

xii Chapitre 0. TABLE DES MATIÈRES

11.125 Une poursuite dans la classe des tortues en py5 292
11.126 Incursion dans le graphisme 3D avec tkinter 295
11.127 Ajustement par programmation génétique 297
11.128 Introduction au moteur physique pymunk 301
11.129 Décoration de la récurrence terminale 308
11.130 Des neurones pour l’IA : le perceptron 309

11.130.1 Un neurone formel simplifié 309
11.130.2 L’algorithme d’apprentissage d’un perceptron 311
11.130.3 Les réseaux de perceptrons à couches cachées 312

11.131 La programmation audionumérique 315
11.131.1 Le son numérique . 315
11.131.2 Construire une note de musique en python 316
11.131.3 Exercices autour de la construction d’une note 317
11.131.4 Introduction minimaliste au solfège pour informaticien 321

Bibliographie 325

Index 329

Première partie

L’essentiel du langage

9782340-111332_Roy_001_352_PAP.indd 179782340-111332_Roy_001_352_PAP.indd 17 19/12/2025 18:4119/12/2025 18:41

1 | L’environnement Python

J’ai essayé de ne pas trop détailler l’environnement intégré de program-
mation ou IDE 1, vous trouverez sur le Web beaucoup de tutoriaux à cet e!et.
Suivant la formation que vous suivrez, vous serez sous IDLE, Spyder, Jupyter,
Emacs, Eclipse, PyCharm, XCode ou Visual Studio, que sais-je ? Il est impos-
sible de les passer tous en revue. Pour les débutants, IDLE (par les créateurs
de Python) et Jupyter (plus évolué, avec la plateforme Anaconda) sont de bons
choix, avec Visual Studio Code pour les plus hardis. Nous verrons comment
rédiger et exécuter avec eux un programme.

1.1 Installation de la distribution Python standard
avec IDLE

La maison-mère www.python.org distribue le langage Python avec un petit édi-
teur intégré IDLE, fournissant le minimum requis pour programmer en Python.
Il s’agit sans doute de la solution la plus simple au niveau du lycée en pré-BAC.
Ultérieurement, il faudra disposer d’un environnement élargi pour la sience des
données, tel celui d’Anaconda qui reste utilisable par des débutants.

La distribution standard se trouve sur www.python.org/downloads qui
vous proposera la version adaptée à votre machine. Une fois l’installation termi-
née, fabriquez un raccourci vers le programme IDLE, sur le bureau ou dans un
menu de démarrage. C’est ce programme qui va lancer Python dans une console
avec un caractère d’invite (prompt) >>>. Par exemple, aux couleurs près :

1 Python 3.14.0, Oct 7 2025, on darwin # ← darwin = Apple
2 >>> 2 + 3 * 4
3 14
4 >>> from math import sqrt # la racine carrée
5 >>> sqrt(2) ** 2 # un calcul approché :-)
6 2.0000000000000004

1. IDE = Integrated Development Environment, comprenant les outils essentiels pour pro-
grammer dont en premier lieu un éditeur de texte et une console d’exécution.

9782340-111332_Roy_001_352_PAP.indd 189782340-111332_Roy_001_352_PAP.indd 18 19/12/2025 18:4119/12/2025 18:41

1 | L’environnement Python

J’ai essayé de ne pas trop détailler l’environnement intégré de program-
mation ou IDE 1, vous trouverez sur le Web beaucoup de tutoriaux à cet e!et.
Suivant la formation que vous suivrez, vous serez sous IDLE, Spyder, Jupyter,
Emacs, Eclipse, PyCharm, XCode ou Visual Studio, que sais-je ? Il est impos-
sible de les passer tous en revue. Pour les débutants, IDLE (par les créateurs
de Python) et Jupyter (plus évolué, avec la plateforme Anaconda) sont de bons
choix, avec Visual Studio Code pour les plus hardis. Nous verrons comment
rédiger et exécuter avec eux un programme.

1.1 Installation de la distribution Python standard
avec IDLE

La maison-mère www.python.org distribue le langage Python avec un petit édi-
teur intégré IDLE, fournissant le minimum requis pour programmer en Python.
Il s’agit sans doute de la solution la plus simple au niveau du lycée en pré-BAC.
Ultérieurement, il faudra disposer d’un environnement élargi pour la sience des
données, tel celui d’Anaconda qui reste utilisable par des débutants.

La distribution standard se trouve sur www.python.org/downloads qui
vous proposera la version adaptée à votre machine. Une fois l’installation termi-
née, fabriquez un raccourci vers le programme IDLE, sur le bureau ou dans un
menu de démarrage. C’est ce programme qui va lancer Python dans une console
avec un caractère d’invite (prompt) >>>. Par exemple, aux couleurs près :

1 Python 3.14.0, Oct 7 2025, on darwin # ← darwin = Apple
2 >>> 2 + 3 * 4
3 14
4 >>> from math import sqrt # la racine carrée
5 >>> sqrt(2) ** 2 # un calcul approché :-)
6 2.0000000000000004

1. IDE = Integrated Development Environment, comprenant les outils essentiels pour pro-
grammer dont en premier lieu un éditeur de texte et une console d’exécution.

9782340-111332_Roy_001_352_PAP.indd 199782340-111332_Roy_001_352_PAP.indd 19 19/12/2025 18:4119/12/2025 18:41

4 Chapitre 1. L’environnement Python

La documentation de Python est un fichier .html situé dans le répertoire de
l’application Python, à côté de IDLE. Une aide en ligne sommaire est disponible
à la console avec la fonction help.

7 >>> help(sqrt) # aide en ligne
8 Help on built-in function sqrt in module math:
9 sqrt(x, /)

10 Return the square root of x.

Le caractère dièse # débute un commentaire sur la ligne, ignoré par Python. On
travaille assez peu avec cette ligne de commande (shell ou toplevel) assez spartiate,
plutôt pour de petits tests de programmes situés dans une fenêtre d’édition, que
vous obtiendrez soit par le menu File/New File..., soit en ouvrant un fichier
Python d’extension .py par File/Open.... Ouvrons une nouvelle fenêtre d’édition
et dans cette fenêtre définissons une fonction calcul à deux paramètres a et b,
fonction dont le résultat sera simplement le nombre a+ 2b.

Si maintenant vous appuyez sur la touche F5 de votre ordinateur, ou si vous invo-
quez le menu Run/Run Module, il vous sera demandé de sauvegarder le contenu
de l’éditeur sur disque, ici sous le nom essai.py. Ce contenu sera ensuite analysé
sommairement pour détecter d’éventuelles fautes de syntaxe, la mémoire sera re-
mise à neuf (Restart Shell) et enfin le contenu sera évalué de haut en bas. Son
évaluation produira au passage des affichages de résultats à la console toplevel.

========= RESTART: /Users/roy/Documents/prog-python/essai.py ======
calcul(2,5.3) = 12.6

Les tests du programme se font plutôt dans l’éditeur qu’au toplevel, de manière
à ce qu’ils soient exécutés automatiquement sans avoir à les retaper à chaque
modification du programme. Nous verrons au § 6.5 comment rédiger un script,
petit programme exécutable au terminal en-dehors d’IDLE.

Sur Mac, le répertoire "/Applications/Python 3.x/" contient les logiciels
pour l’utilisateur, dont IDLE. Mais les entrailles de la bête se situent à un niveau
où seul le spécialiste ira mettre le nez, par exemple (sur Mac) :

/Library/Frameworks/Python.framework/Versions/Current .

1.2 Installation de la distribution Anaconda 5

dans le dossier bin duquel on trouve les commandes au Terminal python3, idle3
et pip3. Cet environnement intégré minimal IDLE est rudimentaire mais plus
que suffisant pour une première initiation à Python. Il est trop spartiate pour un
développement avancé ou professionnel.

1.2 Installation de la distribution Anaconda
Pour les scientifiques, nous conseillons plutôt la distribution Anaconda.

ANACONDA
La société Anaconda (spécialisée dans l’analyse des données : data science) pro-
pose en effet une version gratuite mais très complète d’un environnement pour
programmer en Python. Vous avez deux choix possibles pour l’installer :

— soit la version complète Anaconda (> 4 Go) contenant Python, de très
nombreuses bibliothèques scientifiques (numpy, etc.), une interface gra-
phique Navigator, et le gestionnaire conda pour les mises à jour.

— soit une version Miniconda (< 1 Go) contenant Python et quelques bi-
bliothèques seulement, avec conda pour installer les autres.

https://docs.anaconda.com/distro-or-miniconda/
Si vous avez suffisamment d’espace disque, téléchargez et installez Anaconda Dis-
tribution, cela vous simplifiera la vie. Prenez éventuellement un compte sur la pla-
teforme Anaconda Cloud, vous pourrez profiter de nombreux contenus. Utilisez
un mot de passe fort.

Vérifions si l’installation s’est bien passée. Je suis sur Mac, vous voudrez donc
adapter à votre système d’exploitation Windows ou Linux. Ouvrons l’applica-
tion Terminal située sur Mac dans le dossier Applications/Utilitaires/. Sur
Windows, lancez l’application Anaconda Prompt qui vient d’être installée dans
le menu Démarrer. Vous devez voir (base) au début de la ligne de commande.
Je suppose hardiment que tout va bien : vous êtes dans l’environnement base
d’Anaconda. Fermez le Terminal et poussez un soupir de soulagement.

Sur mon Mac, le Python installé par Anaconda vit dans le répertoire. . . euh,
lequel ? Essayons au Terminal :

11 (base) $ which python3 # en Unix au Terminal sur Mac et Linux,
12 /Users/roy/opt/anaconda3/bin/python3 # "where" sous Windows...

Donc les commandes python3 et idle3 concernent bien le Python d’Anaconda,
celui de la maison-mère étant, lui, lancé à la souris par l’icône de l’application
IDLE dans "/Applications/Python 3.x". Donc deux Python co-existent paisi-
blement... ou pas. Il faut savoir avec lequel on travaille.

9782340-111332_Roy_001_352_PAP.indd 209782340-111332_Roy_001_352_PAP.indd 20 19/12/2025 18:4119/12/2025 18:41

4 Chapitre 1. L’environnement Python

La documentation de Python est un fichier .html situé dans le répertoire de
l’application Python, à côté de IDLE. Une aide en ligne sommaire est disponible
à la console avec la fonction help.

7 >>> help(sqrt) # aide en ligne
8 Help on built-in function sqrt in module math:
9 sqrt(x, /)

10 Return the square root of x.

Le caractère dièse # débute un commentaire sur la ligne, ignoré par Python. On
travaille assez peu avec cette ligne de commande (shell ou toplevel) assez spartiate,
plutôt pour de petits tests de programmes situés dans une fenêtre d’édition, que
vous obtiendrez soit par le menu File/New File..., soit en ouvrant un fichier
Python d’extension .py par File/Open.... Ouvrons une nouvelle fenêtre d’édition
et dans cette fenêtre définissons une fonction calcul à deux paramètres a et b,
fonction dont le résultat sera simplement le nombre a+ 2b.

Si maintenant vous appuyez sur la touche F5 de votre ordinateur, ou si vous invo-
quez le menu Run/Run Module, il vous sera demandé de sauvegarder le contenu
de l’éditeur sur disque, ici sous le nom essai.py. Ce contenu sera ensuite analysé
sommairement pour détecter d’éventuelles fautes de syntaxe, la mémoire sera re-
mise à neuf (Restart Shell) et enfin le contenu sera évalué de haut en bas. Son
évaluation produira au passage des affichages de résultats à la console toplevel.

========= RESTART: /Users/roy/Documents/prog-python/essai.py ======
calcul(2,5.3) = 12.6

Les tests du programme se font plutôt dans l’éditeur qu’au toplevel, de manière
à ce qu’ils soient exécutés automatiquement sans avoir à les retaper à chaque
modification du programme. Nous verrons au § 6.5 comment rédiger un script,
petit programme exécutable au terminal en-dehors d’IDLE.

Sur Mac, le répertoire "/Applications/Python 3.x/" contient les logiciels
pour l’utilisateur, dont IDLE. Mais les entrailles de la bête se situent à un niveau
où seul le spécialiste ira mettre le nez, par exemple (sur Mac) :

/Library/Frameworks/Python.framework/Versions/Current .

1.2 Installation de la distribution Anaconda 5

dans le dossier bin duquel on trouve les commandes au Terminal python3, idle3
et pip3. Cet environnement intégré minimal IDLE est rudimentaire mais plus
que suffisant pour une première initiation à Python. Il est trop spartiate pour un
développement avancé ou professionnel.

1.2 Installation de la distribution Anaconda
Pour les scientifiques, nous conseillons plutôt la distribution Anaconda.

ANACONDA
La société Anaconda (spécialisée dans l’analyse des données : data science) pro-
pose en effet une version gratuite mais très complète d’un environnement pour
programmer en Python. Vous avez deux choix possibles pour l’installer :

— soit la version complète Anaconda (> 4 Go) contenant Python, de très
nombreuses bibliothèques scientifiques (numpy, etc.), une interface gra-
phique Navigator, et le gestionnaire conda pour les mises à jour.

— soit une version Miniconda (< 1 Go) contenant Python et quelques bi-
bliothèques seulement, avec conda pour installer les autres.

https://docs.anaconda.com/distro-or-miniconda/
Si vous avez suffisamment d’espace disque, téléchargez et installez Anaconda Dis-
tribution, cela vous simplifiera la vie. Prenez éventuellement un compte sur la pla-
teforme Anaconda Cloud, vous pourrez profiter de nombreux contenus. Utilisez
un mot de passe fort.

Vérifions si l’installation s’est bien passée. Je suis sur Mac, vous voudrez donc
adapter à votre système d’exploitation Windows ou Linux. Ouvrons l’applica-
tion Terminal située sur Mac dans le dossier Applications/Utilitaires/. Sur
Windows, lancez l’application Anaconda Prompt qui vient d’être installée dans
le menu Démarrer. Vous devez voir (base) au début de la ligne de commande.
Je suppose hardiment que tout va bien : vous êtes dans l’environnement base
d’Anaconda. Fermez le Terminal et poussez un soupir de soulagement.

Sur mon Mac, le Python installé par Anaconda vit dans le répertoire. . . euh,
lequel ? Essayons au Terminal :

11 (base) $ which python3 # en Unix au Terminal sur Mac et Linux,
12 /Users/roy/opt/anaconda3/bin/python3 # "where" sous Windows...

Donc les commandes python3 et idle3 concernent bien le Python d’Anaconda,
celui de la maison-mère étant, lui, lancé à la souris par l’icône de l’application
IDLE dans "/Applications/Python 3.x". Donc deux Python co-existent paisi-
blement... ou pas. Il faut savoir avec lequel on travaille.

9782340-111332_Roy_001_352_PAP.indd 219782340-111332_Roy_001_352_PAP.indd 21 19/12/2025 18:4119/12/2025 18:41

6 Chapitre 1. L’environnement Python

1.2.1 Le gestionnaire de paquets : conda

Nous serons amenés un jour ou l’autre à devoir utiliser une bibliothèque logicielle
extérieure écrite en Python – on parle de paquet (package). Pour l’installer
sous Anaconda, nous utiliserons au terminal un gestionnaire de paquets et
d’environnements (environment and package manager) nommé conda 2. Il
existe un autre gestionnaire de paquets pip et d’environnements venv, mais nous
veillerons à nous en tenir à conda pour éviter les soucis 3 ! Pour savoir si conda
est bien installé, demandons son numéro de version. Il est recommandé de tenir
conda à jour (conda update conda).

13 (base) $ conda update --all # mise à jour globale !
14 Executing transaction: done
15 (base) $ conda --version
16 24.11.0
17 (base) $ python3 --version
18 3.12.8 # un poil en retard sur la maison-mère

Devant le prompt $ de mon Terminal est apparu (base) qui me dit dans quel
environnement de conda je me trouve. Je suis dans l’environnement de base,
avec un grand nombre de paquets logiciels que je peux immédiatement utiliser.
Pour savoir lesquels, je demande leur liste avec conda list (il y en a beaucoup !).
En voici seulement quelques-uns :

19 (base) $ conda list
20 packages in environment at /opt/anaconda3:
21 # Name Version
22 anaconda-navigator 2.6.3
23 conda 24.11.0
24 ipython 8.30.0
25 jupyter 1.1.1
26 matplotlib 3.9.3
27 notebook 7.3.1
28 numpy 1.26.4

Ne vous fiez pas aux numéros de version, ils évoluent au fil des mois. Vous pouvez
en théorie travailler dans l’environnement (base) pour du Python pur, mais si
vous commencer à importer des paquets 4 extérieurs, il se peut que tel paquet A

2. Documentation sur https://conda.io/docs/. L’application Anaconda Navigator offre une
interface graphique pour conda, mais il est souvent plus rapide et sain de travailler au terminal.

3. Voir : https://www.anaconda.com/blog/using-pip-in-a-conda-environment.
4. Ces paquets peuvent être des modules ou des répertoires de modules et de paquets.

1.2 Installation de la distribution Anaconda 7

utilise un autre paquet P en version 7.2 alors qu’un paquet B demande le paquet
P en version 6.5, vous voyez le problème qui surgit. C’est encore pire s’ils exigent
des versions de Python différentes !

Imaginons que nous souhaitions programmer une simulation avec le moteur
de calcul physique Pymunk. Il est sain de créer avec conda create un nouvel
environnement – par exemple de nom simul – et d’y installer ce paquet (qui ne
fait pas partie des paquets initiaux de notre distribution Anaconda).

29 (base) $ conda create --name simul # --name ou -n
30 ...environment location: /Users/roy/opt/anaconda3/envs/simul

Les environnements se trouvent donc dans le répertoire anaconda3/envs/, vérifiez-
le en ouvrant ce répertoire ou mieux avec la commande conda info --envs où
--envs peut s’abréger en -e, vous verrez que l’environnement courant est pré-
cédé d’une étoile *. Plaçons-nous dans l’environnement simul encore vide avec
la commande conda activate .

31 (base) $ conda activate simul
32 (simul) $ conda list # simul est vide !
33 (simul) $

Maintenant que nous sommes dans l’environnement simul, installons le moteur
physique Pymunk dont la page Web est https://www.pymunk.org. Celle-ci me
propose d’installer le paquet pymunk version 7.0.1 avec l’un des gestionnaires pip
ou conda. Étant sous Anaconda, j’opte pour un conda install et seulement
en désespoir de cause aurais-je eu recours à pip (qui fait partie des paquets
d’Anaconda 5). On me dit même d’utiliser le canal conda-forge. J’utilise ci-
dessous la manière traditionnelle avec --channel au lieu de simplement -c :

34 (simul) $ conda install --channel conda-forge pymunk
35 ...
36 Executing transaction: done

Pour installer un paquet, Anaconda utilise en effet des canaux de recherche
(channels) et de manière générale, si aucun d’eux ne trouve ce que je cherche,
j’essaye le canal conda-forge qui contient de nombreux paquets scientifiques.
Ceci dit, avec un navigateur Web, j’aurais pu mettre la main sur la page du canal
anaconda.org/conda-forge et y trouver pymunk, pour obtenir une requête

conda install conda-forge::pymunk avec une troisième syntaxe équivalente.

5. Les gestionnaires pip et conda sont parfois en conflit, surtout si l’on ne s’assure pas qu’on
utilise les bons, au cas où l’on conserve plusieurs distributions de Python !

