Oraux
corrigés et commentés

Concours PC-PC*

Physique

CCINP
Centrale-Supélec
Mines-Ponts F\.m,
X-ESPCI-ENS f;gets
es
1\J

l’ Zakarya Ouzit



Premiére partie

Concours Commun des Instituts

Nationaux Polytechniques






PRESENTATION DES EPREUVES

Passer un oral de physique n’est pas systématique au concours CCINP. En effet, chaque
candidat admissible en filiéere PC est convoqué pour une interrogation orale et une épreuve
de travaux pratiques de physique ou de chimie. Le choix de la matiére pour chaque épreuve

est tiré au sort, de sorte que :

— si le candidat est convoqué pour une interrogation orale de physique, alors il sera

convoqué pour une épreuve de travaux pratiques de chimie;

— si le candidat est convoqué pour une interrogation orale de chimie, alors il sera convo-

qué pour une épreuve de travaux pratiques de physique.

Pour ce qui suit, nous nous plagons dans la situation d’un candidat convoqué pour une

interrogation orale de physique (et donc une épreuve de travaux pratiques de chimie).

L’oral de physique du concours CCINP est une épreuve composée de 30 min de prépara-
tion et 30 min de passage devant un examinateur. Les planches remises au candidat au début
de sa préparation sont composées de deux exercices portant sur deux parties distinctes du

programme de physique de PCSI et de PC :

— un premier probléme, appelé « exercice majeur », composé de plusieurs questions et
assez proche du cours;
— un deuxiéme probléme, appelé « exercice mineur », de type résolution de probléme

et qui s’appuie généralement sur un document (photo, courbe expérimentale...) ou la

démarche est & définir et conduire par le candidat.
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L’interrogation peut aussi, éventuellement, aborder des aspects expérimentaux vus en
travaux pratiques. Le jury recommande d’accorder 20 min & la présentation de l'exercice

majeur et 10 min & celle de ’exercice mineur.

L’interrogation orale est coefficient 9, qu’elle soit une interrogation de physique ou de

chimie, ce qui représente 22,5% des épreuves orales.
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2.1 Mesure de distance focale

Soit £ une lentille convergente de distance focale f’ et M un miroir plan, distants d’une
distance D = 60 cm. On considére par ailleurs un point objet réel A de I'axe optique. Pour
deux positions de ce point, le systéme optique réalise une image confondue avec le point

objet. Ces deux positions sont espacées de 10 cm.
Déterminer la distance focale de la lentille convergente.

On rappelle les relations de conjugaison, respectivement de Descartes et de Newton, pour
une lentille mince de centre optique O, de foyers objet F' et image F' et de distance focale

/' qui donne d’un point objet A une image ponctuelle A’

1 1 1

OA 04 [
FA-TA — 7

Solution

Il convient tout d’abord d’identifier les deux positions du point objet pour lesquelles
son image par le systéme LML lui est confondue. On retrouve tout d’abord la situation

d’autocollimation, c’est-a-dire lorsque I'objet est au foyer objet de la lentille.

~

Pour la deuxiéme, il s’agit d’une situation ou le point objet admet une image réelle
que l'on notera A’ par la lentille £. Alors, par le principe de retour inverse de la lumiére,

A’ en tant qu’objet réel admet une image réelle par £ située en A. Il suffit alors que le

g
:

miroir se trouve au point ot I'image A’ se forme.

L

I ——

A/ 77”’”’}’7?’” j‘/L I— FF — — M
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& Recommandation du jury

« Les constructions géométriques manquent souvent de rigueur et surtout de clarté. »
Il faut donc veiller & soigner ses schémas en optique. Notamment, lorsque des rayons

sont tracés, il ne faut pas les tracer au hasard et justifier les déviations.

Si I’on note d = 10 cm la distance entre les deux positions du point objet A entre les
deux situations évoquées, la premiére position coincidant avec le foyer objet de la lentille,
Alors FA = —d dans la deuxiéme situation. Si I'on applique la relation de conjugaison

de Newton (avec origine aux foyers) a la deuxiéme situation, on en déduit

FA-TA = —»
—d(F'O + OA) = — "
—d(D — f') = f*

avec D la distance entre le miroir et la lentille. Ainsi, la distance focale de la lentille est

la solution du polynéme du second degré
f?4+df —dD=0

de discriminant A = d? + 4dD. Les solutions sont donc de la forme

_ —d+ @1 4dD

f 5

Ainsi, la distance focale est la racine positive du polynome, soit

, V& +4dD —d
f :fZQOcm
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2.2 Mesure interférométrique d’indice optique

Gréce a deux fibres optiques, on améne des rayons lumineux dans deux cuves identiques
remplies d’air de longueur [ = 20 cm. On place alors un trou & la sortie de chaque cuve. On

observe alors des interférences sur un écran placé a une distance D.

Ecran

<;
~

]
—

D

On vide une des cuves pour ensuite la remplir d’'un gaz d’indice no > ng-. On observe
alors un décalage de la figure d’interférence de 70 franges. Calculer no — ng;,- ainsi que la
distance parcourue par la frange centrale.

