Q−1,

de sorte que
P (M) = Q diag(P (x1), . . . , P (xn))Q−1 = A.

Ce qui montre l’existence d’une solution.
• 2. Si n = 1, on se ramène au théorème de d’Alembert-Gauss, et on a toujours une solution. Si
n ≥ 2, on suppose que A est nilpotente non nulle et que P (X) = Xn. Si par l’absurde on avait
M ∈ Mn(C) tel que

Mn = A,

alors M serait nilpotente. Mais d’après le théorème de Cayley-Hamilton, on a Mn = 0n. Absurde,
car A est non nulle.
• 3. Supposons avoir M ∈ M2(C) une solution de l’équation. On va distinguer plusieurs cas
selon les valeurs propres de A.
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Ainsi, pour tout k ≥ Ni,j ,

λi + 1
k + i

<
λi + λj

2 < λj + 1
k + j

.

Ainsi, à partir du rang N = max{Ni,j | i, j ∈ �1, n�}, les (Tk)k≥N possèdent tous n valeurs
propres distinctes, donc sont diagonalisables. Or (Tk)k∈N∗ converge vers T . Donc (PTkP −1)k≥N

est une suite de matrice diagonalisables, convergeant vers A par continuité du produit matriciel.
D’où le résultat.
• 2. On définit

φ : Mn(C) −→ Mn(C)
M −→ χM (M).

φ est continue comme application polynômiale en les coefficients des matrices. Soit M une matrice
diagonalisable de Mn(C), qu’on écrit

M = P diag(λ1, . . . , λn)P −1,

avec λ1, . . . , λn ∈ C. Alors

χM (X) = det(XIn − M) = det(XIn − diag(λ1, . . . , λn)) =
n∏

i=1
(X − λi).

D’où,

χM (M) =
n∏

i=1
(M − λiIn) = P ·

n∏
i=1

(diag(λ1, . . . , λn) − λiIn) · P −1 = 0n,

car les matrices au centre du produit sont diagonales, donc commutent. Ainsi φ est nulle sur
les matrices diagonalisables, qui sont denses dans l’ensemble des matrices. Donc φ est nulle par
continuité. En particulier χA(A) = 0n. D’où le théorème de Cayley-Hamilton. □

Remarques

En oral, l’examinateur vous aurait sûrement fait passer le détail du fait que les matrices
exhibées possèdent bien n valeurs propres distinctes à partir d’un certain rang, mais sachez
le démontrer au cas où c’est demandé. Enfin, attention à la manipulation du produit dans
la seconde question : on n’a pas sorti P et P −1 du produit parce qu’elles commutent
avec les autres matrices, mais parce que ces matrices se compensent deux à deux dans le
produit.
Pour se convaincre que le produit fait bien 0n, il suffit de remarquer que quand on multiplie
deux matrices diagonales, on le fait coefficient par coefficient. Or, ici il y a n matrices
diagonales, et pour tout i ∈ �1, n�, on peut toujours en trouver une qui a un coefficient
nul en position (i, i).

Exercice 20

⇒ On suppose que χA = χB . Alors A et B ont les mêmes valeurs propres avec les mêmes
multiplicités. Or pour tout k ∈ N,

tr(Ak) =
r∑

i=1
miλ

k
i
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avec λ1, . . . , λr les valeurs propres de A, et m1, . . . , mr leurs multiplicités respectives. Or ces
valeurs sont les mêmes pour B. D’où tr(Ak) = tr(Bk).
⇐ On suppose que pour tout k ∈ N, tr(Ak) = tr(Bk). Par linéarité de la trace,

tr(P (A)) = tr(P (B)), pour tout P ∈ C[X].

Soit λ ∈ Sp(A). Par théorème d’interpolation de Lagrange (p. 436), on dispose d’un polynôme
Q tel que Q(λ) = 1 et Q(µ) = 0 pour tout µ ∈ (Sp(A) ∪ Sp(B)) − {λ}. Alors,

mλ,A = tr(Q(A)) = tr(Q(B)) = mλ,B ,

donc λ ∈ Sp(B) et λ a la même multiplicité dans χA et dans χB . Ceci étant vrai pour toute
valeur propre de A, on en déduit que χA = χB , car χA et χB ont même degré. □

Remarques

La preuve sur l’inversibilité des matrices de Vandermonde utilisant parfois l’interpolation
de Lagrange, on aurait aussi pu approcher le sens réciproque par une telle méthode.
Cependant, l’utilisation de l’interpolation de Lagrange est plus élégante et efficace.
Par ailleurs, cet exercice donne une caractérisation intéressante des matrices nilpotentes.
En effet, une matrice A ∈ Mn(C) est nilpotente si et seulement si Sp(A) = {0}, i.e.
χA(X) = Xn = χ0n

(X). On en déduit que A est nilpotente si et seulement si

∀k ∈ N∗, tr(Ak) = 0.

Exercice 21

• 1. On suppose que A est diagonalisable. On écrit

A = Q diag(λ1, . . . , λn)Q−1,

où Q ∈ GLn(C) et λ1, . . . , λn ∈ C. Pour tout i ∈ �1, n�, on dispose de xi ∈ C tel que P (xi) = λi,
d’après le théorème de d’Alembert-Gauss appliqué à P (X) − λi. On pose

M = Q diag(x1, . . . , xn)Q−1,

de sorte que
P (M) = Q diag(P (x1), . . . , P (xn))Q−1 = A.

Ce qui montre l’existence d’une solution.
• 2. Si n = 1, on se ramène au théorème de d’Alembert-Gauss, et on a toujours une solution. Si
n ≥ 2, on suppose que A est nilpotente non nulle et que P (X) = Xn. Si par l’absurde on avait
M ∈ Mn(C) tel que

Mn = A,

alors M serait nilpotente. Mais d’après le théorème de Cayley-Hamilton, on a Mn = 0n. Absurde,
car A est non nulle.
• 3. Supposons avoir M ∈ M2(C) une solution de l’équation. On va distinguer plusieurs cas
selon les valeurs propres de A.
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∗ Si les valeurs propres de A sont distinctes :
Dans ce cas, A est diagonalisable, et on l’écrit

A = Q

(
λ 0
0 µ

)
Q−1,

où Q ∈ GL2(C) et λ, µ ∈ C distinctes. On pose B = Q−1MQ. Ainsi,

B2 = Q−1M2Q = Q−1AQ =
(

λ 0
0 µ

)
.

D’après le théorème de Cayley-Hamilton, B2 = tr(B)B − det(B)I2. Si par l’absurde tr(B)
était nulle, alors

− det(B)I2 =
(

λ 0
0 µ

)
,

donc λ = − det(B) = µ, absurde. Ainsi tr(B) ̸= 0, et on en déduit que B est diagonale. On
écrit B = diag(a, b), où a, b ∈ C. Alors

a2 = λ et b2 = µ.

Tout complexe admettant une racine carrée complexe, on note r1 une racine carrée de λ et
r2 une racine carrée de µ. En revenant à M , on obtient que

S =
{

Q

(
ε1r1 0

0 ε2r2

)
Q−1

∣∣∣∣ ε1, ε2 ∈ {−1, 1}
}

,

puisque réciproquement, ces matrices vérifient bien l’équation. On remarque par ailleurs que
l’ensemble des solutions comporte trois ou quatre matrices, selon que 0 est valeur propre de
A ou non.

∗ Si A est diagonalisable et possède une seule valeur propre :
Il vient alors que A est un multiple de I2, et on dispose de a ∈ C tel que A = aI2. Alors,

tr(M)M − det(M)I2 = M2 = aI2,

d’après le théorème de Cayley-Hamilton. Si tr(M) ̸= 0, on en déduit que M est diagonale.
Puis en notant r ∈ C une racine carrée de a, on a

M ∈
{(

ε1r 0
0 ε2r

) ∣∣∣∣ ε1, ε2 ∈ {−1, 1}
}

.

Si tr(M) = 0, on dispose de x, y, z ∈ C tels que

M =
(

x y
z −x

)
, puis on calcule M2 = (x2 + yz)I2.

On identifie donc x2 + yz = a. Ainsi,

M ∈
{(

x y
z −x

) ∣∣∣∣ x, y, z ∈ C, x2 + yz = a

}
.