9782340-111332_Roy_001_352_PAP.indd 229782340-111332_Roy_001_352_PAP.indd 22 19/12/2025 18:4119/12/2025 18:41

6 Chapitre 1. L’environnement Python

1.2.1 Le gestionnaire de paquets : conda

Nous serons amenés un jour ou l’autre à devoir utiliser une bibliothèque logicielle
extérieure écrite en Python – on parle de paquet (package). Pour l’installer
sous Anaconda, nous utiliserons au terminal un gestionnaire de paquets et
d’environnements (environment and package manager) nommé conda 2. Il
existe un autre gestionnaire de paquets pip et d’environnements venv, mais nous
veillerons à nous en tenir à conda pour éviter les soucis 3 ! Pour savoir si conda
est bien installé, demandons son numéro de version. Il est recommandé de tenir
conda à jour (conda update conda).

13 (base) $ conda update --all # mise à jour globale !
14 Executing transaction: done
15 (base) $ conda --version
16 24.11.0
17 (base) $ python3 --version
18 3.12.8 # un poil en retard sur la maison-mère

Devant le prompt $ de mon Terminal est apparu (base) qui me dit dans quel
environnement de conda je me trouve. Je suis dans l’environnement de base,
avec un grand nombre de paquets logiciels que je peux immédiatement utiliser.
Pour savoir lesquels, je demande leur liste avec conda list (il y en a beaucoup !).
En voici seulement quelques-uns :

19 (base) $ conda list
20 packages in environment at /opt/anaconda3:
21 # Name Version
22 anaconda-navigator 2.6.3
23 conda 24.11.0
24 ipython 8.30.0
25 jupyter 1.1.1
26 matplotlib 3.9.3
27 notebook 7.3.1
28 numpy 1.26.4

Ne vous fiez pas aux numéros de version, ils évoluent au fil des mois. Vous pouvez
en théorie travailler dans l’environnement (base) pour du Python pur, mais si
vous commencer à importer des paquets 4 extérieurs, il se peut que tel paquet A

2. Documentation sur https://conda.io/docs/. L’application Anaconda Navigator offre une
interface graphique pour conda, mais il est souvent plus rapide et sain de travailler au terminal.

3. Voir : https://www.anaconda.com/blog/using-pip-in-a-conda-environment.
4. Ces paquets peuvent être des modules ou des répertoires de modules et de paquets.

1.2 Installation de la distribution Anaconda 7

utilise un autre paquet P en version 7.2 alors qu’un paquet B demande le paquet
P en version 6.5, vous voyez le problème qui surgit. C’est encore pire s’ils exigent
des versions de Python différentes !

Imaginons que nous souhaitions programmer une simulation avec le moteur
de calcul physique Pymunk. Il est sain de créer avec conda create un nouvel
environnement – par exemple de nom simul – et d’y installer ce paquet (qui ne
fait pas partie des paquets initiaux de notre distribution Anaconda).

29 (base) $ conda create --name simul # --name ou -n
30 ...environment location: /Users/roy/opt/anaconda3/envs/simul

Les environnements se trouvent donc dans le répertoire anaconda3/envs/, vérifiez-
le en ouvrant ce répertoire ou mieux avec la commande conda info --envs où
--envs peut s’abréger en -e, vous verrez que l’environnement courant est pré-
cédé d’une étoile *. Plaçons-nous dans l’environnement simul encore vide avec
la commande conda activate .

31 (base) $ conda activate simul
32 (simul) $ conda list # simul est vide !
33 (simul) $

Maintenant que nous sommes dans l’environnement simul, installons le moteur
physique Pymunk dont la page Web est https://www.pymunk.org. Celle-ci me
propose d’installer le paquet pymunk version 7.0.1 avec l’un des gestionnaires pip
ou conda. Étant sous Anaconda, j’opte pour un conda install et seulement
en désespoir de cause aurais-je eu recours à pip (qui fait partie des paquets
d’Anaconda 5). On me dit même d’utiliser le canal conda-forge. J’utilise ci-
dessous la manière traditionnelle avec --channel au lieu de simplement -c :

34 (simul) $ conda install --channel conda-forge pymunk
35 ...
36 Executing transaction: done

Pour installer un paquet, Anaconda utilise en effet des canaux de recherche
(channels) et de manière générale, si aucun d’eux ne trouve ce que je cherche,
j’essaye le canal conda-forge qui contient de nombreux paquets scientifiques.
Ceci dit, avec un navigateur Web, j’aurais pu mettre la main sur la page du canal
anaconda.org/conda-forge et y trouver pymunk, pour obtenir une requête

conda install conda-forge::pymunk avec une troisième syntaxe équivalente.

5. Les gestionnaires pip et conda sont parfois en conflit, surtout si l’on ne s’assure pas qu’on
utilise les bons, au cas où l’on conserve plusieurs distributions de Python !

9782340-111332_Roy_001_352_PAP.indd 239782340-111332_Roy_001_352_PAP.indd 23 19/12/2025 18:4119/12/2025 18:41

8 Chapitre 1. L’environnement Python

37 (simul) $ conda list
38 ...
39 pymunk 7.0.1 py312hea69d52_0 conda-forge
40 python 3.12.8 hc22306f_1_cpython conda-forge
41 ...

Vérifions au Terminal que tout fonctionne bien en essayant d’importer pymunk au
sein de l’environnement simul.

42 (simul) $ python3
43 >>> import pymunk
44 >>> pymunk.version # ok, l'importation est correcte
45 '7.0.1'
46 >>> quit()
47 (simul) $

Ce dépôt conda-forge me semble plus qu’intéressant, je l’ajoute donc en tête
(--add) ou en queue (--append) à la liste des canaux qui seront essayés dans
l’ordre lors d’une nouvelle installation.

48 (simul) $ conda config --add channels conda-forge # ajouter en tête
49 (simul) $ conda config --get channels # puis vérifier
50 --add channels 'defaults' # lowest priority
51 --add channels 'conda-forge' # highest priority

Une autre manière de le vérifier consiste à demander conda config --show
montrant la configuration de conda. Les canaux de defaults sont ceux hébergés
par la société Anaconda, tandis que conda-forge est une communauté libre sur
GitHub. Nous n’aurons pas besoin d’autres canaux dans ce livre.

Vous pouvez supprimer un paquet paq dans l’environnement courant avec
la commande conda remove paq , ou même l’environnement simul tout entier
à partir de l’environnement base avec conda env remove --name simul . Pour
remonter dans base, il suffit de désactiver l’environnement courant.

52 (simul) $ conda deactivate # retour à l'environnement de base
53 (base) $ python3
54 >>> import pymunk
55 ModuleNotFoundError: No module named 'pymunk' # pas dans base !
56 >>> quit()
57 (base) $

1.2 Installation de la distribution Anaconda 9

Oui, il faut mémoriser quelques commandes au terminal, mais on s’y fait vite. Au
besoin, demandez à Google la dernière version de la « conda cheat sheet » avec
votre navigateur et la vie pétillera . Ou pas, si vous êtes allergique au Terminal,
auquel cas vous voudrez passer par Anaconda Navigator (page suivante).

Remarque — S’il vous arrive de perdre le prompt (base) au Terminal, vérifiez
que conda est bien accessible dans le PATH, et ré-initialisez-le avec conda init .

1.2.2 IDLE est aussi intégré dans Anaconda !

L’éditeur et toplevel IDLE (§ 1.1), conçu par la maison-mère www.python.org, a
été intégré à Anaconda pour faire du travail simple, ce qui montre qu’il n’est pas
utile de télécharger la distribution de la maison-mère pour profiter de IDLE qui
est accessible en ligne de commande sur Anaconda.

58 (base) $ which idle3 # où est l'exécutable IDLE maintenant ?
59 /Users/roy/opt/anaconda3/bin/idle3 # dans Anaconda !
60 (base) $ idle3& # j'ouvre une fenêtre IDLE

L’esperluette & à la fin du mot idle3 est une convention Unix pour signifier que
l’exécution de IDLE doit se faire en tâche de fond, permettant d’entrer d’autres
commandes au Terminal qui ne sera pas bloqué jusqu’à la sortie de IDLE.

Attention donc à ne pas vous mélanger les pinceaux si vous gardez la
distribution de la maison-mère en même temps qu’Anaconda ! Il y aura deux
exécutables idle3 dans la machine, par exemple chez moi :

/Library/Frameworks/Python.framework/Versions/Current/bin/idle3 (*)
/Users/roy/opt/anaconda3/bin/idle3 (**)

La différence inestimable entre les deux est que le premier (*) ne bénéfiera pas
des paquets installés dans Anaconda, alors que le second (**) oui. Si je demande
import numpy dans le premier, j’aurai une erreur No module named ’numpy’ et je
devrai alors l’installer avec pip3 (celui de (*) !), alors que le second considère que
numpy est déjà présent dans Anaconda – comme on le vérifie avec conda list.
Il est possible de gérer des environnements virtuels dans (*) avec venv et pip, je
n’en parlerai pas, vous pouvez demander à une IA de vous montrer les différences
entre conda et venv. N’hésitez pas à utiliser une IA en mode gratuit : ChatGPT,
Claude, DeepSeek, Mistral, etc.

Il peut être intéressant de réserver un environnement idle pour faire dans
IDLE (d’Anaconda) des programmes ne nécessitant que les paquets initiaux
d’Anaconda. Travailler directement dans base est possible mais assez déconseillé.

9782340-111332_Roy_001_352_PAP.indd 249782340-111332_Roy_001_352_PAP.indd 24 19/12/2025 18:4119/12/2025 18:41

8 Chapitre 1. L’environnement Python

37 (simul) $ conda list
38 ...
39 pymunk 7.0.1 py312hea69d52_0 conda-forge
40 python 3.12.8 hc22306f_1_cpython conda-forge
41 ...

Vérifions au Terminal que tout fonctionne bien en essayant d’importer pymunk au
sein de l’environnement simul.

42 (simul) $ python3
43 >>> import pymunk
44 >>> pymunk.version # ok, l'importation est correcte
45 '7.0.1'
46 >>> quit()
47 (simul) $

Ce dépôt conda-forge me semble plus qu’intéressant, je l’ajoute donc en tête
(--add) ou en queue (--append) à la liste des canaux qui seront essayés dans
l’ordre lors d’une nouvelle installation.

48 (simul) $ conda config --add channels conda-forge # ajouter en tête
49 (simul) $ conda config --get channels # puis vérifier
50 --add channels 'defaults' # lowest priority
51 --add channels 'conda-forge' # highest priority

Une autre manière de le vérifier consiste à demander conda config --show
montrant la configuration de conda. Les canaux de defaults sont ceux hébergés
par la société Anaconda, tandis que conda-forge est une communauté libre sur
GitHub. Nous n’aurons pas besoin d’autres canaux dans ce livre.

Vous pouvez supprimer un paquet paq dans l’environnement courant avec
la commande conda remove paq , ou même l’environnement simul tout entier
à partir de l’environnement base avec conda env remove --name simul . Pour
remonter dans base, il suffit de désactiver l’environnement courant.

52 (simul) $ conda deactivate # retour à l'environnement de base
53 (base) $ python3
54 >>> import pymunk
55 ModuleNotFoundError: No module named 'pymunk' # pas dans base !
56 >>> quit()
57 (base) $

1.2 Installation de la distribution Anaconda 9

Oui, il faut mémoriser quelques commandes au terminal, mais on s’y fait vite. Au
besoin, demandez à Google la dernière version de la « conda cheat sheet » avec
votre navigateur et la vie pétillera . Ou pas, si vous êtes allergique au Terminal,
auquel cas vous voudrez passer par Anaconda Navigator (page suivante).

Remarque — S’il vous arrive de perdre le prompt (base) au Terminal, vérifiez
que conda est bien accessible dans le PATH, et ré-initialisez-le avec conda init .

1.2.2 IDLE est aussi intégré dans Anaconda !

L’éditeur et toplevel IDLE (§ 1.1), conçu par la maison-mère www.python.org, a
été intégré à Anaconda pour faire du travail simple, ce qui montre qu’il n’est pas
utile de télécharger la distribution de la maison-mère pour profiter de IDLE qui
est accessible en ligne de commande sur Anaconda.

58 (base) $ which idle3 # où est l'exécutable IDLE maintenant ?
59 /Users/roy/opt/anaconda3/bin/idle3 # dans Anaconda !
60 (base) $ idle3& # j'ouvre une fenêtre IDLE

L’esperluette & à la fin du mot idle3 est une convention Unix pour signifier que
l’exécution de IDLE doit se faire en tâche de fond, permettant d’entrer d’autres
commandes au Terminal qui ne sera pas bloqué jusqu’à la sortie de IDLE.

Attention donc à ne pas vous mélanger les pinceaux si vous gardez la
distribution de la maison-mère en même temps qu’Anaconda ! Il y aura deux
exécutables idle3 dans la machine, par exemple chez moi :

/Library/Frameworks/Python.framework/Versions/Current/bin/idle3 (*)
/Users/roy/opt/anaconda3/bin/idle3 (**)

La différence inestimable entre les deux est que le premier (*) ne bénéfiera pas
des paquets installés dans Anaconda, alors que le second (**) oui. Si je demande
import numpy dans le premier, j’aurai une erreur No module named ’numpy’ et je
devrai alors l’installer avec pip3 (celui de (*) !), alors que le second considère que
numpy est déjà présent dans Anaconda – comme on le vérifie avec conda list.
Il est possible de gérer des environnements virtuels dans (*) avec venv et pip, je
n’en parlerai pas, vous pouvez demander à une IA de vous montrer les différences
entre conda et venv. N’hésitez pas à utiliser une IA en mode gratuit : ChatGPT,
Claude, DeepSeek, Mistral, etc.

Il peut être intéressant de réserver un environnement idle pour faire dans
IDLE (d’Anaconda) des programmes ne nécessitant que les paquets initiaux
d’Anaconda. Travailler directement dans base est possible mais assez déconseillé.

9782340-111332_Roy_001_352_PAP.indd 259782340-111332_Roy_001_352_PAP.indd 25 19/12/2025 18:4119/12/2025 18:41

10 Chapitre 1. L’environnement Python

1.2.3 L’interface graphique : Anaconda Navigator

Ananconda propose une application Anaconda Navigator que vous mettrez
dans vos raccourcis. Si vous avez installé Miniconda, utilisez conda pour installer
le paquet anaconda-navigator.

Une fois Navigator lancé, sa fenêtre s’ouvre, dans laquelle vous trouverez
différents logiciels (JupyterLab, Notebook, Qt Console, Spyder, VS Code etc.).

Parmi eux se trouvent Jupyter Notebook et Spyder qui vous serviront à
rédiger des programmes si vous n’avez pas opté pour IDLE.

Vous pouvez gérer les environnements avec Navigator, plutôt qu’en ligne de
commande avec conda. En cliquant sur le bouton Environments sur la gauche de
la fenêtre du Navigator, vous allez voir apparaître nos trois environnements cou-
rants : base, simul et idle avec au-dessous cinq boutons : pour créer un nouvel
environnement, dupliquer, importer 6, sauvegarder ou supprimer un autre. Sur la
droite, vous visualisez les paquets de chaque environnement, avec la possibilité
d’en rajouter ou d’en supprimer. Vous avez même le bouton Channels pour gérer
les canaux de recherche.

Mieux vaut avoir lu la section 1.2.1 précédente pour bien saisir le sens des
manipulations, et nous vous renvoyons aux tutoriels en ligne :

https://docs.anaconda.com/navigator/tutorials/
notamment aux chapitres Managing environments, packages et channels. Vous
trouverez aussi des vidéos sur YouTube. Je n’utilise pas trop Navigator.

1.2.4 L’éditeur Spyder

Outre la gestion des environnements et des canaux, Navigator permet de lancer
des logiciels, dont certains sont de véritables usines à traitement des données,
complexes à utiliser sans un livre spécialisé sous la main. La tendance actuelle

6. Vous pouvez télécharger ou transmettre à autrui une description d’environnement sous
la forme d’un fichier .yml, demandez à votre IA de vous parler des fichiers YAML. L’analogue
pour pip est le fichier requirements.txt.

1.2 Installation de la distribution Anaconda 11

est à l’Intelligence Artificielle, qui a pénétré aussi le monde des codeurs, et il existe
déjà un Anaconda AI Navigator collaboratif permettant d’installer les outils d’IA.

Parmi tous ces logiciels, l’éditeur Spyder a des aspects plaisants, il est main-
tenu par une équipe indépendante dévouée et ambitieuse, et peut se lancer via
Navigator : c’est un paquet d’Anaconda présent dans l’environnement base.

Remarque — Sur https://www.spyder-ide.org , il est possible de télécharger
Spyder comme application autonome. De nombreux paquets pour l’analyse
des données sont déjà intégrés (numpy, matplotlib, pandas, etc.).

En ouvrant la fenêtre de Spyder, vous verrez sa console toplevel (à droite en bas)
basée sur IPython. Ce toplevel est plus complexe que celui d’IDLE mais avec
un peu de pratique, il s’avère productif. Il permet de voir les graphiques produits
soit dans des fenêtres séparées, soit directement au toplevel.

Spyder est la conjonction d’une console IPython, d’un éditeur de programmes
pouvant utiliser des cellules (et destiné à évoluer à terme vers le concept de
notebook comme dans Jupyter), et d’une vision sur le système de fichiers. Cet
éditeur gratuit vaut néanmoins le détour même s’il a des soucis par moments, en
général résolubles via un forum dédié et réactif. Vous trouverez de l’aide sur le
site de Spyder et sur YouTube, avec des tutoriaux et des vidéos de prise en main.

1.2.5 La console Qt : juste le goût de IPython pur

Pour avoir une idée du fonctionnement de IPython, lançons avec Navigator la
Console Qt : https://qtconsole.readthedocs.io . On peut aussi au Termi-
nal entrer la commande : jupyter qtconsole. Une simple fenêtre toplevel surgit,
de nom Jupyter QtConsole, sans éditeur.

9782340-111332_Roy_001_352_PAP.indd 269782340-111332_Roy_001_352_PAP.indd 26 19/12/2025 18:4119/12/2025 18:41

10 Chapitre 1. L’environnement Python

1.2.3 L’interface graphique : Anaconda Navigator

Ananconda propose une application Anaconda Navigator que vous mettrez
dans vos raccourcis. Si vous avez installé Miniconda, utilisez conda pour installer
le paquet anaconda-navigator.

Une fois Navigator lancé, sa fenêtre s’ouvre, dans laquelle vous trouverez
différents logiciels (JupyterLab, Notebook, Qt Console, Spyder, VS Code etc.).

Parmi eux se trouvent Jupyter Notebook et Spyder qui vous serviront à
rédiger des programmes si vous n’avez pas opté pour IDLE.

Vous pouvez gérer les environnements avec Navigator, plutôt qu’en ligne de
commande avec conda. En cliquant sur le bouton Environments sur la gauche de
la fenêtre du Navigator, vous allez voir apparaître nos trois environnements cou-
rants : base, simul et idle avec au-dessous cinq boutons : pour créer un nouvel
environnement, dupliquer, importer 6, sauvegarder ou supprimer un autre. Sur la
droite, vous visualisez les paquets de chaque environnement, avec la possibilité
d’en rajouter ou d’en supprimer. Vous avez même le bouton Channels pour gérer
les canaux de recherche.

Mieux vaut avoir lu la section 1.2.1 précédente pour bien saisir le sens des
manipulations, et nous vous renvoyons aux tutoriels en ligne :

https://docs.anaconda.com/navigator/tutorials/
notamment aux chapitres Managing environments, packages et channels. Vous
trouverez aussi des vidéos sur YouTube. Je n’utilise pas trop Navigator.

1.2.4 L’éditeur Spyder

Outre la gestion des environnements et des canaux, Navigator permet de lancer
des logiciels, dont certains sont de véritables usines à traitement des données,
complexes à utiliser sans un livre spécialisé sous la main. La tendance actuelle

6. Vous pouvez télécharger ou transmettre à autrui une description d’environnement sous
la forme d’un fichier .yml, demandez à votre IA de vous parler des fichiers YAML. L’analogue
pour pip est le fichier requirements.txt.

1.2 Installation de la distribution Anaconda 11

est à l’Intelligence Artificielle, qui a pénétré aussi le monde des codeurs, et il existe
déjà un Anaconda AI Navigator collaboratif permettant d’installer les outils d’IA.

Parmi tous ces logiciels, l’éditeur Spyder a des aspects plaisants, il est main-
tenu par une équipe indépendante dévouée et ambitieuse, et peut se lancer via
Navigator : c’est un paquet d’Anaconda présent dans l’environnement base.

Remarque — Sur https://www.spyder-ide.org , il est possible de télécharger
Spyder comme application autonome. De nombreux paquets pour l’analyse
des données sont déjà intégrés (numpy, matplotlib, pandas, etc.).

En ouvrant la fenêtre de Spyder, vous verrez sa console toplevel (à droite en bas)
basée sur IPython. Ce toplevel est plus complexe que celui d’IDLE mais avec
un peu de pratique, il s’avère productif. Il permet de voir les graphiques produits
soit dans des fenêtres séparées, soit directement au toplevel.

Spyder est la conjonction d’une console IPython, d’un éditeur de programmes
pouvant utiliser des cellules (et destiné à évoluer à terme vers le concept de
notebook comme dans Jupyter), et d’une vision sur le système de fichiers. Cet
éditeur gratuit vaut néanmoins le détour même s’il a des soucis par moments, en
général résolubles via un forum dédié et réactif. Vous trouverez de l’aide sur le
site de Spyder et sur YouTube, avec des tutoriaux et des vidéos de prise en main.

1.2.5 La console Qt : juste le goût de IPython pur

Pour avoir une idée du fonctionnement de IPython, lançons avec Navigator la
Console Qt : https://qtconsole.readthedocs.io . On peut aussi au Termi-
nal entrer la commande : jupyter qtconsole. Une simple fenêtre toplevel surgit,
de nom Jupyter QtConsole, sans éditeur.

9782340-111332_Roy_001_352_PAP.indd 279782340-111332_Roy_001_352_PAP.indd 27 19/12/2025 18:4119/12/2025 18:41

12 Chapitre 1. L’environnement Python

Vous ne pouvez qu’entrer des demandes de calcul ou d’affichage de graphiques,
ainsi qu’exécuter un fichier avec la commande magique 7 %run. Vous produisez
et modifiez ce fichier avec un éditeur de programmes de votre choix (Spyder,
Visual Studio, PyCharm, etc.), et vous exécutez dans la Qt-Console avec %run.

Le site plus général de IPython est https://ipython.org . La console IPy-
thon de Spyder est une variante de QtConsole. Il s’agit d’un lieu interactif où
l’on peut avec la commande magique load_ext charger des extensions (nous uti-
liserons load_ext cython), échanger des données entre plusieurs langages dont
majoritairement Python, et qui sera utilisé simplement comme une calculette évo-
luée ou bien pour visualiser les affichages et graphiques d’un programme lors de
son exécution. Dans Spyder, la pression de l’icône Exécuter (F5) dans l’éditeur
déclenche à la console IPython un appel à la commande magique %runfile.

Les notebooks de Jupyter sont aussi basés sur IPython, mais apportent des
fonctionnalités supplémentaires : multi-langages (Python, R, Julia, Javascript,
Matlab, Fortran. . .), édition en TEX, conversion vers PDF ou HTML, etc.).

Voir [ROSS], [VAU], [VAN] pour la prise en main de IPython et Jupyter en
science des données. Ainsi que les fabuleuses ressources du Web et des IA.

1.2.6 Le projet Jupyter

Les travaux autour de IPython, lancé en 2001, s’élargiront pour aboutir vers
2014 au projet Jupyter https://jupyter.org du nom de trois langages de
programmation scientifique : Julia, Python et R. Il a aussi été influencé par
les notebooks de Mathematica, créé vers 1988 par Steven Wolfram. L’ambition de
Mathematica, reprise par Jupyter, était de créer un environnement de production
de documents électroniques contenant à la fois du texte bien mis en forme et du
code exécutable produisant des résultats qui s’intègrent dynamiquement au texte.

La naissance de Jupyter visait à faciliter la rédaction de ces carnets élec-
troniques ou notebooks contenant à la fois du texte enrichi (avec Markdown
et LATEX), des graphiques résultats de calculs, et du code – Python ou autre –
exécutable 8. Un notebook Python – carnet 9 de notes – est un fichier d’extension
.ipynb 10 organisé en cellules plus puissantes que celles de l’éditeur Spyder. Vous
pourrez ainsi rédiger un texte scientifique (un exposé de maths, de physique ou

7. Les commandes magiques de IPython, préfixées par % pour une ligne et %% pour une cellule,
permettent d’effectuer des actions. On y trouve %run, %time, %timeit, %load, %load_ext, %gui,
%matplotlib, %pwd, %ls, %%bash, %%latex, %%markdown. . . . Demandez %lsmagic au toplevel.

8. Même si Python est le principal, une centaine d’autres langages sont disponibles. Vous les
trouverez en cherchant « Jupyter kernels » dans votre moteur de recherche ou avec une IA.

9. Une application sur iPad se nomme Carnets.
10. Un fichier .ipynb est sauvegardé au format JSON et non comme un fichier usuel .py. Il

faut au moins un Notebook Viewer pour le consulter et Jupyter pour le modifier.

1.2 Installation de la distribution Anaconda 13

de biologie par exemple) contenant des calculs interactifs. Pédagogiquement, cela
permet de joindre la rédaction – trop souvent délaissée – au codage.

La force de Jupyter est de mélanger l’éditeur de texte et la console 11

pour former ce que l’on nommait déjà en LISP au début des années 1980 un
éditeur-toplevel, initié par le celèbre éditeur Emacs.

Les notebooks (carnets) de Jupyter

Un carnet (notebook) contient les entrées et sorties d’une session interac-
tive ainsi que du texte narratif qui accompagne le code mais qui n’est pas
destiné à être exécuté. La sortie enrichie générée par l’exécution du code,
y compris avec du HTML, des images, vidéos et graphiques, est intégrée dans
le carnet, ce qui en fait un document complet et autonome issu d’un calcul.

(jupyter-notebook.readthedocs.io)

Une documentation des carnets se trouve en anglais sur (*) très complet, et en
français sur (**) pour l’étudiant en sciences physiques :

https://jupyter-notebook.readthedocs.io (*)
https://pyspc.readthedocs.io (**)

Commençons par installer dans votre environnement un petit paquet trouvé dans
https://pypi.org/org/jupyter, et permettant de franciser Jupyter.

61 (base) $ conda install -c conda-forge jupyterlab-language-pack-fr-FR

Ceci fait, vous disposez de deux manières pour ouvrir Jupyter Notebook :
— Soit vous le lancez au Terminal dans l’environnement courant avec la com-

mande jupyter notebook et au besoin en installant le paquet jupyter.
— Soit avec Anaconda Navigator : cliquez sur Environments pour choisir

votre environnement (base ou bien par exemple notre simul). Ensuite
revenez dans Home et cliquez sur Launch dans le cadre Jupyter Notebook,
ou bien dans Install s’il n’est pas déjà installé dans cet environnement.
Un terminal surgit qui va lui-même lancer une commande ouvrant un
serveur Web dans votre navigateur à l’adresse http://localhost:8888.
Les navigateurs conseillés à ce jour sont Chrome, Edge, Firefox et Safari.

Bref, dans les deux cas, vous vous retrouvez dans l’explorateur de fichiers de
Jupyter qui affiche votre répertoire, dans lequel vous allez naviguer pour ouvrir
un carnet .ipynb pour édition (il y a de nombreux exemples sur les sites web
de [ROSS] et [VAN]). Attention, ce n’est pas un fichier textuel simple xxx.py en

11. Vous pouvez l’essayer sur https://jupyter.org/try avec Python, R, C++, Scheme, etc.

9782340-111332_Roy_001_352_PAP.indd 289782340-111332_Roy_001_352_PAP.indd 28 19/12/2025 18:4119/12/2025 18:41

12 Chapitre 1. L’environnement Python

Vous ne pouvez qu’entrer des demandes de calcul ou d’affichage de graphiques,
ainsi qu’exécuter un fichier avec la commande magique 7 %run. Vous produisez
et modifiez ce fichier avec un éditeur de programmes de votre choix (Spyder,
Visual Studio, PyCharm, etc.), et vous exécutez dans la Qt-Console avec %run.

Le site plus général de IPython est https://ipython.org . La console IPy-
thon de Spyder est une variante de QtConsole. Il s’agit d’un lieu interactif où
l’on peut avec la commande magique load_ext charger des extensions (nous uti-
liserons load_ext cython), échanger des données entre plusieurs langages dont
majoritairement Python, et qui sera utilisé simplement comme une calculette évo-
luée ou bien pour visualiser les affichages et graphiques d’un programme lors de
son exécution. Dans Spyder, la pression de l’icône Exécuter (F5) dans l’éditeur
déclenche à la console IPython un appel à la commande magique %runfile.

Les notebooks de Jupyter sont aussi basés sur IPython, mais apportent des
fonctionnalités supplémentaires : multi-langages (Python, R, Julia, Javascript,
Matlab, Fortran. . .), édition en TEX, conversion vers PDF ou HTML, etc.).

Voir [ROSS], [VAU], [VAN] pour la prise en main de IPython et Jupyter en
science des données. Ainsi que les fabuleuses ressources du Web et des IA.

1.2.6 Le projet Jupyter

Les travaux autour de IPython, lancé en 2001, s’élargiront pour aboutir vers
2014 au projet Jupyter https://jupyter.org du nom de trois langages de
programmation scientifique : Julia, Python et R. Il a aussi été influencé par
les notebooks de Mathematica, créé vers 1988 par Steven Wolfram. L’ambition de
Mathematica, reprise par Jupyter, était de créer un environnement de production
de documents électroniques contenant à la fois du texte bien mis en forme et du
code exécutable produisant des résultats qui s’intègrent dynamiquement au texte.

La naissance de Jupyter visait à faciliter la rédaction de ces carnets élec-
troniques ou notebooks contenant à la fois du texte enrichi (avec Markdown
et LATEX), des graphiques résultats de calculs, et du code – Python ou autre –
exécutable 8. Un notebook Python – carnet 9 de notes – est un fichier d’extension
.ipynb 10 organisé en cellules plus puissantes que celles de l’éditeur Spyder. Vous
pourrez ainsi rédiger un texte scientifique (un exposé de maths, de physique ou

7. Les commandes magiques de IPython, préfixées par % pour une ligne et %% pour une cellule,
permettent d’effectuer des actions. On y trouve %run, %time, %timeit, %load, %load_ext, %gui,
%matplotlib, %pwd, %ls, %%bash, %%latex, %%markdown. . . . Demandez %lsmagic au toplevel.

8. Même si Python est le principal, une centaine d’autres langages sont disponibles. Vous les
trouverez en cherchant « Jupyter kernels » dans votre moteur de recherche ou avec une IA.

9. Une application sur iPad se nomme Carnets.
10. Un fichier .ipynb est sauvegardé au format JSON et non comme un fichier usuel .py. Il

faut au moins un Notebook Viewer pour le consulter et Jupyter pour le modifier.

1.2 Installation de la distribution Anaconda 13

de biologie par exemple) contenant des calculs interactifs. Pédagogiquement, cela
permet de joindre la rédaction – trop souvent délaissée – au codage.

La force de Jupyter est de mélanger l’éditeur de texte et la console 11

pour former ce que l’on nommait déjà en LISP au début des années 1980 un
éditeur-toplevel, initié par le celèbre éditeur Emacs.

Les notebooks (carnets) de Jupyter

Un carnet (notebook) contient les entrées et sorties d’une session interac-
tive ainsi que du texte narratif qui accompagne le code mais qui n’est pas
destiné à être exécuté. La sortie enrichie générée par l’exécution du code,
y compris avec du HTML, des images, vidéos et graphiques, est intégrée dans
le carnet, ce qui en fait un document complet et autonome issu d’un calcul.

(jupyter-notebook.readthedocs.io)

Une documentation des carnets se trouve en anglais sur (*) très complet, et en
français sur (**) pour l’étudiant en sciences physiques :

https://jupyter-notebook.readthedocs.io (*)
https://pyspc.readthedocs.io (**)

Commençons par installer dans votre environnement un petit paquet trouvé dans
https://pypi.org/org/jupyter, et permettant de franciser Jupyter.

61 (base) $ conda install -c conda-forge jupyterlab-language-pack-fr-FR

Ceci fait, vous disposez de deux manières pour ouvrir Jupyter Notebook :
— Soit vous le lancez au Terminal dans l’environnement courant avec la com-

mande jupyter notebook et au besoin en installant le paquet jupyter.
— Soit avec Anaconda Navigator : cliquez sur Environments pour choisir

votre environnement (base ou bien par exemple notre simul). Ensuite
revenez dans Home et cliquez sur Launch dans le cadre Jupyter Notebook,
ou bien dans Install s’il n’est pas déjà installé dans cet environnement.
Un terminal surgit qui va lui-même lancer une commande ouvrant un
serveur Web dans votre navigateur à l’adresse http://localhost:8888.
Les navigateurs conseillés à ce jour sont Chrome, Edge, Firefox et Safari.

Bref, dans les deux cas, vous vous retrouvez dans l’explorateur de fichiers de
Jupyter qui affiche votre répertoire, dans lequel vous allez naviguer pour ouvrir
un carnet .ipynb pour édition (il y a de nombreux exemples sur les sites web
de [ROSS] et [VAN]). Attention, ce n’est pas un fichier textuel simple xxx.py en

11. Vous pouvez l’essayer sur https://jupyter.org/try avec Python, R, C++, Scheme, etc.

9782340-111332_Roy_001_352_PAP.indd 299782340-111332_Roy_001_352_PAP.indd 29 19/12/2025 18:4119/12/2025 18:41

14 Chapitre 1. L’environnement Python

Python pur, mais un fichier structuré au format JSON que nous rencontrerons
plus tard dans ce livre. Peu importe.

Nous allons créer un nouveau carnet avec le menu Nouveau situé en haut à
droite, optez pour Python 3 (ipykernel). Vous arrivez alors dans la fenêtre d’un
carnet de nom Untitled en haut à gauche, sur lequel vous cliquez pour le changer
en essai (l’extension .ipynb sera ajoutée automatiquement).

La première et unique cellule ci-dessus est en mode Code comme indiqué dans
un menu déroulant : elle est censée contenir du code Python. Utilisons ce menu
déroulant pour la mettre en mode Markdown, une sorte de HTML caché destiné
à produire un texte enrichi avec balises et formules mathématiques en TEX
(j’ai bien entendu installé le logiciel TEX sur ma machine, chez moi TeXShop).
Le menu Aide contient une entrée pour apprendre Markdown 12. Voici ce que
j’entre dans les quatre premières cellules qui sont dans ce même mode ; j’utilise
un ’––––––’ virtuel pour indiquer la séparation des cellules.

62 # Calcul approché d'une intégrale
63 -------
64 Le langage [**Python**](http://www.python.org) utilise :
65 -------
66 * des *entiers* en **précision infinie**.
67 * des *nombres flottants* en **double précision**, pour calculer
68 par exemple $I = \int_{a}^{b} f(x) dx$.
69 -------
70 J'utilise une somme de Riemann avec n points :
71 -------
72 $$I\simeq h\sum_{i=0}^{n-1}f(a+ih)\;{\rm avec}\;h=\frac{b-a}{n}$$

Les cellules qui suivent sont en mode Code, exécutables par le noyau (kernel)
Python 3. Elles contiennent une définition de fonction, une importation et un

12. Markdown a été choisi pour contrebalancer le M de HTML qui signifie Markup. Pour les
commandes les plus utiles, consultez https://commonmark.org/help.

1.2 Installation de la distribution Anaconda 15

calcul. Au final, un notebook exécutable a été produit, exportable en PDF, HTML,
LaTeX, etc. : outil précieux pour étudiants, enseignants et ingénieurs. Les menus
Édition, Affichage, Exécution, etc. permettent de manipuler le style et l’évaluation
individuelle ou collective des cellules, ou procéder à divers réglages.

Quelques mots sur le codage en Markdown. En ligne 62, la balise # signifie <h1>
en HTML, elle indique un titre sur une seule ligne. En ligne 64, un lien en gras
(balise **) est situé entre crochets, l’URL étant placée à la suite entre parenthèses,
c’est l’analogue du ... de HTML. Une ligne vide
permet de changer de paragraphe en restant dans la même cellule, c’est pourquoi
il faut valider une cellule entière par Maj-Entrée. Enfin, la balise solitaire * en
début de ligne indique une puce de liste non ordonnée.

Les carnets de Jupyter sont sophistiqués. On peut y afficher des graphiques,
intégrer des cellules audio ou vidéo, et les diffuser grâce au Notebook Vie-
wer, consultez https://nbviewer.org/faq . L’ensemble reste quand même as-
sez complexe, notamment au niveau de la sécurité dans le cadre d’un travail
partagé ou dans le cloud. Sans laisser la forme prendre le pas sur le fond, qui est
pour ce livre l’apprentissage de la programmation en Python, j’ai quand même

9782340-111332_Roy_001_352_PAP.indd 309782340-111332_Roy_001_352_PAP.indd 30 19/12/2025 18:4119/12/2025 18:41

14 Chapitre 1. L’environnement Python

Python pur, mais un fichier structuré au format JSON que nous rencontrerons
plus tard dans ce livre. Peu importe.

Nous allons créer un nouveau carnet avec le menu Nouveau situé en haut à
droite, optez pour Python 3 (ipykernel). Vous arrivez alors dans la fenêtre d’un
carnet de nom Untitled en haut à gauche, sur lequel vous cliquez pour le changer
en essai (l’extension .ipynb sera ajoutée automatiquement).

La première et unique cellule ci-dessus est en mode Code comme indiqué dans
un menu déroulant : elle est censée contenir du code Python. Utilisons ce menu
déroulant pour la mettre en mode Markdown, une sorte de HTML caché destiné
à produire un texte enrichi avec balises et formules mathématiques en TEX
(j’ai bien entendu installé le logiciel TEX sur ma machine, chez moi TeXShop).
Le menu Aide contient une entrée pour apprendre Markdown 12. Voici ce que
j’entre dans les quatre premières cellules qui sont dans ce même mode ; j’utilise
un ’––––––’ virtuel pour indiquer la séparation des cellules.

62 # Calcul approché d'une intégrale
63 -------
64 Le langage [**Python**](http://www.python.org) utilise :
65 -------
66 * des *entiers* en **précision infinie**.
67 * des *nombres flottants* en **double précision**, pour calculer
68 par exemple $I = \int_{a}^{b} f(x) dx$.
69 -------
70 J'utilise une somme de Riemann avec n points :
71 -------
72 $$I\simeq h\sum_{i=0}^{n-1}f(a+ih)\;{\rm avec}\;h=\frac{b-a}{n}$$

Les cellules qui suivent sont en mode Code, exécutables par le noyau (kernel)
Python 3. Elles contiennent une définition de fonction, une importation et un

12. Markdown a été choisi pour contrebalancer le M de HTML qui signifie Markup. Pour les
commandes les plus utiles, consultez https://commonmark.org/help.

1.2 Installation de la distribution Anaconda 15

calcul. Au final, un notebook exécutable a été produit, exportable en PDF, HTML,
LaTeX, etc. : outil précieux pour étudiants, enseignants et ingénieurs. Les menus
Édition, Affichage, Exécution, etc. permettent de manipuler le style et l’évaluation
individuelle ou collective des cellules, ou procéder à divers réglages.