Ce qui nous donne l’ensemble total des solutions

S =
{(

x y
z −x

) ∣∣∣∣ x, y, z ∈ C, x2 + yz = a

}
∪

{(
ε1r 0
0 ε2r

) ∣∣∣∣ ε1, ε2 ∈ {−1, 1}
}

,

puisque réciproquement ces solutions conviennent bien, et où r est une racine carrée de a.
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∗ Si A n’est pas diagonalisable et possède une seule valeur propre :
On trigonalise A dans M2(C), et on l’écrit

A = Q

(
a 1
0 a

)
Q−1,

où Q ∈ GL2(C) et a ∈ C. On peut en effet mettre un 1 en haut à droite, quitte à dilater le
second vecteur de la nouvelle base. On pose B = Q−1MQ. Ainsi,

B2 = Q−1M2Q = Q−1AQ =
(

a 1
0 a

)
.

D’après le théorème de Cayley-Hamilton, B2 = tr(B)B − det(B)I2. Si par l’absurde tr(B)
est nulle, alors

− det(B)I2 =
(

a 1
0 a

)
.

Ainsi tr(B) ̸= 0, et B est triangulaire supérieure. On dispose de x, y, z ∈ C tels que

M =
(

x y
0 z

)
, puis on calcule M2 =

(
x2 y(x + z)
0 z2

)
=

(
a 1
0 a

)
.

Par identification, x2 = a = z2. Or, on doit avoir x + z ̸= 0, et x2 − z2 = 0, donc x = z.
On remarque par ailleurs que si par l’absurde a = 0, alors x = 0, et 1 = y(x + z) = 0. Donc
a ̸= 0, autrement dit A n’est pas nilpotente non nulle. La suite de la résolution donne que

S =
{

±Q

(
r 1

2r
0 r

)
Q−1

}
,

où r est une racine carré de a. On vérifie que ces deux matrices conviennent bien.

On peut donc conclure que l’équation admet des solutions si et seulement si A n’est pas nilpotente
non nulle. Le nombre de solutions est

∗ 3 ou 4, si A possède deux valeurs propres distinctes.
∗ infini, si A est un multiple de l’identité.
∗ 2 sinon. □

Remarques

Il peut être assez surprenant de voir une infinité de solutions quand A est un multiple
de l’identité, puisqu’on pourrait s’attendre à avoir uniquement les solutions du second
ensemble de l’union. Intuitivement, l’infinité de solutions provient de toutes les symétries
du plan dans le cas où A est non nulle. Dans le cas où A est nulle, l’ensemble correspond
simplement aux matrices nilpotentes.
Dans la résolution, attention à bien distinguer le cas où la trace est nulle, puisque dans
le cas où A est multiple de l’identité, on a bien de telles solutions. Cette résolution est
détaillée et méthodique, et montre l’intérêt, en tout cas en taille 2, des outils de réduction
à notre disposition. Pour la partie où A possédait deux valeurs propres distinctes, on
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∗ Si les valeurs propres de A sont distinctes :
Dans ce cas, A est diagonalisable, et on l’écrit

A = Q

(
λ 0
0 µ

)
Q−1,

où Q ∈ GL2(C) et λ, µ ∈ C distinctes. On pose B = Q−1MQ. Ainsi,

B2 = Q−1M2Q = Q−1AQ =
(

λ 0
0 µ

)
.

D’après le théorème de Cayley-Hamilton, B2 = tr(B)B − det(B)I2. Si par l’absurde tr(B)
était nulle, alors

− det(B)I2 =
(

λ 0
0 µ

)
,

donc λ = − det(B) = µ, absurde. Ainsi tr(B) ̸= 0, et on en déduit que B est diagonale. On
écrit B = diag(a, b), où a, b ∈ C. Alors

a2 = λ et b2 = µ.

Tout complexe admettant une racine carrée complexe, on note r1 une racine carrée de λ et
r2 une racine carrée de µ. En revenant à M , on obtient que

S =
{

Q

(
ε1r1 0

0 ε2r2

)
Q−1

∣∣∣∣ ε1, ε2 ∈ {−1, 1}
}

,

puisque réciproquement, ces matrices vérifient bien l’équation. On remarque par ailleurs que
l’ensemble des solutions comporte trois ou quatre matrices, selon que 0 est valeur propre de
A ou non.

∗ Si A est diagonalisable et possède une seule valeur propre :
Il vient alors que A est un multiple de I2, et on dispose de a ∈ C tel que A = aI2. Alors,

tr(M)M − det(M)I2 = M2 = aI2,

d’après le théorème de Cayley-Hamilton. Si tr(M) ̸= 0, on en déduit que M est diagonale.
Puis en notant r ∈ C une racine carrée de a, on a

M ∈
{(

ε1r 0
0 ε2r

) ∣∣∣∣ ε1, ε2 ∈ {−1, 1}
}

.

Si tr(M) = 0, on dispose de x, y, z ∈ C tels que

M =
(

x y
z −x

)
, puis on calcule M2 = (x2 + yz)I2.

On identifie donc x2 + yz = a. Ainsi,

M ∈
{(

x y
z −x

) ∣∣∣∣ x, y, z ∈ C, x2 + yz = a

}
.

Ce qui nous donne l’ensemble total des solutions

S =
{(

x y
z −x

) ∣∣∣∣ x, y, z ∈ C, x2 + yz = a

}
∪

{(
ε1r 0
0 ε2r

) ∣∣∣∣ ε1, ε2 ∈ {−1, 1}
}

,

puisque réciproquement ces solutions conviennent bien, et où r est une racine carrée de a.
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∗ Si A n’est pas diagonalisable et possède une seule valeur propre :
On trigonalise A dans M2(C), et on l’écrit

A = Q

(
a 1
0 a

)
Q−1,

où Q ∈ GL2(C) et a ∈ C. On peut en effet mettre un 1 en haut à droite, quitte à dilater le
second vecteur de la nouvelle base. On pose B = Q−1MQ. Ainsi,

B2 = Q−1M2Q = Q−1AQ =
(

a 1
0 a

)
.

D’après le théorème de Cayley-Hamilton, B2 = tr(B)B − det(B)I2. Si par l’absurde tr(B)
est nulle, alors

− det(B)I2 =
(

a 1
0 a

)
.

Ainsi tr(B) ̸= 0, et B est triangulaire supérieure. On dispose de x, y, z ∈ C tels que

M =
(

x y
0 z

)
, puis on calcule M2 =

(
x2 y(x + z)
0 z2

)
=

(
a 1
0 a

)
.

Par identification, x2 = a = z2. Or, on doit avoir x + z ̸= 0, et x2 − z2 = 0, donc x = z.
On remarque par ailleurs que si par l’absurde a = 0, alors x = 0, et 1 = y(x + z) = 0. Donc
a ̸= 0, autrement dit A n’est pas nilpotente non nulle. La suite de la résolution donne que

S =
{

±Q

(
r 1

2r
0 r

)
Q−1

}
,

où r est une racine carré de a. On vérifie que ces deux matrices conviennent bien.

On peut donc conclure que l’équation admet des solutions si et seulement si A n’est pas nilpotente
non nulle. Le nombre de solutions est

∗ 3 ou 4, si A possède deux valeurs propres distinctes.
∗ infini, si A est un multiple de l’identité.
∗ 2 sinon. □

Remarques

Il peut être assez surprenant de voir une infinité de solutions quand A est un multiple
de l’identité, puisqu’on pourrait s’attendre à avoir uniquement les solutions du second
ensemble de l’union. Intuitivement, l’infinité de solutions provient de toutes les symétries
du plan dans le cas où A est non nulle. Dans le cas où A est nulle, l’ensemble correspond
simplement aux matrices nilpotentes.
Dans la résolution, attention à bien distinguer le cas où la trace est nulle, puisque dans
le cas où A est multiple de l’identité, on a bien de telles solutions. Cette résolution est
détaillée et méthodique, et montre l’intérêt, en tout cas en taille 2, des outils de réduction
à notre disposition. Pour la partie où A possédait deux valeurs propres distinctes, on
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aurait pu faire appel à l’exercice 10, et au fait que A et M commutent :

AM = M3 = MA,

afin de conclure que M était une fonction linéaire de A. Mais les conditions sur les
coefficients auraient donné lieu à de nombreuses disjonctions de cas.

Exercice 22

Supposons avoir M ∈ M2(R) une solution. Dans ce cas, avec le théorème de Cayley-Hamilton,
on obtient

A = M2 + M = (1 + tr(M))M − det(M)I2,

puis
(1 + tr(M))M =

(
1 + det(M) 1

1 1 + det(M)

)
. (2)

On applique la trace et le déterminant. Ce qui nous donne
{

(1 + tr(M)) tr(M) = 2(1 + det(M)),
(1 + tr(M))2 det(M) = (2 + det(M)) det(M).

(3)

∗ Si det(M) = 0 :
Alors tr(M)2 + tr(M) − 2 = 0, donc tr(M) ∈ {−2, 1}. Avec (2), on en déduit que

M = −
(

1 1
1 1

)
ou M = 1

2

(
1 1
1 1

)
.