Quelques mots sur le codage en Markdown. En ligne 62, la balise # signifie <h1>
en HTML, elle indique un titre sur une seule ligne. En ligne 64, un lien en gras
(balise **) est situé entre crochets, l’URL étant placée à la suite entre parenthèses,
c’est l’analogue du ... de HTML. Une ligne vide
permet de changer de paragraphe en restant dans la même cellule, c’est pourquoi
il faut valider une cellule entière par Maj-Entrée. Enfin, la balise solitaire * en
début de ligne indique une puce de liste non ordonnée.

Les carnets de Jupyter sont sophistiqués. On peut y afficher des graphiques,
intégrer des cellules audio ou vidéo, et les diffuser grâce au Notebook Vie-
wer, consultez https://nbviewer.org/faq . L’ensemble reste quand même as-
sez complexe, notamment au niveau de la sécurité dans le cadre d’un travail
partagé ou dans le cloud. Sans laisser la forme prendre le pas sur le fond, qui est
pour ce livre l’apprentissage de la programmation en Python, j’ai quand même

9782340-111332_Roy_001_352_PAP.indd 319782340-111332_Roy_001_352_PAP.indd 31 19/12/2025 18:4119/12/2025 18:41

16 Chapitre 1. L’environnement Python

rédigé certaines solutions à la fois sous la forme de fichiers d’extension .py exécu-
tables en principe par tous, et de fichiers .ipynb pour être ouverts dans Jupyter
ou Visual Studio Code sous la forme de notebooks. À vous de faire votre choix,
et d’en changer le moment venu.

Une introduction à Jupyter se trouve au chap. 18 du cours pour les biologistes
décrit dans [FUC] et à un niveau plus avancé sur la page de Marc Buffat à
l’Université Lyon-1 qui utilise nbgrader permettant à l’enseignant de concevoir
des carnets Jupyter et préparer leur évaluation avec notation automatique.

Jupyter Lab

Le projet Jupyter est issu de IPython, avec la volonté de se détacher de Python
et d’abstraire le concept de notebook qui est devenu indépendant du langage de
programmation. Les pédagogues intéressés par le travail collaboratif avec Jupyter
jetteront un œil sur le livre Teaching and Learning with Jupyter [JUP] qui
explore des tactiques d’enseignement avec les carnets. Vous pourrez enfin suivre les
nouveautés sur Jupyter dans les conférences annuelles des spécialistes disponibles
sur la chaîne JupyterCon de YouTube.

Le niveau suivant Jupyter Lab https://jupyterlab.readthedocs.io de-
vient un véritable environnement interactif permettant d’utiliser conjointement
des carnets, des éditeurs de texte, des Terminaux et des outils de visualisation
pour ces fameuses data qui sont le point de mire de l’informatique d’aujourd’hui.

Afin de ne pas forcer le trait sur les IDE, je vous laisserai devenir acteur de
cette aventure en explorant les ressources du Web, notamment celles des universi-
tés voire lycées qui utilisent Jupyter depuis plusieurs années. En cas de difficultés
liées à l’environnement Jupyter, dirigez-vous vers discourse.jupyter.org.

1.3 L’éditeur professionnel : Visual Studio

Visual Studio (VS) est un IDE développé par Microsoft pour Windows ([VIS])
mais on trouve aussi sur visualstudio.microsoft.com/fr/ une version allégée
Visual Studio Code pour Windows, Mac et Linux. Il se trouve que VS Code se
trouve dans les applications proposées par Anaconda Navigator. Je vous propose

1.3 L’éditeur professionnel : Visual Studio 17

un petit tour plus que minimal, il existe de nombreux tutoriels et vidéos de prise
en main pour cet éditeur très complet. Lançons Navigator 13 et cherchons VS
Code parmi les applications (installées ou à installer). Cliquons sur Launch .

Une fenêtre s’ouvre, je presse Maj-Cmd-P (sur Mac) puis j’écris installer la com-
mande code dans PATH afin de pouvoir lancer VS Code à partir du Terminal.

Edition ou exécution d’un fichier Python xxx.py situé dans un dossier de
programmes Python. Dans le menu Fichier, je clique sur Ouvrir... et je cherche
mon fichier pour l’ouvrir. Il est alors chargé dans l’éditeur avec des lignes numéro-
tées mais il faut installer un interpréteur Python, comme on le voit en bas à
droite. Je peux l’exécuter dans l’environnement (base) par exemple. Je clique sur
Sélectionner un interpréteur et j’opte pour Python 3.12.9 (’base’). Oui, chaque
environnement a son propre Python, même le Python de la maison-mère Python
3.13.0 64-bit aurait convenu aussi. On peut lire maintenant en bas à droite Py-
thon 3.12.9 (’base’ : conda). J’exécute sans débogage avec le menu Exécuter ou
Ctl-F5, et je vois les affichages dans le Terminal en bas.

Remarque — L’éditeur connaît les cellules IPython, comme Jupyter. Si j’avais
chargé xxx.ipynb, j’aurai eu droit à une présentation en cellules comme avec
Jupyter, chacune pouvant être exécutée isolément avec son propre résultat juste
en-dessous. Il existe un module ipynb2py pour obtenir un fichier Python à plat,
non cellulaire, à partir d’un notebook.

Installation de Copilot . Microsoft (à-travers GitHub) livre une version de
Copilot, une IA d’aide à la programmation. Dans menu Affichage de VS, cliquez
sur Extensions (ou sur la 4ème icône verticale sur le bord gauche, ou Cmd-Maj-X).

13. Si vous n’êtes pas sous Anaconda, téléchargez et lancez l’application Visual Studio Code.

9782340-111332_Roy_001_352_PAP.indd 329782340-111332_Roy_001_352_PAP.indd 32 19/12/2025 18:4119/12/2025 18:41

16 Chapitre 1. L’environnement Python

rédigé certaines solutions à la fois sous la forme de fichiers d’extension .py exécu-
tables en principe par tous, et de fichiers .ipynb pour être ouverts dans Jupyter
ou Visual Studio Code sous la forme de notebooks. À vous de faire votre choix,
et d’en changer le moment venu.

Une introduction à Jupyter se trouve au chap. 18 du cours pour les biologistes
décrit dans [FUC] et à un niveau plus avancé sur la page de Marc Buffat à
l’Université Lyon-1 qui utilise nbgrader permettant à l’enseignant de concevoir
des carnets Jupyter et préparer leur évaluation avec notation automatique.

Jupyter Lab

Le projet Jupyter est issu de IPython, avec la volonté de se détacher de Python
et d’abstraire le concept de notebook qui est devenu indépendant du langage de
programmation. Les pédagogues intéressés par le travail collaboratif avec Jupyter
jetteront un œil sur le livre Teaching and Learning with Jupyter [JUP] qui
explore des tactiques d’enseignement avec les carnets. Vous pourrez enfin suivre les
nouveautés sur Jupyter dans les conférences annuelles des spécialistes disponibles
sur la chaîne JupyterCon de YouTube.

Le niveau suivant Jupyter Lab https://jupyterlab.readthedocs.io de-
vient un véritable environnement interactif permettant d’utiliser conjointement
des carnets, des éditeurs de texte, des Terminaux et des outils de visualisation
pour ces fameuses data qui sont le point de mire de l’informatique d’aujourd’hui.

Afin de ne pas forcer le trait sur les IDE, je vous laisserai devenir acteur de
cette aventure en explorant les ressources du Web, notamment celles des universi-
tés voire lycées qui utilisent Jupyter depuis plusieurs années. En cas de difficultés
liées à l’environnement Jupyter, dirigez-vous vers discourse.jupyter.org.

1.3 L’éditeur professionnel : Visual Studio

Visual Studio (VS) est un IDE développé par Microsoft pour Windows ([VIS])
mais on trouve aussi sur visualstudio.microsoft.com/fr/ une version allégée
Visual Studio Code pour Windows, Mac et Linux. Il se trouve que VS Code se
trouve dans les applications proposées par Anaconda Navigator. Je vous propose

1.3 L’éditeur professionnel : Visual Studio 17

un petit tour plus que minimal, il existe de nombreux tutoriels et vidéos de prise
en main pour cet éditeur très complet. Lançons Navigator 13 et cherchons VS
Code parmi les applications (installées ou à installer). Cliquons sur Launch .

Une fenêtre s’ouvre, je presse Maj-Cmd-P (sur Mac) puis j’écris installer la com-
mande code dans PATH afin de pouvoir lancer VS Code à partir du Terminal.

Edition ou exécution d’un fichier Python xxx.py situé dans un dossier de
programmes Python. Dans le menu Fichier, je clique sur Ouvrir... et je cherche
mon fichier pour l’ouvrir. Il est alors chargé dans l’éditeur avec des lignes numéro-
tées mais il faut installer un interpréteur Python, comme on le voit en bas à
droite. Je peux l’exécuter dans l’environnement (base) par exemple. Je clique sur
Sélectionner un interpréteur et j’opte pour Python 3.12.9 (’base’). Oui, chaque
environnement a son propre Python, même le Python de la maison-mère Python
3.13.0 64-bit aurait convenu aussi. On peut lire maintenant en bas à droite Py-
thon 3.12.9 (’base’ : conda). J’exécute sans débogage avec le menu Exécuter ou
Ctl-F5, et je vois les affichages dans le Terminal en bas.

Remarque — L’éditeur connaît les cellules IPython, comme Jupyter. Si j’avais
chargé xxx.ipynb, j’aurai eu droit à une présentation en cellules comme avec
Jupyter, chacune pouvant être exécutée isolément avec son propre résultat juste
en-dessous. Il existe un module ipynb2py pour obtenir un fichier Python à plat,
non cellulaire, à partir d’un notebook.

Installation de Copilot . Microsoft (à-travers GitHub) livre une version de
Copilot, une IA d’aide à la programmation. Dans menu Affichage de VS, cliquez
sur Extensions (ou sur la 4ème icône verticale sur le bord gauche, ou Cmd-Maj-X).

13. Si vous n’êtes pas sous Anaconda, téléchargez et lancez l’application Visual Studio Code.

9782340-111332_Roy_001_352_PAP.indd 339782340-111332_Roy_001_352_PAP.indd 33 19/12/2025 18:4119/12/2025 18:41

18 Chapitre 1. L’environnement Python

Tapez GitHub Copilot puis cliquez sur Installer. Vous devrez avoir un compte
GitHub, même si vous ne l’utilisez pas et il vous faudra peut-être accepter un
accès sécurisé à ce compte GitHub, vous entrez dans un domaine professionnel.

Une fois installé, ouvrez un nouveau fichier. Au lieu d’entrer du code dans
l’éditeur, tapez Cmd-I. Vous êtes alors invité à demander à Copilot de préparer
votre travail. Exemple :

Demander à Copilot : Prépare-moi un code pour tracer une fonction
f(x) sur un intervalle [a,b]. Tu traceras la tangente à la courbe de f
au point d’abscisse X. Je définirai moi-même f,a,b,X. Le repère est
orthonormé.

Un programme Python utilisant numpy et matplotlib s’affiche alors dans l’édi-
teur, que je complète en choisissant la fonction f(x) = x2 sin(x), X = 3 et
[a, b] = [0, 10]. Je l’accepte puis j’exécute le fichier, et voilà. Il a oublié (heu-
reusement) que le repère était orthonormé. C’est de la triche ? Oui, mais il faut
accepter que nous sommes en 2025 et que l’IA monte, monte. . . Profitons-en mais
restons vigilant. Parfois les codes sont un peu faux et ce peut être la galère.

Dans le menu Affichage, vous trouverez Conversation qui est une sorte de Chat-
GPT adapté à la programmation, ainsi que Editions Copilot pour lui demander
de travailler sur votre code : le comprendre, l’analyser, le transformer.

1.4 Conclusion. Quel éditeur choisir ?

• Si vous êtes débutant (lycée, université, futur enseignant), je vous conseille
de démarrer très simplement en installant la distribution CPython de la maison-
mère (www.python.org) avec son éditeur IDLE et son toplevel >>>. Elle est solide,
vous n’aurez sans doute pas besoin d’environnements et s’il vous faut installer
des modules, vous le ferez avec pip (ou mieux : pip3).
• Si vous êtes en période intermédiaire, disons que vous avez déjà un peu touché
à la programmation, vous savez ce qu’est un Terminal et sa ligne de commande,

1.4 Conclusion. Quel éditeur choisir ? 19

ou vous n’avez pas peur de l’apprendre (juste ce qu’il faut pour travailler), je
vous conseille d’installer la distribution Anaconda. Vous pouvez conserver la dis-
tribution CPython ci-dessus si vous acceptez de prendre des risques car il y aura
plusieurs Python sur votre Machine, un vrai nœud de serpents, avec plusieurs
pip par exemple – en l’occurence pip3. Il sera essentiel de bien connaître les
emplacements de ces Python (voir § 1.2.2). Bref vous avez assez de mémoire libre
et vous avez installé Anaconda ou Miniconda, bravo. Vous pouvez commencer
avec l’éditeur IDLE d’Anaconda, avec la commande idle3 si vous voulez rester
quelque temps en pays connu, puis essayez Spyder avec la commande spyder dont
une vidéo du projet Mathscope de l’APMEP est en français, obtenue en cherchant
« Mathscope Spyder ». N’oubliez pas qu’il existe Anaconda Navigator pour éviter
la maudite ligne commande chérie des geeks.

Quand vous commencez à avoir tout cela en main, passez à Jupyter qui est
un peu déroutant au début mais vous ne le regretterez pas. Il vous faudra être
bien encadré pédagogiquement, ou mettre le nez dans les pages de doc sur le Web
mais c’est le lot des programmeurs, non ?
• Enfin, vous êtes bien avancé et vous aimez lire les docs, les environnements
complexes ne vous effraient pas. Approfondissez Jupyter ou passez à Visual Studio
Code, et bonne route ! Dans les deux cas, vous pourrez être accompagné d’une
IA pour coder plus vite (voir [POR]).

En attendant, nous allons nous concentrer sur le langage Python et son ap-
prentissage depuis le début. Comme le disait un homme politique, ne vous in-
quiétez pas, tout va bien se passer !

Dans ce livre, je vais oublier Jupyter et VS Code pour des raisons typogra-
phiques et non scientifiques. Quant à IDLE et Spyder, je vais couper la poire en
deux. Avec Spyder, je déplore – en tant qu’auteur seulement – la place perdue avec
les ’In␣[14]:␣’, les ’Out[14]:␣’ et les lignes vides de séparation, qui gaspillent
un espace précieux sur le papier 14. Je conserve donc le prompt >>> de IDLE, et
remplacerai Out[i] par le symbole ▶. En effet, il est parfois désagréable avec
IDLE de ne pouvoir distinguer le simple effet de l’évaluation d’une expression et
la sortie de sa valeur affichée par la console.

73 >>> print(2 + 1)
74 3 # effet
75 >>> 2 + 1
76 ▶ 3 # résultat

77 In[1] : print(2 + 1)
78 3 # effet
79 In[2] : 2 + 1
80 Out[2]: 3 # résultat

14. Bien qu’il soit possible de personnaliser les prompts avec IPython.

9782340-111332_Roy_001_352_PAP.indd 349782340-111332_Roy_001_352_PAP.indd 34 19/12/2025 18:4119/12/2025 18:41

18 Chapitre 1. L’environnement Python

Tapez GitHub Copilot puis cliquez sur Installer. Vous devrez avoir un compte
GitHub, même si vous ne l’utilisez pas et il vous faudra peut-être accepter un
accès sécurisé à ce compte GitHub, vous entrez dans un domaine professionnel.

Une fois installé, ouvrez un nouveau fichier. Au lieu d’entrer du code dans
l’éditeur, tapez Cmd-I. Vous êtes alors invité à demander à Copilot de préparer
votre travail. Exemple :

Demander à Copilot : Prépare-moi un code pour tracer une fonction
f(x) sur un intervalle [a,b]. Tu traceras la tangente à la courbe de f
au point d’abscisse X. Je définirai moi-même f,a,b,X. Le repère est
orthonormé.

Un programme Python utilisant numpy et matplotlib s’affiche alors dans l’édi-
teur, que je complète en choisissant la fonction f(x) = x2 sin(x), X = 3 et
[a, b] = [0, 10]. Je l’accepte puis j’exécute le fichier, et voilà. Il a oublié (heu-
reusement) que le repère était orthonormé. C’est de la triche ? Oui, mais il faut
accepter que nous sommes en 2025 et que l’IA monte, monte. . . Profitons-en mais
restons vigilant. Parfois les codes sont un peu faux et ce peut être la galère.

Dans le menu Affichage, vous trouverez Conversation qui est une sorte de Chat-
GPT adapté à la programmation, ainsi que Editions Copilot pour lui demander
de travailler sur votre code : le comprendre, l’analyser, le transformer.

1.4 Conclusion. Quel éditeur choisir ?

• Si vous êtes débutant (lycée, université, futur enseignant), je vous conseille
de démarrer très simplement en installant la distribution CPython de la maison-
mère (www.python.org) avec son éditeur IDLE et son toplevel >>>. Elle est solide,
vous n’aurez sans doute pas besoin d’environnements et s’il vous faut installer
des modules, vous le ferez avec pip (ou mieux : pip3).
• Si vous êtes en période intermédiaire, disons que vous avez déjà un peu touché
à la programmation, vous savez ce qu’est un Terminal et sa ligne de commande,

1.4 Conclusion. Quel éditeur choisir ? 19

ou vous n’avez pas peur de l’apprendre (juste ce qu’il faut pour travailler), je
vous conseille d’installer la distribution Anaconda. Vous pouvez conserver la dis-
tribution CPython ci-dessus si vous acceptez de prendre des risques car il y aura
plusieurs Python sur votre Machine, un vrai nœud de serpents, avec plusieurs
pip par exemple – en l’occurence pip3. Il sera essentiel de bien connaître les
emplacements de ces Python (voir § 1.2.2). Bref vous avez assez de mémoire libre
et vous avez installé Anaconda ou Miniconda, bravo. Vous pouvez commencer
avec l’éditeur IDLE d’Anaconda, avec la commande idle3 si vous voulez rester
quelque temps en pays connu, puis essayez Spyder avec la commande spyder dont
une vidéo du projet Mathscope de l’APMEP est en français, obtenue en cherchant
« Mathscope Spyder ». N’oubliez pas qu’il existe Anaconda Navigator pour éviter
la maudite ligne commande chérie des geeks.

Quand vous commencez à avoir tout cela en main, passez à Jupyter qui est
un peu déroutant au début mais vous ne le regretterez pas. Il vous faudra être
bien encadré pédagogiquement, ou mettre le nez dans les pages de doc sur le Web
mais c’est le lot des programmeurs, non ?
• Enfin, vous êtes bien avancé et vous aimez lire les docs, les environnements
complexes ne vous effraient pas. Approfondissez Jupyter ou passez à Visual Studio
Code, et bonne route ! Dans les deux cas, vous pourrez être accompagné d’une
IA pour coder plus vite (voir [POR]).

En attendant, nous allons nous concentrer sur le langage Python et son ap-
prentissage depuis le début. Comme le disait un homme politique, ne vous in-
quiétez pas, tout va bien se passer !

Dans ce livre, je vais oublier Jupyter et VS Code pour des raisons typogra-
phiques et non scientifiques. Quant à IDLE et Spyder, je vais couper la poire en
deux. Avec Spyder, je déplore – en tant qu’auteur seulement – la place perdue avec
les ’In␣[14]:␣’, les ’Out[14]:␣’ et les lignes vides de séparation, qui gaspillent
un espace précieux sur le papier 14. Je conserve donc le prompt >>> de IDLE, et
remplacerai Out[i] par le symbole ▶. En effet, il est parfois désagréable avec
IDLE de ne pouvoir distinguer le simple effet de l’évaluation d’une expression et
la sortie de sa valeur affichée par la console.