∗ Si det(M) ̸= 0 :
La deuxième équation de (3) donne

det(M) = (1 + tr(M))2 − 2. (4)

On réinjecte dans la première équation de (3),

(1 + tr(M)) tr(M) = 2((1 + tr(M))2 − 1) = 2 tr(M)(2 + tr(M)).

- Si tr(M) = 0. Avec (4), on a det(M) = −1. Ainsi (2) donne

M =
(

0 1
1 0

)
.

- Sinon, 1 + tr(M) = 4 + 2 tr(M), donc tr(M) = −3. On a ainsi det(M) = 2. Avec (2),
on a

M = −1
2

(
3 1
1 3

)
.

Les calculs réciproques étant évidents, on a

S =
{

−A,
1
2A, A − I2, −1

2A − I2

}
. □
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Remarques

Cet exercice permet de montrer une autre méthode pour résoudre des équations matri-
cielles, sans passer par les coefficients.

Exercice 23

• 1. (a) Soient λ une valeur propre de u et x un vecteur propre associé. Alors

u(v(x)) = v(u(x)) = v(λx) = λv(x).

Ainsi v(x) est vecteur propre de u pour λ. D’où le résultat.
(b) Soit (ei)i∈I une base de E formée de vecteurs propres de u, et (λi)i∈I les valeurs propres
associées. Pour tout i ∈ I,

u(v(ei)) = λiv(ei) = v(λiei) = v(u(ei)).

Ainsi u ◦ v et v ◦ u coïncident sur une base de E, donc sont égales.
• 2. Soit (ui)i∈I une famille codiagonalisable d’endomorphismes de E. On dispose de (ej)j∈J une
base de E composée de vecteurs propres communs à tous les (ui)i∈I , dont on note ((λi,j)j∈J)i∈I

les familles de valeurs propres associées. Soient k, l ∈ I et m ∈ J . On a

uk(ul(em)) = uk(λl,mem) = λk,mλl,mem = λk,mul(em).

Ainsi, ul(em) est un vecteur propre de uk pour la valeur propre λk,m. On en déduit que ul

stabilise les espaces propres de uk. Or uk est diagonalisable. Donc ul et uk commutent. D’où le
résultat.
• 3. (a) Pour tout n ∈ N∗, on pose Hn : « toute famille de n endomorphismes d’un K-espace
vectoriel, qui sont diagonalisables et commutent deux à deux, est codiagonalisable ».
Initialisation : H1 est évidemment vraie.
Hérédité : Soit n ∈ N∗. On suppose Hn. Soient V un K-espace vectoriel et v0, . . . , vn une famille
de n + 1 endomorphismes de V diagonalisables et commutant deux à deux. En particulier, v0 est
diagonalisable et on note (Vλ)λ∈Sp(u0) ses espaces propres. Soit λ ∈ Sp(v0). D’après la question
1 (a),

vi stabilise Eλ, pour tout i ∈ �1, n� .

Or vi est diagonalisable, donc la restriction de vi à Eλ est diagonalisable. Ainsi la famille des
restrictions (v1, . . . , vn) est une famille de n endomorphismes de Vλ diagonalisables et commutant
deux à deux. D’après Hn, on dispose de Bλ une base de vecteurs propres des restrictions des
(v1, . . . , vn) à Vλ. Or, v0 est diagonalisable, donc

B =
⋃

λ∈Sp(v0)

Bλ

est une base de E formée de vecteurs propres communs à v0, et aux v1, . . . , vn. Donc (v0, . . . , vn)
est codiagonalisable. Ainsi Hn+1 est vraie. Ce qui achève la récurrence et montre le résultat.
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aurait pu faire appel à l’exercice 10, et au fait que A et M commutent :

AM = M3 = MA,

afin de conclure que M était une fonction linéaire de A. Mais les conditions sur les
coefficients auraient donné lieu à de nombreuses disjonctions de cas.

Exercice 22

Supposons avoir M ∈ M2(R) une solution. Dans ce cas, avec le théorème de Cayley-Hamilton,
on obtient

A = M2 + M = (1 + tr(M))M − det(M)I2,

puis
(1 + tr(M))M =

(
1 + det(M) 1

1 1 + det(M)

)
. (2)

On applique la trace et le déterminant. Ce qui nous donne
{

(1 + tr(M)) tr(M) = 2(1 + det(M)),
(1 + tr(M))2 det(M) = (2 + det(M)) det(M).

(3)

∗ Si det(M) = 0 :
Alors tr(M)2 + tr(M) − 2 = 0, donc tr(M) ∈ {−2, 1}. Avec (2), on en déduit que

M = −
(

1 1
1 1

)
ou M = 1

2

(
1 1
1 1

)
.

∗ Si det(M) ̸= 0 :
La deuxième équation de (3) donne

det(M) = (1 + tr(M))2 − 2. (4)

On réinjecte dans la première équation de (3),

(1 + tr(M)) tr(M) = 2((1 + tr(M))2 − 1) = 2 tr(M)(2 + tr(M)).

- Si tr(M) = 0. Avec (4), on a det(M) = −1. Ainsi (2) donne

M =
(

0 1
1 0

)
.

- Sinon, 1 + tr(M) = 4 + 2 tr(M), donc tr(M) = −3. On a ainsi det(M) = 2. Avec (2),
on a

M = −1
2

(
3 1
1 3

)
.

Les calculs réciproques étant évidents, on a

S =
{

−A,
1
2A, A − I2, −1

2A − I2

}
. □
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Remarques

Cet exercice permet de montrer une autre méthode pour résoudre des équations matri-
cielles, sans passer par les coefficients.

Exercice 23

• 1. (a) Soient λ une valeur propre de u et x un vecteur propre associé. Alors

u(v(x)) = v(u(x)) = v(λx) = λv(x).

Ainsi v(x) est vecteur propre de u pour λ. D’où le résultat.
(b) Soit (ei)i∈I une base de E formée de vecteurs propres de u, et (λi)i∈I les valeurs propres
associées. Pour tout i ∈ I,

u(v(ei)) = λiv(ei) = v(λiei) = v(u(ei)).

Ainsi u ◦ v et v ◦ u coïncident sur une base de E, donc sont égales.
• 2. Soit (ui)i∈I une famille codiagonalisable d’endomorphismes de E. On dispose de (ej)j∈J une
base de E composée de vecteurs propres communs à tous les (ui)i∈I , dont on note ((λi,j)j∈J)i∈I

les familles de valeurs propres associées. Soient k, l ∈ I et m ∈ J . On a

uk(ul(em)) = uk(λl,mem) = λk,mλl,mem = λk,mul(em).

Ainsi, ul(em) est un vecteur propre de uk pour la valeur propre λk,m. On en déduit que ul

stabilise les espaces propres de uk. Or uk est diagonalisable. Donc ul et uk commutent. D’où le
résultat.
• 3. (a) Pour tout n ∈ N∗, on pose Hn : « toute famille de n endomorphismes d’un K-espace
vectoriel, qui sont diagonalisables et commutent deux à deux, est codiagonalisable ».
Initialisation : H1 est évidemment vraie.
Hérédité : Soit n ∈ N∗. On suppose Hn. Soient V un K-espace vectoriel et v0, . . . , vn une famille
de n + 1 endomorphismes de V diagonalisables et commutant deux à deux. En particulier, v0 est
diagonalisable et on note (Vλ)λ∈Sp(u0) ses espaces propres. Soit λ ∈ Sp(v0). D’après la question
1 (a),

vi stabilise Eλ, pour tout i ∈ �1, n� .

Or vi est diagonalisable, donc la restriction de vi à Eλ est diagonalisable. Ainsi la famille des
restrictions (v1, . . . , vn) est une famille de n endomorphismes de Vλ diagonalisables et commutant
deux à deux. D’après Hn, on dispose de Bλ une base de vecteurs propres des restrictions des
(v1, . . . , vn) à Vλ. Or, v0 est diagonalisable, donc

B =
⋃

λ∈Sp(v0)

Bλ

est une base de E formée de vecteurs propres communs à v0, et aux v1, . . . , vn. Donc (v0, . . . , vn)
est codiagonalisable. Ainsi Hn+1 est vraie. Ce qui achève la récurrence et montre le résultat.
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(b) Comme E est de dimension finie, le rang de la famille (ui)i∈I est finie. On peut ainsi extraire
une famille (u1, . . . , un) d’endomorphismes telle que tous les autres en soient une combinaison
linéaire. Cette sous-famille est finie et comporte des endomorphismes diagonalisables et commu-
tant deux à deux. Ainsi, cette sous-famille est codiagonalisable d’après la question précédente.
On note B une base de E formée de vecteurs propres communs aux u1, . . . , un. Or, pour tout
i ∈ I,

ui ∈ Vect(u1, . . . , un),
donc B est une famille de vecteurs propres de ui. Ainsi, (ui)i∈I est codiagonalisable. □

Remarques

Cet exercice est un peu technique, et ne vous serait sûrement pas demandé en dimension
quelconque. Cependant, il permet de mieux comprendre ce que l’on manipule, et surtout :
le résultat démontré peut être très intéressant à réutiliser.

Exercice 24

• 1. Soient α ∈ Sp(A) et β ∈ Sp(B). On dispose de X un vecteur propre de A pour α, et Y un
vecteur propre de BT pour β. En effet, B et BT ont les mêmes valeurs propres. Alors,

u(XY T ) = AXY T − XY T B = (AX)Y T − X(BT Y )T = αXY T − βXY T = (α − β)XY T .

Or X et Y sont non nuls, et XY T = (xiyj)1≤i,j≤n, donc XY T possède au moins une coordonnée
non nulle. Ainsi α − β ∈ Sp(u).
• 2. (a) On a AM = MB + λM = M(B + λIn). Pour tout k ∈ N, on pose Hk :

AkM = M(B + λIn)k.

Initialisation : H0 est évidente, et H1 est vraie par hypothèse.
Hérédité : Soit k ∈ N∗. On suppose Hk.

Ak+1M = Ak · AM = AkM(B + λIn) = M(B + λIn)k · (B + λIn),

donc Hk+1 est vraie. Ce qui achève la récurrence et montre le résultat par linéarité.
(b) On choisit pour polynôme le polynôme caractéristique de A, de sorte que

MχA(B + λIn) = χA(A)M = 0n.

Si par l’absurde, χA(B + λIn) était inversible, on aurait M = 0n. Ainsi,

χA(B + λIn) =
∏

α∈Sp(A)

(B + (λ − α)In)mα

est non inversible, donc un des facteurs de ce produit aussi. On dispose ainsi de α ∈ Sp(A) tel
que B + (λ − α)In est non inversible. Ainsi β = −(λ − α) est une valeur propre de B. Or,

λ = α − β.

D’où le résultat.

Chapitre 1. Algèbre 41

• 3. On déduit des questions 1 et 2 que

Sp(u) = {α − β | α ∈ Sp(A), β ∈ Sp(B)}.

• 4. Cette condition est équivalente au fait que u admette 0 comme valeur propre. Mais d’après
la question précédente, u admet 0 comme valeur propre si et seulement si A et B ont une valeur
propre commune. La condition nécessaire et suffisante recherchée est donc

Sp(A) ∩ Sp(B) ̸= ∅. □

Exercice 25

• 1. Soient λ ∈ Sp(A) et X ∈ Mn,1(C) un vecteur propre associé. On dispose de i ∈ �1, n� tel
que |xi| = ∥X∥∞. Alors,

λxi = [AX]i,1 =
n∑

j=1
ai,jxj ,

d’où
|λ − ai,i| · |xi| =

∣∣∣∣
∑
j ̸=i

ai,jxj

∣∣∣∣ ≤
∑
j ̸=i

|ai,j | · |xj | ≤ |xi|
∑
j ̸=i

|ai,j |.

Or |xi| > 0, donc en simplifiant par ce réel, on a

|λ − ai,i| ≤
∑
j ̸=i

|ai,j |.

D’où λ ∈ Di. On en déduit le résultat.
• 2. Supposons que 0 ∈ Sp(A). D’après la question précédente, on dispose de i ∈ �1, n� tel que

|ai,i| = |0 − ai,i| ≤
∑
j ̸=i

|ai,j |,

ce qui contredit l’hypothèse. Donc A est inversible. □

Remarques

Par ailleurs, on considérant AT , on montre aussi que Sp(A) ⊂
⋃n

i=1 D′
i, où

D′
i =

{
z ∈ C

∣∣∣ |z − ai,i| ≤
∑
j ̸=i

|aj,i|
}

.

Ce résultat permet de localiser les valeurs propres d’une matrice, et s’appelle le théorème
de Gerschgorin.

Exercice 26

• 1. Déjà, S est non vide, car In est une matrice stochastique. Soient A, B ∈ S et t ∈ [0, 1]. On
a pour tout i ∈ �1, n�,

n∑
j=1

(tai,j + (1 − t)bi,j) = t

n∑
j=1

ai,j + (1 − t)
n∑

j=1
bi,j = t + (1 − t) = 1.
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(b) Comme E est de dimension finie, le rang de la famille (ui)i∈I est finie. On peut ainsi extraire
une famille (u1, . . . , un) d’endomorphismes telle que tous les autres en soient une combinaison
linéaire. Cette sous-famille est finie et comporte des endomorphismes diagonalisables et commu-
tant deux à deux. Ainsi, cette sous-famille est codiagonalisable d’après la question précédente.
On note B une base de E formée de vecteurs propres communs aux u1, . . . , un. Or, pour tout
i ∈ I,

ui ∈ Vect(u1, . . . , un),
donc B est une famille de vecteurs propres de ui. Ainsi, (ui)i∈I est codiagonalisable. □

Remarques

Cet exercice est un peu technique, et ne vous serait sûrement pas demandé en dimension
quelconque. Cependant, il permet de mieux comprendre ce que l’on manipule, et surtout :
le résultat démontré peut être très intéressant à réutiliser.

Exercice 24

• 1. Soient α ∈ Sp(A) et β ∈ Sp(B). On dispose de X un vecteur propre de A pour α, et Y un
vecteur propre de BT pour β. En effet, B et BT ont les mêmes valeurs propres. Alors,

u(XY T ) = AXY T − XY T B = (AX)Y T − X(BT Y )T = αXY T − βXY T = (α − β)XY T .

Or X et Y sont non nuls, et XY T = (xiyj)1≤i,j≤n, donc XY T possède au moins une coordonnée
non nulle. Ainsi α − β ∈ Sp(u).
• 2. (a) On a AM = MB + λM = M(B + λIn). Pour tout k ∈ N, on pose Hk :

AkM = M(B + λIn)k.

Initialisation : H0 est évidente, et H1 est vraie par hypothèse.
Hérédité : Soit k ∈ N∗. On suppose Hk.

Ak+1M = Ak · AM = AkM(B + λIn) = M(B + λIn)k · (B + λIn),

donc Hk+1 est vraie. Ce qui achève la récurrence et montre le résultat par linéarité.
(b) On choisit pour polynôme le polynôme caractéristique de A, de sorte que

MχA(B + λIn) = χA(A)M = 0n.

Si par l’absurde, χA(B + λIn) était inversible, on aurait M = 0n. Ainsi,

χA(B + λIn) =
∏

α∈Sp(A)

(B + (λ − α)In)mα

est non inversible, donc un des facteurs de ce produit aussi. On dispose ainsi de α ∈ Sp(A) tel
que B + (λ − α)In est non inversible. Ainsi β = −(λ − α) est une valeur propre de B. Or,

λ = α − β.

D’où le résultat.
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• 3. On déduit des questions 1 et 2 que

Sp(u) = {α − β | α ∈ Sp(A), β ∈ Sp(B)}.

• 4. Cette condition est équivalente au fait que u admette 0 comme valeur propre. Mais d’après
la question précédente, u admet 0 comme valeur propre si et seulement si A et B ont une valeur
propre commune. La condition nécessaire et suffisante recherchée est donc

Sp(A) ∩ Sp(B) ̸= ∅. □

Exercice 25

• 1. Soient λ ∈ Sp(A) et X ∈ Mn,1(C) un vecteur propre associé. On dispose de i ∈ �1, n� tel
que |xi| = ∥X∥∞. Alors,

λxi = [AX]i,1 =
n∑

j=1
ai,jxj ,

d’où
|λ − ai,i| · |xi| =

∣∣∣∣
∑
j ̸=i

ai,jxj

∣∣∣∣ ≤
∑
j ̸=i

|ai,j | · |xj | ≤ |xi|
∑
j ̸=i

|ai,j |.

Or |xi| > 0, donc en simplifiant par ce réel, on a

|λ − ai,i| ≤
∑
j ̸=i

|ai,j |.

D’où λ ∈ Di. On en déduit le résultat.
• 2. Supposons que 0 ∈ Sp(A). D’après la question précédente, on dispose de i ∈ �1, n� tel que

|ai,i| = |0 − ai,i| ≤
∑
j ̸=i

|ai,j |,

ce qui contredit l’hypothèse. Donc A est inversible. □

Remarques

Par ailleurs, on considérant AT , on montre aussi que Sp(A) ⊂
⋃n

i=1 D′
i, où

D′
i =

{
z ∈ C

∣∣∣ |z − ai,i| ≤
∑
j ̸=i

|aj,i|
}

.