73 >>> print(2 + 1)
74 3 # effet
75 >>> 2 + 1
76 ▶ 3 # résultat

77 In[1] : print(2 + 1)
78 3 # effet
79 In[2] : 2 + 1
80 Out[2]: 3 # résultat

14. Bien qu’il soit possible de personnaliser les prompts avec IPython.

9782340-111332_Roy_001_352_PAP.indd 359782340-111332_Roy_001_352_PAP.indd 35 19/12/2025 18:4119/12/2025 18:41

20 Chapitre 1. L’environnement Python

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Interrogez votre IA ∗

Née vers 1956, l’intelligence artificielle (IA) a pris une ampleur considérable ces
dernières années, transformant peu à peu divers secteurs, de l’industrie aux ser-
vices et à l’éducation. La dernière avancée majeure qui nous intéresse ici est celle
de l’IA générative issue de la rencontre entre les grammaires génératives du
linguiste Noam Chomsky dans les années 1950 avec les réseaux de neurones for-
mels (p. 309) qui ont pris leur envol dans les années 1980. Vous avez sans doute
entendu parler de cette IA générative, avec la popularité de GPT (Generative
Pre-trained Transformer, 2018) qui subit actuellement une forte concurrence avec
Claude, DeepSeek, Gemini, Grok, Le Chat, Llama et autres.

Je vous invite, si vous l’acceptez, d’adopter un de ces grands modèles de
langage (LLM : Large Language Model) et de vous en servir pour de la simple do-
cumentation de fonctions Python ou comme assistant scientifique, en programma-
tion pour ce qui nous concerne. Vous l’utiliserez en mode conversationnel (chat),
au sein d’un logiciel externe ou bien intégré (comme Copilot) dans votre envi-
ronnement de programmation.

Perdez vos illusions, une IA n’est pas (encore) vraiment intelligente, ce sera
peut-être pour plus tard, avec le domaine spéculatif de l’IA générale. Pour
l’instant, vous lui envoyez une demande sous la forme d’un texte (le prompt), et
elle fera de son mieux, avec ses neurones et ses connaissances issues d’un long et
coûteux apprentissage, pour aller dans votre sens, en complétant le texte envoyé.
Chaque année, les progrès sont fulgurants mais elle fera parfois des erreurs, il
en suffit d’une petite pour envoyer un programme dans les choux. Il vous faudra
donc être attentif et vérifier soigneusement la réponse, dont vous êtes propriétaire
et dont elle vous délègue en principe les droits d’auteur, rejetant au passage sur
vous la responsabilité de son utilisation.

Si vous ne comprenez pas tout ce qu’elle dit, n’hésitez pas à le lui faire savoir.
Lorsque vous décelez une erreur, elle se confondra en plates excuses et tâchera
d’améliorer sa production, pour le meilleur ou pour le pire, et le pire c’est la
tentation de coller une rustine dans chaque cas où cela ne fonctionne pas. Il peut
être pertinent alors de lui faire tout oublier pour repartir de zéro en reformulant
et précisant votre prompt. Ce dernier est rédigé en langage naturel propre, pas un
style SMS lapidaire. Des phrases bien articulées, avec des données précises et un
objectif clair. Votre demande peut contenir du code Python à analyser ou à mettre
au point, avec les réserves précédentes. Les IA codent assez bien en général, leur
code est documenté mais vous pouvez leur demander des justifications, même
mathématiques ou physiques. Voici une première occasion d’utiliser votre IA.
PROMPT : Pour un débutant, est-il trop tôt pour utiliser "Visual Studio Code"
ou "Jupyter" ? Embarquent-ils un assistant IA pour le codage en Python ?

2 | Variables, nombres et fonctions

Vous avez sans doute installé Anaconda, et choisi un éditeur de texte : IDLE,
Spyder , Jupyter ou autre. Dans tout le livre nous ferons abstraction de l’envi-
ronnement de programmation, sauf mention explicite du contraire (cf. § 1.4).

2.1 Qu’est-ce qu’une variable ?

Un identificateur en Python est un mot dont les seuls caractères sont les lettres
minuscules de a à z, les lettres majuscules de A à Z, le souligné _ ainsi que, sauf
pour le premier caractère, les chiffres de 0 à 9. Le trait d’union - est interdit. Par
exemple x, L, somme, fiche45, parent_de, L et Cercle sont des identificateurs.
Bien que cela soit autorisé, il est déconseillé d’utiliser des lettres accentuées dans
les identificateurs 1.

Une variable est un identificateur faisant référence à un emplacement dans la
mémoire de l’ordinateur contenant un objet. On dit que cet objet est la valeur
de la variable, ou encore que la variable est liée à cet objet. Les variables débutant
par une majuscule sont réservées en principe au nom des classes (§ 7.1).

Ci-dessous, la variable longueur est liée par le signe = au résultat de l’opé-
ration 2 + 3, c’est-à-dire à l’objet 5, tandis que la variable calcul est liée à la
fonction mathématique x �→ 2x − 1. Entrons deux lignes de code Python dans
l’éditeur (IDLE, Spyder, Jupyter) :

81 longueur = 2 + 3 # variable à valeur numérique
82 calcul = lambda x: 2*x - 1 # variable à valeur fonctionnelle

Puis demandons leur exécution (par un menu ou par la touche F5 sous IDLE et
Spyder), pour effectuer des tests à la console.

83 >>> longueur # sa valeur est un nombre
84 ▶ 5

1. La norme Python 3 précise que l’on peut utiliser des caractères Unicode dans les identifi-
cateurs, au risque de réduire la circulation des sources de programmes. . .

9782340-111332_Roy_001_352_PAP.indd 369782340-111332_Roy_001_352_PAP.indd 36 19/12/2025 18:4119/12/2025 18:41

20 Chapitre 1. L’environnement Python

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Interrogez votre IA ∗

Née vers 1956, l’intelligence artificielle (IA) a pris une ampleur considérable ces
dernières années, transformant peu à peu divers secteurs, de l’industrie aux ser-
vices et à l’éducation. La dernière avancée majeure qui nous intéresse ici est celle
de l’IA générative issue de la rencontre entre les grammaires génératives du
linguiste Noam Chomsky dans les années 1950 avec les réseaux de neurones for-
mels (p. 309) qui ont pris leur envol dans les années 1980. Vous avez sans doute
entendu parler de cette IA générative, avec la popularité de GPT (Generative
Pre-trained Transformer, 2018) qui subit actuellement une forte concurrence avec
Claude, DeepSeek, Gemini, Grok, Le Chat, Llama et autres.

Je vous invite, si vous l’acceptez, d’adopter un de ces grands modèles de
langage (LLM : Large Language Model) et de vous en servir pour de la simple do-
cumentation de fonctions Python ou comme assistant scientifique, en programma-
tion pour ce qui nous concerne. Vous l’utiliserez en mode conversationnel (chat),
au sein d’un logiciel externe ou bien intégré (comme Copilot) dans votre envi-
ronnement de programmation.

Perdez vos illusions, une IA n’est pas (encore) vraiment intelligente, ce sera
peut-être pour plus tard, avec le domaine spéculatif de l’IA générale. Pour
l’instant, vous lui envoyez une demande sous la forme d’un texte (le prompt), et
elle fera de son mieux, avec ses neurones et ses connaissances issues d’un long et
coûteux apprentissage, pour aller dans votre sens, en complétant le texte envoyé.
Chaque année, les progrès sont fulgurants mais elle fera parfois des erreurs, il
en suffit d’une petite pour envoyer un programme dans les choux. Il vous faudra
donc être attentif et vérifier soigneusement la réponse, dont vous êtes propriétaire
et dont elle vous délègue en principe les droits d’auteur, rejetant au passage sur
vous la responsabilité de son utilisation.

Si vous ne comprenez pas tout ce qu’elle dit, n’hésitez pas à le lui faire savoir.
Lorsque vous décelez une erreur, elle se confondra en plates excuses et tâchera
d’améliorer sa production, pour le meilleur ou pour le pire, et le pire c’est la
tentation de coller une rustine dans chaque cas où cela ne fonctionne pas. Il peut
être pertinent alors de lui faire tout oublier pour repartir de zéro en reformulant
et précisant votre prompt. Ce dernier est rédigé en langage naturel propre, pas un
style SMS lapidaire. Des phrases bien articulées, avec des données précises et un
objectif clair. Votre demande peut contenir du code Python à analyser ou à mettre
au point, avec les réserves précédentes. Les IA codent assez bien en général, leur
code est documenté mais vous pouvez leur demander des justifications, même
mathématiques ou physiques. Voici une première occasion d’utiliser votre IA.
PROMPT : Pour un débutant, est-il trop tôt pour utiliser "Visual Studio Code"
ou "Jupyter" ? Embarquent-ils un assistant IA pour le codage en Python ?

2 | Variables, nombres et fonctions

Vous avez sans doute installé Anaconda, et choisi un éditeur de texte : IDLE,
Spyder , Jupyter ou autre. Dans tout le livre nous ferons abstraction de l’envi-
ronnement de programmation, sauf mention explicite du contraire (cf. § 1.4).

2.1 Qu’est-ce qu’une variable ?

Un identificateur en Python est un mot dont les seuls caractères sont les lettres
minuscules de a à z, les lettres majuscules de A à Z, le souligné _ ainsi que, sauf
pour le premier caractère, les chiffres de 0 à 9. Le trait d’union - est interdit. Par
exemple x, L, somme, fiche45, parent_de, L et Cercle sont des identificateurs.
Bien que cela soit autorisé, il est déconseillé d’utiliser des lettres accentuées dans
les identificateurs 1.

Une variable est un identificateur faisant référence à un emplacement dans la
mémoire de l’ordinateur contenant un objet. On dit que cet objet est la valeur
de la variable, ou encore que la variable est liée à cet objet. Les variables débutant
par une majuscule sont réservées en principe au nom des classes (§ 7.1).

Ci-dessous, la variable longueur est liée par le signe = au résultat de l’opé-
ration 2 + 3, c’est-à-dire à l’objet 5, tandis que la variable calcul est liée à la
fonction mathématique x �→ 2x − 1. Entrons deux lignes de code Python dans
l’éditeur (IDLE, Spyder, Jupyter) :

81 longueur = 2 + 3 # variable à valeur numérique
82 calcul = lambda x: 2*x - 1 # variable à valeur fonctionnelle

Puis demandons leur exécution (par un menu ou par la touche F5 sous IDLE et
Spyder), pour effectuer des tests à la console.

83 >>> longueur # sa valeur est un nombre
84 ▶ 5

1. La norme Python 3 précise que l’on peut utiliser des caractères Unicode dans les identifi-
cateurs, au risque de réduire la circulation des sources de programmes. . .

9782340-111332_Roy_001_352_PAP.indd 379782340-111332_Roy_001_352_PAP.indd 37 19/12/2025 18:4119/12/2025 18:41

22 Chapitre 2. Variables, nombres et fonctions

85 >>> calcul # sa valeur est une fonction
86 ▶ <function <lambda> at 0x1051d0680>
87 >>> calcul(longueur) # un appel à la fonction calcul
88 ▶ 9

Pour illustrer du code Python, nous utiliserons des cadres numérotés contenant
des lignes de code rédigées dans un éditeur de texte. Vous obtiendrez une feuille
d’édition en demandant « Nouveau fichier... » dans le menu « Fichier ». Rempla-
cez « Fichier » par « File » si votre éditeur est en anglais.

Une fois ce texte exécuté, les ordres d’affichage (aucun ici) ont lieu à la
console (ou toplevel), où l’on peut prolonger l’exécution par des calculs in-
teractifs. Un caractère # signale un commentaire qui court jusqu’au bout de la
ligne et ne sert qu’à des fins de documentation, il est ignoré par Python. Enfin,
les numéros de ligne ne sont là que pour y faire référence dans ce livre.

Le signe = ci-dessus n’est pas une comparaison d’égalité, mais plutôt une égalité
forcée nommée affectation. Cet opérateur d’affectation = lie la variable longueur
sur sa gauche à la valeur 5, et la variable calcul à la fonction mathématique
x �→ 2x− 1. Nous verrons au § 2.16 le mot-clé def permettant de construire des
fonctions contenant plusieurs instructions. On dit que longueur et calcul sont
deux variables, dont la valeur est numérique pour l’une et fonctionnelle pour
l’autre. Il est possible à tout moment de modifier la valeur d’une variable par
une nouvelle affectation. Ajoutons deux nouvelles instructions à la fin du texte
en cours d’édition.

89 ...
90 longueur = longueur + 1 # longueur "devient égal à"...
91 calcul = lambda x,y: x + 2 * y # calcul "devient égal à"...

92 >>> longueur + calcul(3, longueur) # 6 + calcul(3, 6)
93 ▶ 21 # ⇝ 6 + 15 ⇝ 21

Programmer en modifiant des variables conduit au style dit impératif en pro-
grammation. Éviter de modifier les variables – ce qui peut paraître paradoxal –
conduit à un autre style, dit fonctionnel, que nous rencontrerons parfois.

2.2 Qu’est-ce qu’un type ?
Les valeurs 2 et -5 sont des nombres entiers, on dit que ces valeurs sont typées et
que leur type se nomme int , qui dénote l’ensemble potentiel (on dit en Python

2.2 Qu’est-ce qu’un type ? 23

la classe) des entiers autorisés. Un entier est donc un objet de type int, ou de
classe int ce qui revient au même (type et classe sont des synonymes). La valeur
3.05 sera en revanche un nombre approché, de type float . La fonction type
retourne le type d’un objet Python, mais l’affichage d’un type peut dépendre du
logiciel Python utilisé.

94 >>> type(-5) # IDLE
95 <class 'int'>
96 >>> type(3.05)
97 <class 'float'>
98 >>> type(calcul)
99 <class 'function'>

100 In [1]: type(-5) # Spyder
101 Out[1]: int
102 In [2]: type(3.05)
103 Out[2]: float
104 In [3]: type(calcul)
105 Out[3]: function

Ces différences cosmétiques dans l’affichage d’un type ne sont perceptibles qu’à
la console. Celui d’IDLE est plus puriste, celui de IPython plus lisible. De toutes
façons, on ne travaille que rarement à la console : on rédige dans l’éditeur le texte
d’un programme comprenant des instructions print qui, elles, afficheront un type
sous la forme <class 'int'>. Il faut comprendre que l’affichage du résultat d’un
calcul à la console n’est pas un objet Python, mais seulement sa représentation
externe pour un œil humain. En d’autres termes, si vous demandez l’évaluation
du résultat d’un calcul, il se peut que ce résultat ne soit pas lisible par Python.

106 >>> <class 'function'> # IDLE
107 SyntaxError: invalid syntax

108 In [1]: function # Spyder
109 Error: 'function' not defined

Python reconnaît les mots int, float, complex et d’autres noms de types, mais
pas le mot function. Pour tester le type d’une variable, on utilise l’égalité entre
deux objets notée == en Python, à ne pas confondre avec l’affectation =.

110 >>> type(5) == int
111 ▶ True

112 >>> type(5.0) == int
113 ▶ False

Donc chaque objet Python a un type bien défini. Mais une variable a-t-elle un
type ? Dans l’absolu non, mais à un instant donné nous pouvons convenir que le
type d’une variable n’est autre que celui de sa valeur, qui est un objet Python. On
dit qu’une variable Python est dynamiquement typée, rien n’impose qu’elle
ait toujours le même type, elle a le droit de changer de type en cours d’exécution.

114 >>> longueur = 5
115 >>> type(longueur)
116 ▶ int

117 >>> longueur = longueur + 0.5
118 >>> type(longueur)
119 ▶ float

Ce n’est pas forcément conseillé car il est sain de pouvoir garantir dans un pro-
gramme qu’une variable a toujours le même type, pour avoir un meilleur contrôle.
Pour cela il suffirait plus haut d’initialiser longueur à 5.0 au lieu de 5. Le contrôle

9782340-111332_Roy_001_352_PAP.indd 389782340-111332_Roy_001_352_PAP.indd 38 19/12/2025 18:4119/12/2025 18:41

22 Chapitre 2. Variables, nombres et fonctions

85 >>> calcul # sa valeur est une fonction
86 ▶ <function <lambda> at 0x1051d0680>
87 >>> calcul(longueur) # un appel à la fonction calcul
88 ▶ 9

Pour illustrer du code Python, nous utiliserons des cadres numérotés contenant
des lignes de code rédigées dans un éditeur de texte. Vous obtiendrez une feuille
d’édition en demandant « Nouveau fichier... » dans le menu « Fichier ». Rempla-
cez « Fichier » par « File » si votre éditeur est en anglais.

Une fois ce texte exécuté, les ordres d’affichage (aucun ici) ont lieu à la
console (ou toplevel), où l’on peut prolonger l’exécution par des calculs in-
teractifs. Un caractère # signale un commentaire qui court jusqu’au bout de la
ligne et ne sert qu’à des fins de documentation, il est ignoré par Python. Enfin,
les numéros de ligne ne sont là que pour y faire référence dans ce livre.

Le signe = ci-dessus n’est pas une comparaison d’égalité, mais plutôt une égalité
forcée nommée affectation. Cet opérateur d’affectation = lie la variable longueur
sur sa gauche à la valeur 5, et la variable calcul à la fonction mathématique
x �→ 2x− 1. Nous verrons au § 2.16 le mot-clé def permettant de construire des
fonctions contenant plusieurs instructions. On dit que longueur et calcul sont
deux variables, dont la valeur est numérique pour l’une et fonctionnelle pour
l’autre. Il est possible à tout moment de modifier la valeur d’une variable par
une nouvelle affectation. Ajoutons deux nouvelles instructions à la fin du texte
en cours d’édition.

89 ...
90 longueur = longueur + 1 # longueur "devient égal à"...
91 calcul = lambda x,y: x + 2 * y # calcul "devient égal à"...

92 >>> longueur + calcul(3, longueur) # 6 + calcul(3, 6)
93 ▶ 21 # ⇝ 6 + 15 ⇝ 21

Programmer en modifiant des variables conduit au style dit impératif en pro-
grammation. Éviter de modifier les variables – ce qui peut paraître paradoxal –
conduit à un autre style, dit fonctionnel, que nous rencontrerons parfois.

2.2 Qu’est-ce qu’un type ?
Les valeurs 2 et -5 sont des nombres entiers, on dit que ces valeurs sont typées et
que leur type se nomme int , qui dénote l’ensemble potentiel (on dit en Python

2.2 Qu’est-ce qu’un type ? 23

la classe) des entiers autorisés. Un entier est donc un objet de type int, ou de
classe int ce qui revient au même (type et classe sont des synonymes). La valeur
3.05 sera en revanche un nombre approché, de type float . La fonction type
retourne le type d’un objet Python, mais l’affichage d’un type peut dépendre du
logiciel Python utilisé.

94 >>> type(-5) # IDLE
95 <class 'int'>
96 >>> type(3.05)
97 <class 'float'>
98 >>> type(calcul)
99 <class 'function'>

100 In [1]: type(-5) # Spyder
101 Out[1]: int
102 In [2]: type(3.05)
103 Out[2]: float
104 In [3]: type(calcul)
105 Out[3]: function

Ces différences cosmétiques dans l’affichage d’un type ne sont perceptibles qu’à
la console. Celui d’IDLE est plus puriste, celui de IPython plus lisible. De toutes
façons, on ne travaille que rarement à la console : on rédige dans l’éditeur le texte
d’un programme comprenant des instructions print qui, elles, afficheront un type
sous la forme <class 'int'>. Il faut comprendre que l’affichage du résultat d’un
calcul à la console n’est pas un objet Python, mais seulement sa représentation
externe pour un œil humain. En d’autres termes, si vous demandez l’évaluation
du résultat d’un calcul, il se peut que ce résultat ne soit pas lisible par Python.