Ce résultat permet de localiser les valeurs propres d’une matrice, et s’appelle le théorème
de Gerschgorin.

Exercice 26

• 1. Déjà, S est non vide, car In est une matrice stochastique. Soient A, B ∈ S et t ∈ [0, 1]. On
a pour tout i ∈ �1, n�,

n∑
j=1

(tai,j + (1 − t)bi,j) = t

n∑
j=1

ai,j + (1 − t)
n∑

j=1
bi,j = t + (1 − t) = 1.
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De plus, les coefficients de tA + (1 − t)B sont positifs. Donc tA + (1 − t)B ∈ S. Ce qui montre
la convexité. Tous les coefficients d’une matrice stochastique sont entre 0 et 1, ce qui montre le
caractère borné de S, en considérant la norme infinie. Soit (An)n∈N une suite de S convergeant
vers A ∈ Mn(C). Alors, pour tous n ∈ N et i ∈ �1, n�,

n∑
j=1

ai,j = lim
n→+∞

n∑
j=1

[An]i,j = lim
n→+∞

1 = 1,

par convergence coefficient à coefficient. On en déduit aussi que tous les coefficients de A sont
positifs. Ainsi A ∈ S. L’ensemble S est donc fermé borné, c’est-à-dire compact en dimension
finie (p. 391). Enfin, soient A, B ∈ S. A et B étant à coefficients positifs, leur produit aussi.
Maintenant, pour i ∈ �1, n�,

n∑
j=1

[AB]i,j =
n∑

j=1

n∑
k=1

ai,kbk,j =
n∑

k=1
ai,k

( n∑
j=1

bk,j

)
=

n∑
k=1

ai,k = 1.

Donc AB ∈ S. D’où le résultat.
• 2. Soient A ∈ S, λ ∈ C une valeur propre de A, et X un vecteur propre associé. Pour tout
i ∈ �1, n�,

|λ| · |xi| = |[AX]i,1| =
∣∣∣∣

n∑
j=1

ai,jxj

∣∣∣∣ ≤
n∑

j=1
ai,j∥X∥∞ ≤ ∥X∥∞.

En particulier, on peut choisir i ∈ �1, n� tel que |xi| = ∥X∥∞, et comme X est non nul, on a
|λ| ≤ 1. D’où le résultat.
• 3. (a) Soit i ∈ �1, n − 1�.

1 − ai,i =
n∑

j=1
j ̸=i

ai,j >

n−1∑
j=1
j ̸=i

ai,j ,

car ai,n > 0. Or 1 − ai,i est positif et A est à coefficients positifs, donc

∣∣∣[B − In−1]i,i
∣∣∣ = 1 − ai,i >

n−1∑
j=1
j ̸=i

∣∣∣[B − In−1]i,j
∣∣∣.

Donc B − In−1 est à diagonale strictement dominante.
(b) D’après le résultat de l’exercice précédent, B − In−1 est inversible. On en déduit que
dim(ker(A − In)) ≤ 1. En effet, si la dimension était strictement supérieur à 1, l’espace en-
gendré par les colonnes de A−In serait de dimension inférieur ou égale à n−2. Cela signifie qu’il
existerait une combinaison linéaire non nulle des n − 1 premières colonnes donnant la colonne
nulle, autrement dit B − In−1 ne serait pas inversible. D’où

dim(ker(A − In)) ≤ 1.

Or, en notant X = (1 · · · 1)T , on a pour tout i ∈ �1, n�,

[AX]i,1 =
n∑

j=1
ai,j = 1 = xi.

Chapitre 1. Algèbre 43

Ainsi, AX = X. D’où

dim(ker(A − In)) = 1.

(c) Soit λ ∈ Sp(A) de module 1. En reprenant la preuve de l’exercice précédent, on montre qu’il
existe i ∈ �1, n� tel que

|λ − ai,i| ≤
∑
j ̸=i

ai,j = 1 − ai,i.

Ainsi,
1 = |λ| = |λ − ai,i + ai,i| ≤ |λ − ai,i| + ai,i ≤ 1,

avec l’équation précédente. On a donc égalité dans l’inégalité triangulaire. Comme ai,i ̸= 0, on
dispose de µ ∈ R+ tel que

λ − ai,i = µai,i.

En particulier, λ est un réel positif. Donc λ = 1. D’où le résultat. □

Remarques

Les matrices stochastiques sont particulièrement intéressantes en probabilité, puisqu’elles
peuvent encoder une marche aléatoire. Donnons-nous par exemple n points du plan, qu’on
numérote de 1 à n, et p : �1, n� → [0, 1] une probabilité sur cet ensemble. On note π son
vecteur de probabilité associé, c’est-à-dire que

πi = p(i), pour tout i ∈ �1, n� .

On place une puce au temps t = 0 sur un des points du plan, selon la probabilité p. Puis,
pour tous i, j ∈ �1, n�, on note ai,j la probabilité qu’a la puce de passer du point i au
point j, d’un temps à un autre. Par formule des probabilités totales, on obtient

n∑
j=1

ai,j = 1, pour tout i ∈ �1, n� .

Et les probabilités étant toujours positives, la matrice A associée est donc une matrice
stochastique. Il vient par récurrence immédiate que la distribution de probabilité de la
place de la puce au temps t = n suit la loi

π(n) = Anπ,

puisqu’on passe d’un temps à un autre à l’aide de la matrice A. On peut alors étudier la
convergence éventuelle de la suite (π(n))n∈N, pour avoir la loi « à l’infini » de la place
de la puce. Si la suite converge, et qu’on note π(∞) le vecteur de probabilité associé, on
remarque que

Aπ(∞) = A · lim
n→+∞

Anπ = lim
n→+∞

An+1π = π(∞),

par continuité du produit matriciel. Le vecteur π(∞) est donc un vecteur propre pour A,
associé à la valeur propre 1. Dans le cas où A est à coefficients strictement positifs, π(∞)
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De plus, les coefficients de tA + (1 − t)B sont positifs. Donc tA + (1 − t)B ∈ S. Ce qui montre
la convexité. Tous les coefficients d’une matrice stochastique sont entre 0 et 1, ce qui montre le
caractère borné de S, en considérant la norme infinie. Soit (An)n∈N une suite de S convergeant
vers A ∈ Mn(C). Alors, pour tous n ∈ N et i ∈ �1, n�,

n∑
j=1

ai,j = lim
n→+∞

n∑
j=1

[An]i,j = lim
n→+∞

1 = 1,

par convergence coefficient à coefficient. On en déduit aussi que tous les coefficients de A sont
positifs. Ainsi A ∈ S. L’ensemble S est donc fermé borné, c’est-à-dire compact en dimension
finie (p. 391). Enfin, soient A, B ∈ S. A et B étant à coefficients positifs, leur produit aussi.
Maintenant, pour i ∈ �1, n�,

n∑
j=1

[AB]i,j =
n∑

j=1

n∑
k=1

ai,kbk,j =
n∑

k=1
ai,k

( n∑
j=1

bk,j

)
=

n∑
k=1

ai,k = 1.

Donc AB ∈ S. D’où le résultat.
• 2. Soient A ∈ S, λ ∈ C une valeur propre de A, et X un vecteur propre associé. Pour tout
i ∈ �1, n�,

|λ| · |xi| = |[AX]i,1| =
∣∣∣∣

n∑
j=1

ai,jxj

∣∣∣∣ ≤
n∑

j=1
ai,j∥X∥∞ ≤ ∥X∥∞.

En particulier, on peut choisir i ∈ �1, n� tel que |xi| = ∥X∥∞, et comme X est non nul, on a
|λ| ≤ 1. D’où le résultat.
• 3. (a) Soit i ∈ �1, n − 1�.

1 − ai,i =
n∑

j=1
j ̸=i

ai,j >

n−1∑
j=1
j ̸=i

ai,j ,

car ai,n > 0. Or 1 − ai,i est positif et A est à coefficients positifs, donc

∣∣∣[B − In−1]i,i
∣∣∣ = 1 − ai,i >

n−1∑
j=1
j ̸=i

∣∣∣[B − In−1]i,j
∣∣∣.

Donc B − In−1 est à diagonale strictement dominante.
(b) D’après le résultat de l’exercice précédent, B − In−1 est inversible. On en déduit que
dim(ker(A − In)) ≤ 1. En effet, si la dimension était strictement supérieur à 1, l’espace en-
gendré par les colonnes de A−In serait de dimension inférieur ou égale à n−2. Cela signifie qu’il
existerait une combinaison linéaire non nulle des n − 1 premières colonnes donnant la colonne
nulle, autrement dit B − In−1 ne serait pas inversible. D’où

dim(ker(A − In)) ≤ 1.

Or, en notant X = (1 · · · 1)T , on a pour tout i ∈ �1, n�,

[AX]i,1 =
n∑

j=1
ai,j = 1 = xi.
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Ainsi, AX = X. D’où

dim(ker(A − In)) = 1.

(c) Soit λ ∈ Sp(A) de module 1. En reprenant la preuve de l’exercice précédent, on montre qu’il
existe i ∈ �1, n� tel que

|λ − ai,i| ≤
∑
j ̸=i

ai,j = 1 − ai,i.

Ainsi,
1 = |λ| = |λ − ai,i + ai,i| ≤ |λ − ai,i| + ai,i ≤ 1,

avec l’équation précédente. On a donc égalité dans l’inégalité triangulaire. Comme ai,i ̸= 0, on
dispose de µ ∈ R+ tel que

λ − ai,i = µai,i.

En particulier, λ est un réel positif. Donc λ = 1. D’où le résultat. □

Remarques

Les matrices stochastiques sont particulièrement intéressantes en probabilité, puisqu’elles
peuvent encoder une marche aléatoire. Donnons-nous par exemple n points du plan, qu’on
numérote de 1 à n, et p : �1, n� → [0, 1] une probabilité sur cet ensemble. On note π son
vecteur de probabilité associé, c’est-à-dire que

πi = p(i), pour tout i ∈ �1, n� .

On place une puce au temps t = 0 sur un des points du plan, selon la probabilité p. Puis,
pour tous i, j ∈ �1, n�, on note ai,j la probabilité qu’a la puce de passer du point i au
point j, d’un temps à un autre. Par formule des probabilités totales, on obtient

n∑
j=1

ai,j = 1, pour tout i ∈ �1, n� .

Et les probabilités étant toujours positives, la matrice A associée est donc une matrice
stochastique. Il vient par récurrence immédiate que la distribution de probabilité de la
place de la puce au temps t = n suit la loi

π(n) = Anπ,

puisqu’on passe d’un temps à un autre à l’aide de la matrice A. On peut alors étudier la
convergence éventuelle de la suite (π(n))n∈N, pour avoir la loi « à l’infini » de la place
de la puce. Si la suite converge, et qu’on note π(∞) le vecteur de probabilité associé, on
remarque que

Aπ(∞) = A · lim
n→+∞

Anπ = lim
n→+∞

An+1π = π(∞),

par continuité du produit matriciel. Le vecteur π(∞) est donc un vecteur propre pour A,
associé à la valeur propre 1. Dans le cas où A est à coefficients strictement positifs, π(∞)
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est unique, car l’espace ker(A − In) est de dimension 1, et qu’on doit avoir
n

i=1
π

(∞)
i = 1.

Ainsi, peu importe le vecteur de probabilité initial, si on a convergence, la loi à l’infini est
nécessairement donnée par π(∞).

Exercice 27

• 1. On pose
J =


0 In−1
1 0


.

Il vient alors que si A est une matrice circulante associée aux coefficients a0, . . . , an−1, on a

A =
n−1
k=0

akJk ∈ C[J ].

Réciproquement, J et toutes ses puissances sont des matrices circulantes, donc Cn = C[J ], car
Cn est un espace vectoriel.
• 2. On remarque que Jn = In. Ainsi, J est annulé par un polynôme scindé à racines simples,
donc est diagonalisable. On note

Un =


ωk
 k ∈ �0, n − 1�


, où ω = ei 2π

n .

Soit k ∈ �0, n − 1�. On définit Xk = (1 ωk · · · (ωk)n−1)T . Il vient alors que

JXk =




ωk

ω2k

...
(ωk)n−1

1




= ωk




1
ωk

...
(ωk)n−2

ω−k




= ωkXk,

car ω−1 = ωn−1. Or les éléments de (ωk)0≤k≤n−1 sont tous distincts. Ce qui donne les éléments
propres de J .
• 3. Soit P ∈ C[X]. (X0, . . . , Xn−1) est une base de vecteurs propres de J , c’en est donc aussi une
de P (J). Les valeurs propres associées sont alors (P (1), P (ω), . . . , P (ωn−1). Or, le déterminant
d’une matrice est le produit de ses valeurs propres avec multiplicités, donc

det(P (J))) =
n−1
k=0

P (ωk).

• 4. Supposons que n ̸= 1. Soit j ∈ �1, n − 1�. Comme ωj ̸= 1, on a

P (ωj) =
p−1
k=0

(ωj)k = ωjp − 1
ωj − 1 .
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Or P (1) = p ̸= 0. Avec la question précédente, on en déduit que

det(P (J)) = 0 ⇐⇒ ∃j ∈ �1, n − 1� , P (ωj) = 0
⇐⇒ ∃j ∈ �1, n − 1� , ωpj = 1

⇐⇒ ∃j ∈ �1, n − 1� ,
2πpj

n
≡ 0 (mod 2π)

⇐⇒ ∃j ∈ �1, n − 1� , pj ≡ 0 (mod n)
⇐⇒ pgcd(p, n) ̸= 1.

Montrons la dernière équivalence.
⇐ Supposons qu’il existe j ∈ �1, n − 1� tel que pj ≡ 0 (mod n). Alors, n divise pj. Si par
l’absurde n et p étaient premiers entre eux, n diviserait j par lemme de Gauss. Ce qui n’est pas
possible, car j ∈ �1, n − 1�.
⇒ On suppose que p et n ne sont pas premiers entre eux. Ainsi,

p · n

pgcd(p, n) = n · p

pgcd(p, n)  
∈N

≡ 0 (mod n),

avec n
pgcd(p,n) ∈ �1, n − 1�, car pgcd(p, n) > 1. D’où le résultat.

On peut alors conclure que P (J) est inversible si et seulement p et n sont premiers entre eux.
Si n = 1, la question précédente donne que det(P (J)) = P (1) = p ̸= 0, donc P (J) est toujours
inversible. Comme 1 est premier avec tous les nombres entiers, on a la même conclusion. □

Remarques

Remarquons que comme les valeurs propres de J sont les éléments de Un, le polynôme
caractéristique de J est donc Xn − 1. Profitons aussi de cette remarque pour noter que
si x ̸= 1,

n−1
k=1

(x − ωk) = xn − 1
x − 1 .

En prenant la limite pour x tendant vers 1, on obtient

n−1
k=1

(1 − ωk) = n.

Ainsi, certains calculs de produits ou de sommes peuvent se ramener astucieusement à la
factorisation d’un polynôme, puis à son évaluation en un point précis.

Exercice 28
• 1. Soit A ∈ Mn(R). On a

A =




0 . . . . . . 0

a2,1
. . . ...

... . . . . . . ...
a1,n . . . an,n−1 0




+




a1,1 . . . . . . an,n

0 . . . ...
... . . . ...
0 . . . 0 an,n




.
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est unique, car l’espace ker(A − In) est de dimension 1, et qu’on doit avoir
n

i=1
π

(∞)
i = 1.

Ainsi, peu importe le vecteur de probabilité initial, si on a convergence, la loi à l’infini est
nécessairement donnée par π(∞).

Exercice 27

• 1. On pose
J =


0 In−1
1 0


.

Il vient alors que si A est une matrice circulante associée aux coefficients a0, . . . , an−1, on a

A =
n−1
k=0

akJk ∈ C[J ].

Réciproquement, J et toutes ses puissances sont des matrices circulantes, donc Cn = C[J ], car
Cn est un espace vectoriel.
• 2. On remarque que Jn = In. Ainsi, J est annulé par un polynôme scindé à racines simples,
donc est diagonalisable. On note

Un =


ωk
 k ∈ �0, n − 1�


, où ω = ei 2π

n .

Soit k ∈ �0, n − 1�. On définit Xk = (1 ωk · · · (ωk)n−1)T . Il vient alors que

JXk =




ωk

ω2k

...
(ωk)n−1

1




= ωk




1
ωk

...
(ωk)n−2

ω−k




= ωkXk,

car ω−1 = ωn−1. Or les éléments de (ωk)0≤k≤n−1 sont tous distincts. Ce qui donne les éléments
propres de J .
• 3. Soit P ∈ C[X]. (X0, . . . , Xn−1) est une base de vecteurs propres de J , c’en est donc aussi une
de P (J). Les valeurs propres associées sont alors (P (1), P (ω), . . . , P (ωn−1). Or, le déterminant
d’une matrice est le produit de ses valeurs propres avec multiplicités, donc

det(P (J))) =
n−1
k=0

P (ωk).