106 >>> <class 'function'> # IDLE
107 SyntaxError: invalid syntax

108 In [1]: function # Spyder
109 Error: 'function' not defined

Python reconnaît les mots int, float, complex et d’autres noms de types, mais
pas le mot function. Pour tester le type d’une variable, on utilise l’égalité entre
deux objets notée == en Python, à ne pas confondre avec l’affectation =.

110 >>> type(5) == int
111 ▶ True

112 >>> type(5.0) == int
113 ▶ False

Donc chaque objet Python a un type bien défini. Mais une variable a-t-elle un
type ? Dans l’absolu non, mais à un instant donné nous pouvons convenir que le
type d’une variable n’est autre que celui de sa valeur, qui est un objet Python. On
dit qu’une variable Python est dynamiquement typée, rien n’impose qu’elle
ait toujours le même type, elle a le droit de changer de type en cours d’exécution.

114 >>> longueur = 5
115 >>> type(longueur)
116 ▶ int

117 >>> longueur = longueur + 0.5
118 >>> type(longueur)
119 ▶ float

Ce n’est pas forcément conseillé car il est sain de pouvoir garantir dans un pro-
gramme qu’une variable a toujours le même type, pour avoir un meilleur contrôle.
Pour cela il suffirait plus haut d’initialiser longueur à 5.0 au lieu de 5. Le contrôle

9782340-111332_Roy_001_352_PAP.indd 399782340-111332_Roy_001_352_PAP.indd 39 19/12/2025 18:4119/12/2025 18:41

24 Chapitre 2. Variables, nombres et fonctions

du type des variables est un défi constant pour le programmeur. Mais rien ne l’y
oblige, au contraire des langages fortement typés comme C ou Java dans lequel
une variable de type int ne pourra jamais devenir de type float.

2.3 Le type int des nombres entiers
En abordant un langage de programmation, il est usuel de commencer son étude
par les nombres et leurs opérations. Les nombres entiers sont des objets Py-
thon de type int, en précision infinie 2, et l’arithmétique y est exacte 3. Les
opérateurs sont + (addition), - (soustraction), * (multiplication), // (quotient
entier), % (modulo : reste de la division) et ** (puissance).

120 >>> 1234567890987654321 ** 2 # un calcul de carré à la console
121 ▶ 1524157877457704723228166437789971041
122 >>> 13 // 5 # quotient de la division de 13 par 5
123 ▶ 2
124 >>> 13 % 5 # "13 modulo 5" : reste de la division de 13 par 5
125 ▶ 3

Vous pouvez si le besoin s’en fait sentir importer en plus les fonctions gcd (le
PGCD) et lcm (le PPCM) à partir du module math (cf. § 2.6).

126 >>> from math import gcd # le mot gcd devient disponible
127 >>> gcd(12, 15) # Greatest Common Divisor
128 ▶ 3

Le test d’égalité de deux nombres se note == à ne pas confondre avec l’affec-
tation =. L’inégalité a �= b de deux nombres entiers se note a != b ou avec
l’opérateur de négation not(a == b). On peut comparer des nombres (sauf les
complexes) avec les opérateurs <, <=, > et >=. Le résultat d’une comparaison est
l’une des deux constantes True (qui signifie vrai) et False (faux) qui sont des
valeurs booléennes : de type bool (cf. § 2.13).

129 >>> (4 ** 5) > (5 ** 4) # est-ce que 45 > 54 ?
130 ▶ True

2.4 Les nombres flottants
Viennent ensuite les nombres approchés où l’arithmétique est inexacte à cause
de la précision limitée. Par défaut ces nombres – dits flottants – sont en double

2. Le nombre de chiffres ne dépend que de la capacité mémoire de votre ordinateur.
3. Dans certains langages de programmation, le calcul de 30! pourrait donner un résultat

faux, voire négatif !

2.4 Les nombres flottants 25

précision sur 64 bits 4 : grosso modo vous disposez d’environ 15 chiffres après
la virgule. Si vous approchez de zéro la situation se complique. Le plus petit
nombre flottant strictement positif est 4.9406564584124654× 10−324 noté en Py-
thon 4.9406564584124654e-324, et en-dessous de lui se trouve immédiatement 0.

131 >>> x = 4.9406564584124654e-324
132 >>> x == 0
133 ▶ False
134 >>> x / 2 # division dans les nombres flottants
135 ▶ 0.0

Vous sentez au dernier exemple que l’arithmétique des nombres flottants
est dangeureuse. La division approchée se note /, elle pousse les calculs après
la virgule (virgule qui est en fait un point décimal en programmation) ce que ne
fait pas le quotient entier //.

136 >>> 5 / 3 # mais 5 // 3 == 1
137 ▶ 1.6666666666666667 # résultat approché, inexact !
138 >>> 3 * (5 / 3)
139 ▶ 5.0 # et non 5 car 5/3 est approché

La fonction valeur absolue x �→ |x| existe dans le noyau de Python, où elle se
nomme abs. En ce qui concerne les opérations flottantes

√
x, cos(x), sin(x), ex,

ln(x) etc, il faudra demander explicitement leur importation depuis le module
math. Les fonctions ex et ln(x) se notent en Python exp(x) et log(x).

140 >>> import math # cf. § 2.6
141 >>> dir(math) # les mots du module math
142 ▶ ['__doc__', '__file__', '__loader__', '__name__', '__package__',
143 '__spec__', 'acos', 'acosh', 'asin', 'asinh', 'atan', 'atan2',
144 'atanh', 'cbrt', 'ceil', 'comb', 'copysign', 'cos', 'cosh',
145 'degrees', 'dist', 'e', 'erf', 'erfc', 'exp', 'exp2', 'expm1',
146 'fabs', 'factorial', 'floor', 'fmod', 'frexp', 'fsum', 'gamma',
147 'gcd', 'hypot', 'inf', 'isclose', 'isfinite', 'isinf', 'isnan',
148 'isqrt', 'lcm', 'ldexp', 'lgamma', 'log', 'log10', 'log1p', 'log2',
149 'modf', 'nan', 'nextafter', 'perm', 'pi', 'pow', 'prod', 'radians',
150 'remainder', 'sin', 'sinh', 'sqrt', 'tan', 'tanh', 'tau', 'trunc']

151 >>> from math import pi, atan # pi est le nom de π
152 >>> pi
153 ▶ 3.141592653589793 # une approximation de π
154 >>> atan(0.5) * 180 / pi # l'arc-tangente de 0.5 vaut
155 ▶ 26.56505117707799 # environ 26.6°

4. Avec 64 chiffres en binaire. L’arithmétique binaire sera abordée dans les exercices.

9782340-111332_Roy_001_352_PAP.indd 409782340-111332_Roy_001_352_PAP.indd 40 19/12/2025 18:4119/12/2025 18:41

24 Chapitre 2. Variables, nombres et fonctions

du type des variables est un défi constant pour le programmeur. Mais rien ne l’y
oblige, au contraire des langages fortement typés comme C ou Java dans lequel
une variable de type int ne pourra jamais devenir de type float.

2.3 Le type int des nombres entiers
En abordant un langage de programmation, il est usuel de commencer son étude
par les nombres et leurs opérations. Les nombres entiers sont des objets Py-
thon de type int, en précision infinie 2, et l’arithmétique y est exacte 3. Les
opérateurs sont + (addition), - (soustraction), * (multiplication), // (quotient
entier), % (modulo : reste de la division) et ** (puissance).

120 >>> 1234567890987654321 ** 2 # un calcul de carré à la console
121 ▶ 1524157877457704723228166437789971041
122 >>> 13 // 5 # quotient de la division de 13 par 5
123 ▶ 2
124 >>> 13 % 5 # "13 modulo 5" : reste de la division de 13 par 5
125 ▶ 3

Vous pouvez si le besoin s’en fait sentir importer en plus les fonctions gcd (le
PGCD) et lcm (le PPCM) à partir du module math (cf. § 2.6).

126 >>> from math import gcd # le mot gcd devient disponible
127 >>> gcd(12, 15) # Greatest Common Divisor
128 ▶ 3

Le test d’égalité de deux nombres se note == à ne pas confondre avec l’affec-
tation =. L’inégalité a �= b de deux nombres entiers se note a != b ou avec
l’opérateur de négation not(a == b). On peut comparer des nombres (sauf les
complexes) avec les opérateurs <, <=, > et >=. Le résultat d’une comparaison est
l’une des deux constantes True (qui signifie vrai) et False (faux) qui sont des
valeurs booléennes : de type bool (cf. § 2.13).

129 >>> (4 ** 5) > (5 ** 4) # est-ce que 45 > 54 ?
130 ▶ True

2.4 Les nombres flottants
Viennent ensuite les nombres approchés où l’arithmétique est inexacte à cause
de la précision limitée. Par défaut ces nombres – dits flottants – sont en double

2. Le nombre de chiffres ne dépend que de la capacité mémoire de votre ordinateur.
3. Dans certains langages de programmation, le calcul de 30! pourrait donner un résultat

faux, voire négatif !

2.4 Les nombres flottants 25

précision sur 64 bits 4 : grosso modo vous disposez d’environ 15 chiffres après
la virgule. Si vous approchez de zéro la situation se complique. Le plus petit
nombre flottant strictement positif est 4.9406564584124654× 10−324 noté en Py-
thon 4.9406564584124654e-324, et en-dessous de lui se trouve immédiatement 0.

131 >>> x = 4.9406564584124654e-324
132 >>> x == 0
133 ▶ False
134 >>> x / 2 # division dans les nombres flottants
135 ▶ 0.0

Vous sentez au dernier exemple que l’arithmétique des nombres flottants
est dangeureuse. La division approchée se note /, elle pousse les calculs après
la virgule (virgule qui est en fait un point décimal en programmation) ce que ne
fait pas le quotient entier //.

136 >>> 5 / 3 # mais 5 // 3 == 1
137 ▶ 1.6666666666666667 # résultat approché, inexact !
138 >>> 3 * (5 / 3)
139 ▶ 5.0 # et non 5 car 5/3 est approché

La fonction valeur absolue x �→ |x| existe dans le noyau de Python, où elle se
nomme abs. En ce qui concerne les opérations flottantes

√
x, cos(x), sin(x), ex,

ln(x) etc, il faudra demander explicitement leur importation depuis le module
math. Les fonctions ex et ln(x) se notent en Python exp(x) et log(x).

140 >>> import math # cf. § 2.6
141 >>> dir(math) # les mots du module math
142 ▶ ['__doc__', '__file__', '__loader__', '__name__', '__package__',
143 '__spec__', 'acos', 'acosh', 'asin', 'asinh', 'atan', 'atan2',
144 'atanh', 'cbrt', 'ceil', 'comb', 'copysign', 'cos', 'cosh',
145 'degrees', 'dist', 'e', 'erf', 'erfc', 'exp', 'exp2', 'expm1',
146 'fabs', 'factorial', 'floor', 'fmod', 'frexp', 'fsum', 'gamma',
147 'gcd', 'hypot', 'inf', 'isclose', 'isfinite', 'isinf', 'isnan',
148 'isqrt', 'lcm', 'ldexp', 'lgamma', 'log', 'log10', 'log1p', 'log2',
149 'modf', 'nan', 'nextafter', 'perm', 'pi', 'pow', 'prod', 'radians',
150 'remainder', 'sin', 'sinh', 'sqrt', 'tan', 'tanh', 'tau', 'trunc']

151 >>> from math import pi, atan # pi est le nom de π
152 >>> pi
153 ▶ 3.141592653589793 # une approximation de π
154 >>> atan(0.5) * 180 / pi # l'arc-tangente de 0.5 vaut
155 ▶ 26.56505117707799 # environ 26.6°

4. Avec 64 chiffres en binaire. L’arithmétique binaire sera abordée dans les exercices.

9782340-111332_Roy_001_352_PAP.indd 419782340-111332_Roy_001_352_PAP.indd 41 19/12/2025 18:4119/12/2025 18:41

26 Chapitre 2. Variables, nombres et fonctions

Remarque — Les nombres réels sont donc une illusion en programmation puisque
l’on travaille avec des flottants dont le nombre de chiffres est limité : nous ne
manipulons que des nombres rationnels approchés. Python ne connaît qu’une
approximation de π, et sin(π) sera presque nul. Vérifiez sur sin(pi) et cos(pi).

Les entiers sont de type int et les flottants de type float. Si x est un flottant,
alors int(x) est le nombre entier obtenu en gommant la partie fractionnaire
de x. Si n est un entier, float(n) retourne le même nombre mais approché.

156 >>> type(3)
157 ▶ int
158 >>> type(3.14)
159 ▶ float

160 >>> int(3.14)
161 ▶ 3
162 >>> int(-3.14)
163 ▶ -3

164 >>> float(3)
165 ▶ 3.0
166 >>> float(3.14)
167 ▶ 3.14

Remarque — Attention, int et float sont bien des noms de classes et pas de
fonctions ! En écrivant int(x), on fait appel au constructeur de la classe int.

2.5 Les nombres complexes

Enfin, Python propose les nombres complexes notés 2+3i en mathématiques,
et 2+3j en Python, le nombre i =

√
−1 se notant 1j pour éviter toute confusion.

168 >>> z = 2+3j # construction du nombre complexe z
169 >>> z = complex(2, 3) # une autre manière de le définir
170 >>> (z.real, z.imag) # parties réelle et imaginaire de z
171 ▶ (2.0, 3.0) # ce sont des nombres flottants !
172 >>> from cmath import phase # l'argument d'un nombre complexe
173 >>> (abs(z), phase(z)) # module et argument en radians
174 ▶ (3.605551275463989, 0.982793723247329)
175 >>> z * z # multiplication complexe
176 ▶ (-5+12j) # l'affichage est parenthésé

Les opérations complexes
√
z, sin(z), ez, ln(z) etc. sont disponibles dans le module

cmath qu’il vous faudra importer. Ci-dessous, j’importe la fonction exponentielle
sur C en la nommant cexp pour ne pas entrer en collision avec la fonction exp
du module math qui est l’exponentielle sur les nombres flottants.

177 >>> from cmath import exp as cexp # l'exponentielle complexe
178 >>> cexp(3+2j) # calcul de e3+2i

179 ▶ (-8.358532650935372+18.263727040666765j)
180 >>> cexp(1j * pi) # calcul de eiπ

181 ▶ (-1+1.2246467991473532e-16j) # approximativement -1

2.6 Qu’est-ce qu’un module en Python ? 27

2.6 Qu’est-ce qu’un module en Python ?

Le noyau Python disponible au lancement du système contient les constructions
syntaxiques et les classes de base permettant de programmer avec des nombres,
des textes (chaînes de caractères Unicode) et des données composées : tuples,
listes, ensembles, dictionnaires et fichiers. On peut aussi y construire des classes.

Un programme Python est constitué d’un ou plusieurs modules qui sont
des fichiers écrits en Python, d’extension .py (ou .ipynb si ce sont des car-
nets), chaque module participant à une fonctionnalité du programme. Le langage
Python propose de son côté ses propres modules spécialisés (pour les mathéma-
tiques, le graphisme, l’accès à Internet, l’audio, etc.). Le mot-clé import permet
d’importer tout ou partie d’un module.

Un module contient des instructions mais aussi des définitions de fonctions
et de classes d’objets. Il définit ainsi des noms de variables liées à des valeurs
(nombres, fonctions, classes, etc.). Toutes ces liaisons variable/valeur forment
l’espace des noms (en anglais namespace) du module. Au départ, dans la console
Python, vous êtes dans un espace de noms ne contenant pas la fonction racine
carrée qui se nomme sqrt en Python, et qui se trouve dans un module prédéfini
(en anglais built-in) nommé math.

182 >>> sqrt # elle n'est pas dans le noyau !
183 NameError: name 'sqrt' is not defined
184 >>> import math # j'importe le mot math
185 >>> math # un module est un objet Python
186 ▶ <module math from '/Users/roy/...'>
187 >>> math.sqrt # le "nom qualifié" de sqrt
188 ▶ <built-in function sqrt>
189 >>> math.sqrt(2) # calcul de

√
2

190 ▶ 1.4142135623730951 # une valeur approchée
191 >>> sqrt(2) # mais sqrt n'a pas été importée !
192 NameError: name 'sqrt' is not defined

La fonction dir en ligne 141 permettait d’obtenir la liste des noms contenus
dans un module. Attention, la directive import math n’importe que le mot
math, il faut utiliser ce point d’entrée dans le module pour obtenir la fonction
racine carrée par son nom qualifié math.sqrt, car le mot sqrt tout seul n’a
pas été importé ! Si l’on souhaite importer le seul mot sqrt, il faut demander
from math import sqrt comme en ligne 151 mais alors c’est le mot math qui

n’est pas importé. Dans le cas où le module contient beaucoup de fonctions à im-
porter, la directive from math import * fait l’affaire, mais elle est dangeureuse
car le module peut contenir des fonctions ayant le même nom que les vôtres !

9782340-111332_Roy_001_352_PAP.indd 429782340-111332_Roy_001_352_PAP.indd 42 19/12/2025 18:4119/12/2025 18:41

26 Chapitre 2. Variables, nombres et fonctions

Remarque — Les nombres réels sont donc une illusion en programmation puisque
l’on travaille avec des flottants dont le nombre de chiffres est limité : nous ne
manipulons que des nombres rationnels approchés. Python ne connaît qu’une
approximation de π, et sin(π) sera presque nul. Vérifiez sur sin(pi) et cos(pi).

Les entiers sont de type int et les flottants de type float. Si x est un flottant,
alors int(x) est le nombre entier obtenu en gommant la partie fractionnaire
de x. Si n est un entier, float(n) retourne le même nombre mais approché.

156 >>> type(3)
157 ▶ int
158 >>> type(3.14)
159 ▶ float

160 >>> int(3.14)
161 ▶ 3
162 >>> int(-3.14)
163 ▶ -3

164 >>> float(3)
165 ▶ 3.0
166 >>> float(3.14)
167 ▶ 3.14

Remarque — Attention, int et float sont bien des noms de classes et pas de
fonctions ! En écrivant int(x), on fait appel au constructeur de la classe int.

2.5 Les nombres complexes

Enfin, Python propose les nombres complexes notés 2+3i en mathématiques,
et 2+3j en Python, le nombre i =

√
−1 se notant 1j pour éviter toute confusion.

168 >>> z = 2+3j # construction du nombre complexe z
169 >>> z = complex(2, 3) # une autre manière de le définir
170 >>> (z.real, z.imag) # parties réelle et imaginaire de z
171 ▶ (2.0, 3.0) # ce sont des nombres flottants !
172 >>> from cmath import phase # l'argument d'un nombre complexe
173 >>> (abs(z), phase(z)) # module et argument en radians
174 ▶ (3.605551275463989, 0.982793723247329)
175 >>> z * z # multiplication complexe
176 ▶ (-5+12j) # l'affichage est parenthésé

Les opérations complexes
√
z, sin(z), ez, ln(z) etc. sont disponibles dans le module

cmath qu’il vous faudra importer. Ci-dessous, j’importe la fonction exponentielle
sur C en la nommant cexp pour ne pas entrer en collision avec la fonction exp
du module math qui est l’exponentielle sur les nombres flottants.

177 >>> from cmath import exp as cexp # l'exponentielle complexe
178 >>> cexp(3+2j) # calcul de e3+2i

179 ▶ (-8.358532650935372+18.263727040666765j)
180 >>> cexp(1j * pi) # calcul de eiπ

181 ▶ (-1+1.2246467991473532e-16j) # approximativement -1

2.6 Qu’est-ce qu’un module en Python ? 27

2.6 Qu’est-ce qu’un module en Python ?

Le noyau Python disponible au lancement du système contient les constructions
syntaxiques et les classes de base permettant de programmer avec des nombres,
des textes (chaînes de caractères Unicode) et des données composées : tuples,
listes, ensembles, dictionnaires et fichiers. On peut aussi y construire des classes.

Un programme Python est constitué d’un ou plusieurs modules qui sont
des fichiers écrits en Python, d’extension .py (ou .ipynb si ce sont des car-
nets), chaque module participant à une fonctionnalité du programme. Le langage
Python propose de son côté ses propres modules spécialisés (pour les mathéma-
tiques, le graphisme, l’accès à Internet, l’audio, etc.). Le mot-clé import permet
d’importer tout ou partie d’un module.

Un module contient des instructions mais aussi des définitions de fonctions
et de classes d’objets. Il définit ainsi des noms de variables liées à des valeurs
(nombres, fonctions, classes, etc.). Toutes ces liaisons variable/valeur forment
l’espace des noms (en anglais namespace) du module. Au départ, dans la console
Python, vous êtes dans un espace de noms ne contenant pas la fonction racine
carrée qui se nomme sqrt en Python, et qui se trouve dans un module prédéfini
(en anglais built-in) nommé math.

182 >>> sqrt # elle n'est pas dans le noyau !
183 NameError: name 'sqrt' is not defined
184 >>> import math # j'importe le mot math
185 >>> math # un module est un objet Python
186 ▶ <module math from '/Users/roy/...'>
187 >>> math.sqrt # le "nom qualifié" de sqrt
188 ▶ <built-in function sqrt>
189 >>> math.sqrt(2) # calcul de

√
2

190 ▶ 1.4142135623730951 # une valeur approchée
191 >>> sqrt(2) # mais sqrt n'a pas été importée !
192 NameError: name 'sqrt' is not defined

La fonction dir en ligne 141 permettait d’obtenir la liste des noms contenus
dans un module. Attention, la directive import math n’importe que le mot
math, il faut utiliser ce point d’entrée dans le module pour obtenir la fonction
racine carrée par son nom qualifié math.sqrt, car le mot sqrt tout seul n’a
pas été importé ! Si l’on souhaite importer le seul mot sqrt, il faut demander
from math import sqrt comme en ligne 151 mais alors c’est le mot math qui

n’est pas importé. Dans le cas où le module contient beaucoup de fonctions à im-
porter, la directive from math import * fait l’affaire, mais elle est dangeureuse
car le module peut contenir des fonctions ayant le même nom que les vôtres !

9782340-111332_Roy_001_352_PAP.indd 439782340-111332_Roy_001_352_PAP.indd 43 19/12/2025 18:4119/12/2025 18:41

28 Chapitre 2. Variables, nombres et fonctions

Si vous avez déjà programmé vous-même une fonction sqrt et souhaitez importer
la vraie fonction sqrt du module math, nommez cette dernière math.sqrt ou
importez-la sous un autre nom rac2 par exemple en demandant :

from math import sqrt as rac2

Remarque — Deux modules sys et imp permettent de travailler – en Python –
sur le système de modules. La variable sys.modules contient la liste des tous les
modules importés (y compris les vôtres) depuis l’ouverture de Python. La variable
sys.path contient la liste des chemins menant aux modules importables.

2.7 Donc pas de nombres rationnels en Python ?

Pas dans le noyau Python. Mais il est possible d’importer la classe Fraction
contenue dans le module fractions pour construire des objets de type Fraction.

193 >>> from fractions import Fraction # les fractions exactes
194 >>> r1 = Fraction(1, 3) # ou bien Fraction('1/3')
195 >>> r2 = Fraction(10, 12) # == Fraction(5, 6)
196 >>> r3 = r1 - r2
197 >>> r3
198 ▶ Fraction(-1, 2) # 1

3 − 5
6 = −1

2
199 >>> print(r3) # print sait bien afficher !
200 ▶ -1/2
201 >>> (r3.numerator, r3.denominator) # un couple
202 ▶ (-1, 2)

La notation r3.numerator se lit l’attribut (ou propriété) numerator de l’objet r3
de la classe Fraction. Il s’agit de la notation pointée adaptée à la programma-
tion par objets (voir § 7.1). En Python, le chapeau de papa s’écrit papa.chapeau.

2.8 L’égalité est-elle fiable sur les nombres flottants ?

Pas vraiment si l’on considère les exemples suivants :
203 >>> 0.1 + 0.1 + 0.1 + 0.1 == 0.4
204 ▶ True

205 >>> 0.1 + 0.1 + 0.1 == 0.3
206 ▶ False

En fait, le nombre flottant 0.1 qui est simple en décimal, est compliqué en binaire
car son écriture demande une infinité de chiffres après la virgule ! Mais le nombre
étant approché, il y aura une troncature, donc une perte de précision et . . . boum !
Il est donc fortement déconseillé d’utiliser l’opérateur == sur les nombres
flottants.

2.9 L’infini existe-t-il en programmation ? 29

Mais alors, comment faire pour savoir si deux nombres flottants x et y sont
quasiment égaux ? Le mieux consiste à se fixer une précision h > 0 assez petite
(par exemple 0.001) et à demander si |x − y| < h. Un nombre x sera alors
quasiment nul lorsque |x| < h.

Remarques — i) Le module math propose une fonction isclose(a,b) permettant
de tester si a et b sont égaux à 10−9 près, la tolérance est réglable.
ii) Pour une grande précision dans les flottants, jetez un œil au module decimal
de Python qui offre une arithmétique avec des flottants à précision fixe, pour
laquelle 0.1 + 0.1 + 0.1 vaudra exactement 0.3 en écrivant Decimal('0.1') au
lieu de 0.1. Voir la page https://pymotw.com/3/decimal/.

2.9 L’infini existe-t-il en programmation ?
Il existe un nombre flottant bizarre construit par l’expression float('inf') qui
répond peu ou prou aux règles de calcul avec +∞. Sa valeur est affichée inf.

207 >>> inf = float('inf') # le mot inf n'est pas défini
208 >>> 0.5 * inf - 1000
209 ▶ inf
210 >>> -2 * inf
211 ▶ -inf
212 >>> 1 / inf # et 1 / -inf ?
213 ▶ 0.0
214 >>> 1 / 0
215 ZeroDivisionError: division by zero

Pour répondre aux impossibilités de calcul, un nombre flottant float(’nan’) est
aussi disponible, le ’nan’ signifiant Not A Number. Sa valeur est affichée nan.

216 >>> inf - inf # une "forme indéterminée" en maths, comme 0 * inf
217 ▶ nan

2.10 Qu’est-ce que la priorité d’un opérateur ?
L’utilisation des opérateurs arithmétiques est ambiguë : comment interpréter
3 + 2× 5 ? Comme (3 + 2)× 5 ou 3 + (2× 5) ? Simple convention prise au XVIe

siècle (cf. [SER]) où il a fallu passer de la phrase Ajoute 3 au produit de 2 et de 5 au
codage symbolique 3+2×5. Certains langages de programmation comme Scheme
écrivent encore (+ 3 (* 2 5)) avec l’opérateur en tête, sans ambiguïté. Mais en
maths ou en Python, il faudra lever l’ambiguïté pour éviter que 3+ 2× 5 signifie
(3 + 2)× 5. Il faut donc connaître les conventions de priorité des opérateurs.

+ - * / // % **

9782340-111332_Roy_001_352_PAP.indd 449782340-111332_Roy_001_352_PAP.indd 44 19/12/2025 18:4119/12/2025 18:41

28 Chapitre 2. Variables, nombres et fonctions

Si vous avez déjà programmé vous-même une fonction sqrt et souhaitez importer
la vraie fonction sqrt du module math, nommez cette dernière math.sqrt ou
importez-la sous un autre nom rac2 par exemple en demandant :

from math import sqrt as rac2

Remarque — Deux modules sys et imp permettent de travailler – en Python –
sur le système de modules. La variable sys.modules contient la liste des tous les
modules importés (y compris les vôtres) depuis l’ouverture de Python. La variable
sys.path contient la liste des chemins menant aux modules importables.

2.7 Donc pas de nombres rationnels en Python ?

Pas dans le noyau Python. Mais il est possible d’importer la classe Fraction
contenue dans le module fractions pour construire des objets de type Fraction.

193 >>> from fractions import Fraction # les fractions exactes
194 >>> r1 = Fraction(1, 3) # ou bien Fraction('1/3')
195 >>> r2 = Fraction(10, 12) # == Fraction(5, 6)
196 >>> r3 = r1 - r2
197 >>> r3
198 ▶ Fraction(-1, 2) # 1

3 − 5
6 = −1

2
199 >>> print(r3) # print sait bien afficher !
200 ▶ -1/2
201 >>> (r3.numerator, r3.denominator) # un couple
202 ▶ (-1, 2)

La notation r3.numerator se lit l’attribut (ou propriété) numerator de l’objet r3
de la classe Fraction. Il s’agit de la notation pointée adaptée à la programma-
tion par objets (voir § 7.1). En Python, le chapeau de papa s’écrit papa.chapeau.

2.8 L’égalité est-elle fiable sur les nombres flottants ?

Pas vraiment si l’on considère les exemples suivants :
203 >>> 0.1 + 0.1 + 0.1 + 0.1 == 0.4
204 ▶ True

205 >>> 0.1 + 0.1 + 0.1 == 0.3
206 ▶ False

En fait, le nombre flottant 0.1 qui est simple en décimal, est compliqué en binaire
car son écriture demande une infinité de chiffres après la virgule ! Mais le nombre
étant approché, il y aura une troncature, donc une perte de précision et . . . boum !
Il est donc fortement déconseillé d’utiliser l’opérateur == sur les nombres
flottants.

2.9 L’infini existe-t-il en programmation ? 29

Mais alors, comment faire pour savoir si deux nombres flottants x et y sont
quasiment égaux ? Le mieux consiste à se fixer une précision h > 0 assez petite
(par exemple 0.001) et à demander si |x − y| < h. Un nombre x sera alors
quasiment nul lorsque |x| < h.

Remarques — i) Le module math propose une fonction isclose(a,b) permettant
de tester si a et b sont égaux à 10−9 près, la tolérance est réglable.
ii) Pour une grande précision dans les flottants, jetez un œil au module decimal
de Python qui offre une arithmétique avec des flottants à précision fixe, pour
laquelle 0.1 + 0.1 + 0.1 vaudra exactement 0.3 en écrivant Decimal('0.1') au
lieu de 0.1. Voir la page https://pymotw.com/3/decimal/.

2.9 L’infini existe-t-il en programmation ?
Il existe un nombre flottant bizarre construit par l’expression float('inf') qui
répond peu ou prou aux règles de calcul avec +∞. Sa valeur est affichée inf.

207 >>> inf = float('inf') # le mot inf n'est pas défini
208 >>> 0.5 * inf - 1000
209 ▶ inf
210 >>> -2 * inf
211 ▶ -inf
212 >>> 1 / inf # et 1 / -inf ?
213 ▶ 0.0
214 >>> 1 / 0
215 ZeroDivisionError: division by zero

Pour répondre aux impossibilités de calcul, un nombre flottant float(’nan’) est
aussi disponible, le ’nan’ signifiant Not A Number. Sa valeur est affichée nan.

216 >>> inf - inf # une "forme indéterminée" en maths, comme 0 * inf
217 ▶ nan

2.10 Qu’est-ce que la priorité d’un opérateur ?
L’utilisation des opérateurs arithmétiques est ambiguë : comment interpréter
3 + 2× 5 ? Comme (3 + 2)× 5 ou 3 + (2× 5) ? Simple convention prise au XVIe

siècle (cf. [SER]) où il a fallu passer de la phrase Ajoute 3 au produit de 2 et de 5 au
codage symbolique 3+2×5. Certains langages de programmation comme Scheme
écrivent encore (+ 3 (* 2 5)) avec l’opérateur en tête, sans ambiguïté. Mais en
maths ou en Python, il faudra lever l’ambiguïté pour éviter que 3+ 2× 5 signifie
(3 + 2)× 5. Il faut donc connaître les conventions de priorité des opérateurs.

+ - * / // % **

9782340-111332_Roy_001_352_PAP.indd 459782340-111332_Roy_001_352_PAP.indd 45 19/12/2025 18:4119/12/2025 18:41

30 Chapitre 2. Variables, nombres et fonctions

Les opérations + - ont une même priorité basse : ce sont les moins priori-
taires, elles seront effectuées après les opérations * / // % qui sont de même
priorité plus haute, et sont effectuées d’abord. Entre deux opérateurs de même
priorité, le calcul se fait de gauche à droite.

Dans le doute, mettez certains calculs entre parenthèses. Par exemple, l’ex-
pression E = 3×x+2/y× z s’écrira sans aucune ambiguïté (3×x)+((2/y)× z).
L’ordre des calculs serait donc :

E1 = 3× x puis E2 = 2/y puis E3 = E2 × z puis E = E1 + E3

Enfin, le calcul d’une puissance ab passe par l’opérateur ** . Par exemple 210

s’écrit 2 ** 10 en Python et vaut 1024 (le kilo informatique). L’opérateur **
possède la plus haute priorité des sept opérateurs : les puissances sont calculées
en premier ! Par exemple, 3*2+10*3**2/5-1 se comprendra :

((3 * 2) + ((10 * (3 ** 2)) / 5)) - 1
L’opérateur ** est associatif à droite : a**b**c == a**(b**c).

218 >>> 3 * 2 + 10 * 3 ** 2 / 5 - 1 == ((3 * 2) + ((10 * (3 ** 2)) / 5)) - 1
219 ▶ True

Les opérateurs arithmétiques de comparaison <, <=, >, >= ainsi que == et != ont
une priorité inférieure aux opérateurs de calcul +, *, etc. L’opérateur == ci-dessus
est donc effectué en dernier, après calcul de ses membres gauche et droit.

2.11 Comment construire couples, triplets, etc. ?
Un couple, un triplet ou plus généralement un n-uplet d’expressions se note
comme en mathématiques (α, β), (α, β, γ), etc. On parle en Python d’un tuple.
Le tuple vide se note () mais le tuple à un seul élément α se note (α,) pour ne
pas le confondre avec (α) qui est lu comme α.

Si l’on numérote les composantes d’un tuple à partir de 0, alors l’élément ou
composante numéro k d’un tuple t se note t[k], son accès est immédiat même si k
est grand. Mathématiquement, on peut voir le tuple t de longueur n comme une
suite de variables indexées t0, t1, . . . , tn−1, à ceci près que ces variables n’acceptent
pas d’être ré-affectées.

220 >>> p = (1, 12, 7) # un point de l'espace 3D
221 >>> len(p) # le nombre de composantes
222 ▶ 3
223 >>> p[0] + p[1] + p[2] # 1 + 12 + 7
224 ▶ 20
225 >>> (x, y, z) = p # déstructuration d'un tuple

2.12 Quelle différence entre expression et instruction ? 31

226 >>> x + y + z
227 ▶ 20

En ligne 225, nous utilisons une affectation déstructurante basée sur le fait
que l’on connaît la structure de p : il s’agit d’un tuple de longueur 3. S’il avait
été de longueur 4, cette ligne aurait provoqué une erreur. Cela évite souvent les
notations p[k] plus lourdes. Pour obtenir le nombre d’éléments d’un tuple, on
utilise la fonction len, abréviation de l’anglais length.

228 >>> p[1] = 0 # affectation interdite !
229 TypeError: 'tuple' object does not support item assignment

La dernière ligne montre que les tuples sont des objets non mutables : on
peut ré-affecter la variable p avec p = (3, 4), mais pas individuellement une
composante p[k]. Nous verrons plus loin les listes, analogues aux tuples mais
cette fois mutables. Si la mutabilité n’intervient pas, les tuples sont plus efficaces
que les listes. Mais les tuples à un seul élément comme (12,) sont moins lisibles.

2.12 Quelle différence entre expression et instruction ?

Une expression est une combinaison de valeurs, de variables, d’opérateurs et
d’appels de fonctions. Par exemple :

2*x + sqrt(x - 1) et print(2*x + sqrt(x-1))

sont deux expressions que l’on peut évaluer, à condition bien entendu que les
variables x et sqrt soient définies dans l’espace de noms courant.

230 >>> x = 5 # x est définie
231 >>> from math import sqrt # sqrt est définie
232 >>> 2 * x + sqrt(x - 1) # une expression,
233 ▶ 12.0 # et sa valeur
234 >>> print(2 * x + sqrt(x - 1))
235 12.0 # un effet

L’expression en ligne 232 est soumise à évaluation, produisant comme résultat la
valeur 12.0 qui est automatiquement affichée par la console (valeur précédée ici
d’un ▶). En ligne 234, la même expression est à nouveau évaluée et son résultat
12.0 est passé à la fonction print qui le transforme en texte puis affiche ce texte,
sans retourner de résultat (absence de ▶). Ne confondons pas l’affichage de 12.0
en ligne 235 qui est un effet de print (cf. § 2.19), avec son résultat qui n’existe
pas (on dit plutôt en Python que ce résultat est l’objet vide noté None qui ne
s’affiche pas) ! Pour prouver qu’il ne s’agit pas d’une vue de l’esprit, vite un test.

9782340-111332_Roy_001_352_PAP.indd 469782340-111332_Roy_001_352_PAP.indd 46 19/12/2025 18:4119/12/2025 18:41

30 Chapitre 2. Variables, nombres et fonctions

Les opérations + - ont une même priorité basse : ce sont les moins priori-
taires, elles seront effectuées après les opérations * / // % qui sont de même
priorité plus haute, et sont effectuées d’abord. Entre deux opérateurs de même
priorité, le calcul se fait de gauche à droite.

Dans le doute, mettez certains calculs entre parenthèses. Par exemple, l’ex-
pression E = 3×x+2/y× z s’écrira sans aucune ambiguïté (3×x)+((2/y)× z).
L’ordre des calculs serait donc :

E1 = 3× x puis E2 = 2/y puis E3 = E2 × z puis E = E1 + E3

Enfin, le calcul d’une puissance ab passe par l’opérateur ** . Par exemple 210

s’écrit 2 ** 10 en Python et vaut 1024 (le kilo informatique). L’opérateur **
possède la plus haute priorité des sept opérateurs : les puissances sont calculées
en premier ! Par exemple, 3*2+10*3**2/5-1 se comprendra :

((3 * 2) + ((10 * (3 ** 2)) / 5)) - 1
L’opérateur ** est associatif à droite : a**b**c == a**(b**c).

218 >>> 3 * 2 + 10 * 3 ** 2 / 5 - 1 == ((3 * 2) + ((10 * (3 ** 2)) / 5)) - 1
219 ▶ True

Les opérateurs arithmétiques de comparaison <, <=, >, >= ainsi que == et != ont
une priorité inférieure aux opérateurs de calcul +, *, etc. L’opérateur == ci-dessus
est donc effectué en dernier, après calcul de ses membres gauche et droit.

2.11 Comment construire couples, triplets, etc. ?
Un couple, un triplet ou plus généralement un n-uplet d’expressions se note
comme en mathématiques (α, β), (α, β, γ), etc. On parle en Python d’un tuple.
Le tuple vide se note () mais le tuple à un seul élément α se note (α,) pour ne
pas le confondre avec (α) qui est lu comme α.

Si l’on numérote les composantes d’un tuple à partir de 0, alors l’élément ou
composante numéro k d’un tuple t se note t[k], son accès est immédiat même si k
est grand. Mathématiquement, on peut voir le tuple t de longueur n comme une
suite de variables indexées t0, t1, . . . , tn−1, à ceci près que ces variables n’acceptent
pas d’être ré-affectées.