• 4. Supposons que n ̸= 1. Soit j ∈ �1, n − 1�. Comme ωj ̸= 1, on a

P (ωj) =
p−1
k=0

(ωj)k = ωjp − 1
ωj − 1 .
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Or P (1) = p ̸= 0. Avec la question précédente, on en déduit que

det(P (J)) = 0 ⇐⇒ ∃j ∈ �1, n − 1� , P (ωj) = 0
⇐⇒ ∃j ∈ �1, n − 1� , ωpj = 1

⇐⇒ ∃j ∈ �1, n − 1� ,
2πpj

n
≡ 0 (mod 2π)

⇐⇒ ∃j ∈ �1, n − 1� , pj ≡ 0 (mod n)
⇐⇒ pgcd(p, n) ̸= 1.

Montrons la dernière équivalence.
⇐ Supposons qu’il existe j ∈ �1, n − 1� tel que pj ≡ 0 (mod n). Alors, n divise pj. Si par
l’absurde n et p étaient premiers entre eux, n diviserait j par lemme de Gauss. Ce qui n’est pas
possible, car j ∈ �1, n − 1�.
⇒ On suppose que p et n ne sont pas premiers entre eux. Ainsi,

p · n

pgcd(p, n) = n · p

pgcd(p, n)  
∈N

≡ 0 (mod n),

avec n
pgcd(p,n) ∈ �1, n − 1�, car pgcd(p, n) > 1. D’où le résultat.

On peut alors conclure que P (J) est inversible si et seulement p et n sont premiers entre eux.
Si n = 1, la question précédente donne que det(P (J)) = P (1) = p ̸= 0, donc P (J) est toujours
inversible. Comme 1 est premier avec tous les nombres entiers, on a la même conclusion. □

Remarques

Remarquons que comme les valeurs propres de J sont les éléments de Un, le polynôme
caractéristique de J est donc Xn − 1. Profitons aussi de cette remarque pour noter que
si x ̸= 1,

n−1
k=1

(x − ωk) = xn − 1
x − 1 .

En prenant la limite pour x tendant vers 1, on obtient

n−1
k=1

(1 − ωk) = n.

Ainsi, certains calculs de produits ou de sommes peuvent se ramener astucieusement à la
factorisation d’un polynôme, puis à son évaluation en un point précis.

Exercice 28
• 1. Soit A ∈ Mn(R). On a

A =




0 . . . . . . 0

a2,1
. . . ...

... . . . . . . ...
a1,n . . . an,n−1 0




+




a1,1 . . . . . . an,n

0 . . . ...
... . . . ...
0 . . . 0 an,n




.
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Or les deux matrices sont triangulaires, donc leurs valeurs propres sont sur leurs diagonales. D’où
le résultat.
• 2. Analyse : Soit M ∈ E2. On écrit M =

(
a b
c d

)
, où a, b, c, d ∈ R. Ainsi,

χM (X) = (X − a)(X − b) − bc.

Or M est à diagonale propre, donc χM (a) = 0. D’où bc = 0, et b = 0 ou c = 0. Donc M est
triangulaire.

Synthèse : Réciproquement, les matrices triangulaires sont à diagonale propre. Donc E2 est
l’ensemble des matrices triangulaires de M2(R).
• 3. Analyse : Soit A ∈ En antisymétrique. La diagonale de A est nulle, donc la seule valeur
propre de A est 0. On en déduit par le théorème de Cayley-Hamilton que A est nilpotente. Or
AAT est symétrique réelle, donc diagonalisable. Mais

(AAT )n = (−A2)n = (−1)nA2n = 0n.

AAT est diagonalisable et nilpotente, donc AAT = 0n. Ce qui signifie que tr(AAT ) = 0. Or
M → tr(MMT ) est une norme sur Mn(R). Donc A = 0n.

Synthèse : Réciproquement, la matrice nulle est antisymétrique et à diagonale propre.
• 4. (a) D’une part, tr(A2) est égale à la somme des valeurs propres de A2. Comme A est
symétrique réelle, A est diagonalisable, et on en déduit que les valeurs propres de A2 sont
λ2

1, . . . , λ2
n. D’où

tr(A2) =
n∑

i=1
λ2

i .

D’autre part,

tr(A2) =
n∑

i=1
[A2]i,i =

∑
1≤i,j≤n

ai,jaj,i =
∑

1≤i,j≤n

a2
i,j ,

car A est symétrique. En comparant les deux égalités, on obtient le résultat.
(b) On sait que pour tout i ∈ �1, n�, ai,i = λi, quitte à réordonner les valeurs propres. D’où,

∑
1≤i,j≤n

i̸=j

a2
i,j =

∑
1≤i,j≤n

a2
i,j −

n∑
i=1

a2
i,i =

n∑
i=1

λ2
i −

n∑
i=1

a2
i,i = 0.

On a une somme de nombres positifs qui est nulle, donc

∀i, j ∈ �1, n� , i ̸= j =⇒ ai,j = 0.

Donc A est diagonale. Réciproquement les matrices diagonales sont symétriques réelles et à
diagonale propre. Ce qui caractérise En ∩ Sn(R). □

Chapitre 1. Algèbre 47

Remarques

La question 3 peut laisser place à un argument encore plus intéressant. En effet, on a
montré que En ∩ An(R) = {0E}. Ainsi, si on prend F un sous-espace vectoriel de Mn(R)
inclus dans En, on a

dim(F ) + dim(An(R)) = dim(F ⊕ An(R)) ≤ n2.

Or dim(An(R)) = n(n−1)
2 , donc

dim(F ) ≤ n(n + 1)
2 .

Cette borne supérieure est atteinte si F désigne l’ensemble des matrices triangulaires
supérieures. On s’attendait évidemment à ce que En ne soit pas un espace vectoriel dès la
première question.
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Or les deux matrices sont triangulaires, donc leurs valeurs propres sont sur leurs diagonales. D’où
le résultat.
• 2. Analyse : Soit M ∈ E2. On écrit M =

(
a b
c d

)
, où a, b, c, d ∈ R. Ainsi,

χM (X) = (X − a)(X − b) − bc.

Or M est à diagonale propre, donc χM (a) = 0. D’où bc = 0, et b = 0 ou c = 0. Donc M est
triangulaire.

Synthèse : Réciproquement, les matrices triangulaires sont à diagonale propre. Donc E2 est
l’ensemble des matrices triangulaires de M2(R).
• 3. Analyse : Soit A ∈ En antisymétrique. La diagonale de A est nulle, donc la seule valeur
propre de A est 0. On en déduit par le théorème de Cayley-Hamilton que A est nilpotente. Or
AAT est symétrique réelle, donc diagonalisable. Mais

(AAT )n = (−A2)n = (−1)nA2n = 0n.

AAT est diagonalisable et nilpotente, donc AAT = 0n. Ce qui signifie que tr(AAT ) = 0. Or
M → tr(MMT ) est une norme sur Mn(R). Donc A = 0n.

Synthèse : Réciproquement, la matrice nulle est antisymétrique et à diagonale propre.
• 4. (a) D’une part, tr(A2) est égale à la somme des valeurs propres de A2. Comme A est
symétrique réelle, A est diagonalisable, et on en déduit que les valeurs propres de A2 sont
λ2

1, . . . , λ2
n. D’où

tr(A2) =
n∑

i=1
λ2

i .

D’autre part,

tr(A2) =
n∑

i=1
[A2]i,i =

∑
1≤i,j≤n

ai,jaj,i =
∑

1≤i,j≤n

a2
i,j ,

car A est symétrique. En comparant les deux égalités, on obtient le résultat.
(b) On sait que pour tout i ∈ �1, n�, ai,i = λi, quitte à réordonner les valeurs propres. D’où,

∑
1≤i,j≤n

i̸=j

a2
i,j =

∑
1≤i,j≤n

a2
i,j −

n∑
i=1

a2
i,i =

n∑
i=1

λ2
i −

n∑
i=1

a2
i,i = 0.

On a une somme de nombres positifs qui est nulle, donc

∀i, j ∈ �1, n� , i ̸= j =⇒ ai,j = 0.

Donc A est diagonale. Réciproquement les matrices diagonales sont symétriques réelles et à
diagonale propre. Ce qui caractérise En ∩ Sn(R). □

Chapitre 1. Algèbre 47

Remarques

La question 3 peut laisser place à un argument encore plus intéressant. En effet, on a
montré que En ∩ An(R) = {0E}. Ainsi, si on prend F un sous-espace vectoriel de Mn(R)
inclus dans En, on a

dim(F ) + dim(An(R)) = dim(F ⊕ An(R)) ≤ n2.