220 >>> p = (1, 12, 7) # un point de l'espace 3D
221 >>> len(p) # le nombre de composantes
222 ▶ 3
223 >>> p[0] + p[1] + p[2] # 1 + 12 + 7
224 ▶ 20
225 >>> (x, y, z) = p # déstructuration d'un tuple

2.12 Quelle différence entre expression et instruction ? 31

226 >>> x + y + z
227 ▶ 20

En ligne 225, nous utilisons une affectation déstructurante basée sur le fait
que l’on connaît la structure de p : il s’agit d’un tuple de longueur 3. S’il avait
été de longueur 4, cette ligne aurait provoqué une erreur. Cela évite souvent les
notations p[k] plus lourdes. Pour obtenir le nombre d’éléments d’un tuple, on
utilise la fonction len, abréviation de l’anglais length.

228 >>> p[1] = 0 # affectation interdite !
229 TypeError: 'tuple' object does not support item assignment

La dernière ligne montre que les tuples sont des objets non mutables : on
peut ré-affecter la variable p avec p = (3, 4), mais pas individuellement une
composante p[k]. Nous verrons plus loin les listes, analogues aux tuples mais
cette fois mutables. Si la mutabilité n’intervient pas, les tuples sont plus efficaces
que les listes. Mais les tuples à un seul élément comme (12,) sont moins lisibles.

2.12 Quelle différence entre expression et instruction ?

Une expression est une combinaison de valeurs, de variables, d’opérateurs et
d’appels de fonctions. Par exemple :

2*x + sqrt(x - 1) et print(2*x + sqrt(x-1))

sont deux expressions que l’on peut évaluer, à condition bien entendu que les
variables x et sqrt soient définies dans l’espace de noms courant.

230 >>> x = 5 # x est définie
231 >>> from math import sqrt # sqrt est définie
232 >>> 2 * x + sqrt(x - 1) # une expression,
233 ▶ 12.0 # et sa valeur
234 >>> print(2 * x + sqrt(x - 1))
235 12.0 # un effet

L’expression en ligne 232 est soumise à évaluation, produisant comme résultat la
valeur 12.0 qui est automatiquement affichée par la console (valeur précédée ici
d’un ▶). En ligne 234, la même expression est à nouveau évaluée et son résultat
12.0 est passé à la fonction print qui le transforme en texte puis affiche ce texte,
sans retourner de résultat (absence de ▶). Ne confondons pas l’affichage de 12.0
en ligne 235 qui est un effet de print (cf. § 2.19), avec son résultat qui n’existe
pas (on dit plutôt en Python que ce résultat est l’objet vide noté None qui ne
s’affiche pas) ! Pour prouver qu’il ne s’agit pas d’une vue de l’esprit, vite un test.

9782340-111332_Roy_001_352_PAP.indd 479782340-111332_Roy_001_352_PAP.indd 47 19/12/2025 18:4119/12/2025 18:41

32 Chapitre 2. Variables, nombres et fonctions

236 >>> print(2 * x + sqrt(x - 1)) == None # print renvoie None
237 12.0 # l'effet de print
238 ▶ True # et le résultat de ==

Une instruction est une expression en général sans résultat, seul son ef-
fet importe. L’instruction la plus simple est l’instruction vide pass qui ne fait
rien ! Outre print, les plus célèbres sont sans doute l’instruction d’affectation
x = 2 + 3 qui nomme le résultat d’un calcul, et la définition d’une fonction avec

def qui s’étend sur plusieurs lignes (cf. § 2.16). L’existence de la valeur None est
importante, une fonction avec résultat pouvant la renvoyer pour indiquer qu’elle
n’a pas réussi à calculer son résultat.

Une expression est évaluée, une instruction est exécutée.

Un bloc d’instructions est une suite d’instructions disposées à la verticale, cor-
respondant à une même indentation (distance à la marge). La distance à la
marge 5 doit être un multiple de la largeur de la tabulation de votre système (le
plus souvent une tabulation correspond à 4 espaces). Dans un tel bloc, chaque
instruction n’est exécutée que lorsque l’instruction précédente a terminé. Donc
exécution séquentielle (les unes après les autres) de haut en bas !

Lorsque les instructions sont courtes, il est équivalent de les écrire à l’horizon-
tale, séparées par un point-virgule. Mais les programmeurs Python n’apprécient
que très modérément les points-virgules à l’horizontale, ils ont une nette préfé-
rence pour la station verticale ...

x = 1
y = x + 1
z = (x, y)
�

⇐⇒ x = 1 ; y = x + 1 ; z = (x, y)�

Remarques — i) La PEP 8 de Python (Python Enhanced Proposal no 8 : Style
Guide for Python Code) préfère les espaces aux tabulations. Elle a horreur du
mélange entre espaces et tabulations, et des lignes ayant plus de 79 caractères.
ii) Une affectation x = v n’a pas de résultat mais un effet. Néanmoins, il existe
une expression nommée (x := v) réalisant l’affectation mais renvoyant la valeur
de v en bonus. Les parenthèses sont obligatoires dans ce que les anglo-saxons
nomment un walrus (morse marin). Le lecteur avancé appréciera. . . ou pas.

2.13 Les expressions booléennes
Une expression booléenne est une expression Python dont la valeur est True
ou False, par exemple x > 0 . Mais dans un test, Python considérera comme

5. Pour indenter une ligne, n’utilisez jamais d’espaces, uniquement des tabulations !

2.13 Les expressions booléennes 33

fausse toute valeur égale à False, None, le zéro numérique, ou une collection vide
(chaîne, tuple, liste, etc.). Toute valeur non réputée fausse est vraie. Donc 3 n’est
pas un booléen mais sera considéré comme vrai dans un test. Ces conventions
sont critiquables mais pratiques et utilisées, il faut donc vivre avec.

239 >>> if 1789: print('À la Bastille !') # 1789 est « vrai »
240 À la Bastille !

Les opérateurs logiques and, or et not permettent de construire des expressions
booléennes composées comme (x > 0) and (x - y <= 2) . Les parenthèses ne
sont pas strictement obligatoires mais nous conseillons de les mettre pour éviter
les problèmes liés aux priorités de tous ces opérateurs (voir § 2.14).

À partir de deux expressions booléennes α et β, on peut produire d’autres
expressions booléennes composées à l’aide de ces mots-clés and, or et not :

— α and β est la conjonction de α et β. Elle vaut α si α est fausse, et
vaut β sinon.

— α or β est la disjonction de α et β. Elle vaut α si α est vraie, et vaut
β sinon.

— not α est la négation de α. Elle vaut True si α est fausse, et False
sinon.

Ces définitions de and et or sont opérationnelles et non purement logiques. Elles
expriment en langage courant que α and β n’est vraie que si les deux sont vraies,
et que α or β n’est fausse que si les deux sont fausses. Mais elles précisent en
plus que ces opérateurs and et or sont court-circuités et évaluent α avant β. Par
exemple False and β est fausse et True or β est vraie, sans avoir besoin de
calculer β. Il est donc important d’être bien conscient que les opérateurs and et
or ne sont pas commutatifs et ne sont pas des fonctions ! Dans l’exemple
suivant, la division 1/0 devrait provoquer en ligne 243 une erreur à l’exécution.

241 >>> 5 > 1 / 0 # erreur !
242 ZeroDivisionError: division by zero
243 >>> (8 < 2) and (5 > 1 / 0) # erreur ?
244 ▶ False # non : court-circuit !

Remarques — i) La définition précise donnée plus haut de and et or ne dit rien
sur le type du résultat de α and β , qui peut être bool (True ou False) mais
aussi du type de β dans le cas où α est « vraie ». Par exemple 1 and 2 vaut 2.
ii) Idem pour α or β si α est faux.
iii) Dans une opération arithmétique, la valeur True (resp. False) est autorisée
et prise pour 1 (resp. 0). Par exemple True + 2 vaut 3. Nous déconseillons
d’utiliser ces conventions en-dehors de la logique numérique.

9782340-111332_Roy_001_352_PAP.indd 489782340-111332_Roy_001_352_PAP.indd 48 19/12/2025 18:4119/12/2025 18:41

32 Chapitre 2. Variables, nombres et fonctions

236 >>> print(2 * x + sqrt(x - 1)) == None # print renvoie None
237 12.0 # l'effet de print
238 ▶ True # et le résultat de ==

Une instruction est une expression en général sans résultat, seul son ef-
fet importe. L’instruction la plus simple est l’instruction vide pass qui ne fait
rien ! Outre print, les plus célèbres sont sans doute l’instruction d’affectation
x = 2 + 3 qui nomme le résultat d’un calcul, et la définition d’une fonction avec

def qui s’étend sur plusieurs lignes (cf. § 2.16). L’existence de la valeur None est
importante, une fonction avec résultat pouvant la renvoyer pour indiquer qu’elle
n’a pas réussi à calculer son résultat.

Une expression est évaluée, une instruction est exécutée.

Un bloc d’instructions est une suite d’instructions disposées à la verticale, cor-
respondant à une même indentation (distance à la marge). La distance à la
marge 5 doit être un multiple de la largeur de la tabulation de votre système (le
plus souvent une tabulation correspond à 4 espaces). Dans un tel bloc, chaque
instruction n’est exécutée que lorsque l’instruction précédente a terminé. Donc
exécution séquentielle (les unes après les autres) de haut en bas !

Lorsque les instructions sont courtes, il est équivalent de les écrire à l’horizon-
tale, séparées par un point-virgule. Mais les programmeurs Python n’apprécient
que très modérément les points-virgules à l’horizontale, ils ont une nette préfé-
rence pour la station verticale ...

x = 1
y = x + 1
z = (x, y)
�

⇐⇒ x = 1 ; y = x + 1 ; z = (x, y)�

Remarques — i) La PEP 8 de Python (Python Enhanced Proposal no 8 : Style
Guide for Python Code) préfère les espaces aux tabulations. Elle a horreur du
mélange entre espaces et tabulations, et des lignes ayant plus de 79 caractères.
ii) Une affectation x = v n’a pas de résultat mais un effet. Néanmoins, il existe
une expression nommée (x := v) réalisant l’affectation mais renvoyant la valeur
de v en bonus. Les parenthèses sont obligatoires dans ce que les anglo-saxons
nomment un walrus (morse marin). Le lecteur avancé appréciera. . . ou pas.

2.13 Les expressions booléennes
Une expression booléenne est une expression Python dont la valeur est True
ou False, par exemple x > 0 . Mais dans un test, Python considérera comme

5. Pour indenter une ligne, n’utilisez jamais d’espaces, uniquement des tabulations !

2.13 Les expressions booléennes 33

fausse toute valeur égale à False, None, le zéro numérique, ou une collection vide
(chaîne, tuple, liste, etc.). Toute valeur non réputée fausse est vraie. Donc 3 n’est
pas un booléen mais sera considéré comme vrai dans un test. Ces conventions
sont critiquables mais pratiques et utilisées, il faut donc vivre avec.

239 >>> if 1789: print('À la Bastille !') # 1789 est « vrai »
240 À la Bastille !

Les opérateurs logiques and, or et not permettent de construire des expressions
booléennes composées comme (x > 0) and (x - y <= 2) . Les parenthèses ne
sont pas strictement obligatoires mais nous conseillons de les mettre pour éviter
les problèmes liés aux priorités de tous ces opérateurs (voir § 2.14).

À partir de deux expressions booléennes α et β, on peut produire d’autres
expressions booléennes composées à l’aide de ces mots-clés and, or et not :

— α and β est la conjonction de α et β. Elle vaut α si α est fausse, et
vaut β sinon.

— α or β est la disjonction de α et β. Elle vaut α si α est vraie, et vaut
β sinon.

— not α est la négation de α. Elle vaut True si α est fausse, et False
sinon.

Ces définitions de and et or sont opérationnelles et non purement logiques. Elles
expriment en langage courant que α and β n’est vraie que si les deux sont vraies,
et que α or β n’est fausse que si les deux sont fausses. Mais elles précisent en
plus que ces opérateurs and et or sont court-circuités et évaluent α avant β. Par
exemple False and β est fausse et True or β est vraie, sans avoir besoin de
calculer β. Il est donc important d’être bien conscient que les opérateurs and et
or ne sont pas commutatifs et ne sont pas des fonctions ! Dans l’exemple
suivant, la division 1/0 devrait provoquer en ligne 243 une erreur à l’exécution.

241 >>> 5 > 1 / 0 # erreur !
242 ZeroDivisionError: division by zero
243 >>> (8 < 2) and (5 > 1 / 0) # erreur ?
244 ▶ False # non : court-circuit !

Remarques — i) La définition précise donnée plus haut de and et or ne dit rien
sur le type du résultat de α and β , qui peut être bool (True ou False) mais
aussi du type de β dans le cas où α est « vraie ». Par exemple 1 and 2 vaut 2.
ii) Idem pour α or β si α est faux.
iii) Dans une opération arithmétique, la valeur True (resp. False) est autorisée
et prise pour 1 (resp. 0). Par exemple True + 2 vaut 3. Nous déconseillons
d’utiliser ces conventions en-dehors de la logique numérique.

9782340-111332_Roy_001_352_PAP.indd 499782340-111332_Roy_001_352_PAP.indd 49 19/12/2025 18:4119/12/2025 18:41

34 Chapitre 2. Variables, nombres et fonctions

iv) En cas de doute, ou pour rendre vraiment booléenne une expression Python,
il suffit de la passer au constructeur bool (le nom de la classe des booléens) qui
forcera True ou False : bool(3) vaudra True et bool([]) vaudra False.

Il faut savoir que, pour être compatible avec la logique mathématique, l’opérateur
or est distributif par rapport à and.

α or (β and γ) ⇐⇒ (α or β) and (α or γ)
et cette propriété est vraie si l’on inverse les opérateurs :

α and (β or γ) ⇐⇒ (α and β) or (α and γ)

George Boole (1815-1864)

2.14 Les instructions conditionnelles
if x >= 0:

r = math.sqrt(x)
print('r vaut', r)

else:
print('x est négatif !')

L’important mot-clé if permet de prendre une décision suivant l’état des données.
Dans sa forme la plus simple, l’instruction conditionnelle if:...else:...
prend la forme de gauche dans le tableau suivant, pour laquelle, si le <test> vaut
vrai, le bloc indenté <instruction> ... est exécuté. La variante du milieu avec
le mot-clé else situé à l’exacte verticale de if permet d’envisager un autre bloc
d’instructions qui sera exécuté lorsque le <test> produit un résultat faux.

Enfin, s’il y a plus d’une alternative à considérer, le mot elif (contraction de
else if) permet de les envisager de haut en bas avec un else (sinon) optionnel

2.14 Les instructions conditionnelles 35

à la fin. Il s’agit dans les trois cas d’une instruction, donc sans résultat, avec
seulement un effet. Cette instruction if se développe sur plusieurs lignes.

if <test>: if <test>: if <test>:
<instruction> <instruction> <instruction>
...

else: elif <test>:
<instruction> <instruction>
... ...

...
else: # optionnel

<instruction>
...

Remarques — i) Lorsqu’un bloc d’instructions est réduit à une instruction simple
unique, on peut l’écrire immédiatement à côté des ’:’.
ii) La forme if p(x) == True peut se simplifier en if p(x).
iii) La forme if p(x) == False s’écrira if not p(x) (rappel : 0, [] et None
sont « fausses »).

245 In [4]: x = -5 # au toplevel de Spyder
246 In [5]: if x >= 0:
247 ...: r = math.sqrt(x)
248 ...: print('r vaut', r)
249 ...: else:
250 ...: print('x est négatif !') # Maj-Entrée...
251 ...: # ... ou ligne vide
252 x est négatif !

À côté de cette instruction if, il existe une expression if-else dont l’évaluation
produit cette fois un résultat. Sa syntaxe est <expr> if <test> else <expr>
où <test> est une expression booléenne, et les <expr> sont des expressions éva-
luables, avec un else obligatoire. Rappelons que if n’est pas une fonction, mais
un mot-clé (en anglais keyword), à l’instar de lambda, def, and, while, for etc.

253 >>> y = -1 if 2025 < 0 else 1 # y vaut -1 si 2025 < 0, sinon 1
254 >>> y
255 ▶ 1

Résumons les priorités des opérateurs vus jusqu’à présent, de la priorité la
plus forte à la plus basse (cette dernière est effectuée en dernier).

** * / // % + - < <= > >= == != = not and or if-else

priorité haute priorité basse

Photo du musée Powerhouse
de Sydney (source Wikicommons)

9782340-111332_Roy_001_352_PAP.indd 509782340-111332_Roy_001_352_PAP.indd 50 19/12/2025 18:4119/12/2025 18:41

34 Chapitre 2. Variables, nombres et fonctions

iv) En cas de doute, ou pour rendre vraiment booléenne une expression Python,
il suffit de la passer au constructeur bool (le nom de la classe des booléens) qui
forcera True ou False : bool(3) vaudra True et bool([]) vaudra False.

Il faut savoir que, pour être compatible avec la logique mathématique, l’opérateur
or est distributif par rapport à and.

α or (β and γ) ⇐⇒ (α or β) and (α or γ)
et cette propriété est vraie si l’on inverse les opérateurs :

α and (β or γ) ⇐⇒ (α and β) or (α and γ)

George Boole (1815-1864)

2.14 Les instructions conditionnelles
if x >= 0:

r = math.sqrt(x)
print('r vaut', r)

else:
print('x est négatif !')

L’important mot-clé if permet de prendre une décision suivant l’état des données.
Dans sa forme la plus simple, l’instruction conditionnelle if:...else:...
prend la forme de gauche dans le tableau suivant, pour laquelle, si le <test> vaut
vrai, le bloc indenté <instruction> ... est exécuté. La variante du milieu avec
le mot-clé else situé à l’exacte verticale de if permet d’envisager un autre bloc
d’instructions qui sera exécuté lorsque le <test> produit un résultat faux.

Enfin, s’il y a plus d’une alternative à considérer, le mot elif (contraction de
else if) permet de les envisager de haut en bas avec un else (sinon) optionnel

2.14 Les instructions conditionnelles 35

à la fin. Il s’agit dans les trois cas d’une instruction, donc sans résultat, avec
seulement un effet. Cette instruction if se développe sur plusieurs lignes.

if <test>: if <test>: if <test>:
<instruction> <instruction> <instruction>
...

else: elif <test>:
<instruction> <instruction>
... ...

...
else: # optionnel

<instruction>
...

Remarques — i) Lorsqu’un bloc d’instructions est réduit à une instruction simple
unique, on peut l’écrire immédiatement à côté des ’:’.
ii) La forme if p(x) == True peut se simplifier en if p(x).
iii) La forme if p(x) == False s’écrira if not p(x) (rappel : 0, [] et None
sont « fausses »).

245 In [4]: x = -5 # au toplevel de Spyder
246 In [5]: if x >= 0:
247 ...: r = math.sqrt(x)
248 ...: print('r vaut', r)
249 ...: else:
250 ...: print('x est négatif !') # Maj-Entrée...
251 ...: # ... ou ligne vide
252 x est négatif !

À côté de cette instruction if, il existe une expression if-else dont l’évaluation
produit cette fois un résultat. Sa syntaxe est <expr> if <test> else <expr>
où <test> est une expression booléenne, et les <expr> sont des expressions éva-
luables, avec un else obligatoire. Rappelons que if n’est pas une fonction, mais
un mot-clé (en anglais keyword), à l’instar de lambda, def, and, while, for etc.

253 >>> y = -1 if 2025 < 0 else 1 # y vaut -1 si 2025 < 0, sinon 1
254 >>> y
255 ▶ 1

Résumons les priorités des opérateurs vus jusqu’à présent, de la priorité la
plus forte à la plus basse (cette dernière est effectuée en dernier).

** * / // % + - < <= > >= == != = not and or if-else

priorité haute priorité basse

9782340-111332_Roy_001_352_PAP.indd 519782340-111332_Roy_001_352_PAP.indd 51 19/12/2025 18:4119/12/2025 18:41