Or dim(An(R)) = n(n−1)
2 , donc

dim(F ) ≤ n(n + 1)
2 .

Cette borne supérieure est atteinte si F désigne l’ensemble des matrices triangulaires
supérieures. On s’attendait évidemment à ce que En ne soit pas un espace vectoriel dès la
première question.
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Chapitre 2

Espaces préhilbertiens réels

1. Définitions à connaître
1.1. Définition. Soient (E, ⟨·, ·⟩) un espace préhilbertien réel et u ∈ L (E). On dit qu’un endo-
morphisme v de E est un adjoint de u si et seulement

∀x, y ∈ E, ⟨u(x), y⟩ = ⟨x, v(y)⟩.

Si un endomorphisme admet un adjoint, celui-ci est unique.

2. Sujet : Polynômes orthogonaux
Soit I un intervalle réel. On appelle fonction de masse sur I toute fonction continue non nulle
w : I → R+ telle que pour tout n ∈ N, x → xnw(x) est intégrable sur I. On note M(I) l’ensemble
des fonctions de masse sur I. Pour tous w ∈ M(I), et P, Q ∈ R[X], on pose

⟨P, Q⟩w =
∫

I

P (x)Q(x)w(x) dx.

I. Premières propriétés
Soit w ∈ M(I).

1. Montrer que ⟨·, ·⟩w définit un produit scalaire sur R[X].
2. Montrer qu’il existe une unique famille de polynômes unitaires (Pn)n∈N orthogonale pour

le produit scalaire ⟨·, ·⟩w, et telle que pour tout n ∈ N, deg(Pn) = n.
3. Soit n ∈ N. On note p le nombre de racines réelles distinctes de multiplicité impaire de Pn

dans I. On note r1, . . . , rp ces racines et on pose Q(X) =
∏p

i=1(X − ri).
(a) Montrer que QPn est de signe constant sur I.
(b) En déduire que Pn possède n racines distinctes dans I.

4. Pour n ∈ N, on note Un[X] l’ensemble des polynômes unitaires de degré n. Déterminer

min
P ∈Un[X]

∫

I

P (t)2w(t) dt.

II. Polynômes d’Hermite

Dans cette partie, I = R et w : x → e−x2 . Pour tout n ∈ N, on pose Hn : x → (−1)nex2
w(n)(x).

5. Vérifier que w est une fonction de masse sur I.
6. Montrer que pour tout n ∈ N, Hn est un polynôme de degré n, et

Hn+1 = 2XHn − H ′
n.
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Espaces préhilbertiens réels

1. Définitions à connaître
1.1. Définition. Soient (E, ⟨·, ·⟩) un espace préhilbertien réel et u ∈ L (E). On dit qu’un endo-
morphisme v de E est un adjoint de u si et seulement

∀x, y ∈ E, ⟨u(x), y⟩ = ⟨x, v(y)⟩.

Si un endomorphisme admet un adjoint, celui-ci est unique.

2. Sujet : Polynômes orthogonaux
Soit I un intervalle réel. On appelle fonction de masse sur I toute fonction continue non nulle
w : I → R+ telle que pour tout n ∈ N, x → xnw(x) est intégrable sur I. On note M(I) l’ensemble
des fonctions de masse sur I. Pour tous w ∈ M(I), et P, Q ∈ R[X], on pose

⟨P, Q⟩w =
∫

I

P (x)Q(x)w(x) dx.

I. Premières propriétés
Soit w ∈ M(I).

1. Montrer que ⟨·, ·⟩w définit un produit scalaire sur R[X].
2. Montrer qu’il existe une unique famille de polynômes unitaires (Pn)n∈N orthogonale pour

le produit scalaire ⟨·, ·⟩w, et telle que pour tout n ∈ N, deg(Pn) = n.
3. Soit n ∈ N. On note p le nombre de racines réelles distinctes de multiplicité impaire de Pn

dans I. On note r1, . . . , rp ces racines et on pose Q(X) =
∏p

i=1(X − ri).
(a) Montrer que QPn est de signe constant sur I.
(b) En déduire que Pn possède n racines distinctes dans I.

4. Pour n ∈ N, on note Un[X] l’ensemble des polynômes unitaires de degré n. Déterminer

min
P ∈Un[X]

∫

I

P (t)2w(t) dt.

II. Polynômes d’Hermite

Dans cette partie, I = R et w : x → e−x2 . Pour tout n ∈ N, on pose Hn : x → (−1)nex2
w(n)(x).

5. Vérifier que w est une fonction de masse sur I.
6. Montrer que pour tout n ∈ N, Hn est un polynôme de degré n, et

Hn+1 = 2XHn − H ′
n.
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7. Pour tout n ∈ N, déterminer le coefficient dominant de Hn.
8. Montrer que pour tous n ∈ N et P ∈ R[X],

⟨Hn, P ⟩w = ⟨H0, P (n)⟩w.

9. En déduire que (Hn)n∈N est une famille orthogonale pour ⟨·, ·⟩w.
10. Calculer ∥Hn∥w pour tout n ∈ N.
11. Justifier que w est développable en série entière au voisinage de tout point de R, et en

déduire que pour tous x, t ∈ R,

+∞∑
n=0

Hn(x) tn

n! = e2xt−t2
.

III. Polynômes de Tchebychev
Dans cette partie, I = ]−1, 1[ et w : x → 1√

1−x2 .

12. Vérifier que w est une fonction de masse sur I.
13. Montrer que pour tout n ∈ N, il existe un unique polynôme Tn tel que

∀θ ∈ R, Tn(cos(θ)) = cos(nθ).

14. Montrer que pour tout n ∈ N,

Tn+2 = 2XTn+1 − Tn.

15. Pour tout n ∈ N, déterminer le coefficient dominant et le degré de Tn.
16. Montrer que (Tn)n∈N est une famille orthogonale pour ⟨·, ·⟩w.
17. Calculer ∥Tn∥w pour tout n ∈ N.
18. Montrer que pour tous x ∈ [−1, 1] et t ∈ R,

+∞∑
n=0

Tn(x) tn

n! = cos
(
t
√

1 − x2
)
ext.

3. Adjoints
Exercice 1

Soient (E, ⟨·, ·⟩) un espace préhilbertien réel, et f, g deux applications de E dans E telles que

∀x, y ∈ E, ⟨f(x), y⟩ = ⟨x, g(y)⟩.

1. Montrer que f et g sont des applications linéaires.
2. On suppose que E est de dimension finie.

(a) Établir des relations entre ker(f), Im(f), ker(g) et Im(g).
(b) Soit F un sous-espace vectoriel de E. Montrer que F est stable par f si et seulement si

F ⊥ est stable par g.
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Exercice 2
On pose E = C([0, 1] ,R) qu’on munit de son produit scalaire canonique. Pour tout f ∈ E, on
définit T (f) telle que

∀x ∈ [0, 1] , T (f)(x) =
∫ x

0
f(t) dt.

1. Montrer que T est un endomorphisme de E.
2. Montrer qu’il existe un unique endomorphisme T ∗ de E tel que

∀f, g ∈ E, ⟨T (f), g⟩ = ⟨f, T ∗(g)⟩.

3. Déterminer les valeurs propres de T et T ∗.
4. Déterminer les valeurs propres de T ∗ ◦ T .

4. Orthogonalité
Exercice 3

Soient (E, ⟨·, ·⟩) un espace euclidien réel et p ∈ L (E) un projecteur. Montrer que p est un
projecteur orthogonal si et seulement si

∀x ∈ E, ∥p(x)∥ ≤ ∥x∥.

Exercice 4
Soient (E, ⟨·, ·⟩) un espace euclidien réel et f ∈ L (E). On suppose que

∀x, y ∈ E, ⟨x, y⟩ = 0 =⇒ ⟨f(x), f(y)⟩ = 0.

Montrer qu’il existe a ∈ R+ et g ∈ O(E) tels que f = ag.

Exercice 5
Soit (E, ⟨·, ·⟩) un espace préhilbertien réel.

1. Montrer que pour tout A ⊂ E, A⊥ est fermé.
2. Soit F un sous-espace vectoriel de E.

(a) Montrer que F ⊂ (F ⊥)⊥.
(b) Montrer qu’il y a égalité si E est de dimension finie.

3. Dans cette question, E est l’ensemble des suites nulles à partir d’un certain rang, muni du
produit scalaire

⟨u, v⟩ =
+∞∑
n=0

unvn, pour tous u, v ∈ E.

On définit pour tout u ∈ E,

f(u) =
+∞∑
n=0

un

n + 1 .

(a) Montrer que F = ker(f) est un fermé de E.
(b) Montrer que F ̸= (F ⊥)⊥.
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