Données :

— D=1m
— a = 0,5mm

— A=0,6pm

Solution

& Rappel - Trous d’Young

L’expérience des trous d’Young est une expérience d’interférométrie & division du
front d’onde. Deux trous sont placés derriére une source lumineuse, ce qui permet
de « cloner » la source. On obtient alors deux sources secondaire synchrones et co-
hérentes. Cette derniére condition est indispensable pour observer des interférences
lumineuses.

Les trous diffractent la lumiére. On modélise alors les sources secondaires par des
sources d’ondes sphériques (donc quasi-ponctuelles). On peut alors observer des in-
terférences en tout point de I’écran d’observation atteint par des rayons issus des

deux sources.
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On appelle S; et S5 les deux sources secondaires situées respectivement ou trou 1,
en x = §, et au trou 2, en x = —%. On note par ailleurs C; (respectivement Cs) le
point d’entrée de la fibre optique dans la cuve placée devant S; (respectivement Ss) et ng
(respectivement ns) l'indice du gaz dans la cuve placée devant Sy (respectivement devant
S2). On considére un point M de I’écran de coordonnées dans le plan (x,0). La différence

de chemin optique entre les rayons issus de S7 et So qui interférent en M s’écrit

0= (SM)y— (SM),
= ((SC2) + (C252) + (52 M) — ((SC1) + (C151) + (51 M))
On pourrait supposer que (SC7) = (SC3) en considérant que les rayons parcourent la
méme distance dans la fibre, mais cette hypothése n’est pas nécessaire. On pose §y =

(SC3)—(SCh). Ensuite, on peut écrire (C1.51) = nyl et (C2S2) = nol les chemins optiques

des rayons passant dans les cuves. Par ailleurs, on peut écrire

(SlM) = nairSlM

= Nair\/ (3 — 251)2 + (Yar — ys1)

ey = 52+ (0~ (-D))

a 2
T~ 3
= NairD 1+< D )

(z—§)°
~ airD 1 2
" ( T ope

o

en considérant que I’observation de la figure d’interférence se fait suffisamment loin pour
considérer D > x et D > a. Ainsi,

x— 2)2
(SIM) = nair%
De la méme maniére, on montrer que
z+ 4)?
(S2M) = nair%
On en déduit donc
(@+%)°  (@-9)
(SZM) - (SIM) = Nair 2D — Nair 2D




20 CCINP OPTIQUE

(o+3)? - @37

= Nair
2D
= n[m<z+%+z—%>2<;+%—<m—%>>
xra
= nairﬁ

Par conséquent, la différence de chemin optique au point M est de la forme

ra
5 = (50 —+ (7’L2 — nl)l —+ nairﬁ

On obtient une figure d’interférence composée de franges rectilignes. On peut par ailleurs
exprimer l'ordre d’interférences
do l ax

= + (ng — nl)x + nairﬁ

& Rappel - Interfrange

L’interfrange est la plus petite distance séparant deux franges de méme nature consé-
cutives sur une figure d’interférence. Ici, on peut montrer & partir de ’expression de
la différence de chemin optique que l'interfrange s’exprime

. AD

7
a

En particulier, au centre de la figure d’interférence, c’est-a-dire au point O, l'ordre
d’interférences vaut

1) l
p(0) = XO + (n2 — nl)X

Lorsque les deux cuves sont remplies d’air, 'ordre d’interférence vaut alors p,;.(0O) = 570.
Puis, lorsque ’on vide I’'une des cuves, par exemple la cuve 2, on obtient un nouvel ordre

d’interférence s’écrivant 5 l
p?(O) = XO + (’I’Lg - nair)x

Le décalage de la figure d’interférence correspond a la variation de I'ordre d’interférence
en un point donné, par exemple ici au point O. On écrit alors
l ApA

Ap = pZ(O) 7pair(0) = (n2 - naz’r)x < N2 — Ngir = I
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Avec Ap =70, on en déduit

no — Nair = 2,1 x 1074

Pour déterminer la distance parcourue par la frange centrale (i.e. le décalage de la figure
d’interférence sur ’écran), il faut retrouver le point M de I’écran dont la valeur d’ordre
d’interférence aprés avoir remplacé le gaz de la cuve 2 correspond & celle au point O avant

le changement de gaz. On cherche alors x tel que

p2(M) = pair(O)

50 l axr o (50 l
= )\ + (TLQ - nazr)/\ )\D - )\ (nazr nazr))\ + 0
o (ng — na; )i
\D - n2 Nair )
Dl

<z = (Nair — ng)j

On obtient x < 0, ce qui signifie que la figure d’interférence se décale vers le bas. Cela est
cohérent puisque si la cuve 2 est remplie d’un gaz d’indice plus grand que celui de Iair, il
faut que le rayon issu de la cuve 1 parcourt une distance plus grande pour « compenser »

le temps supplémentaire mis par le rayon issu de la cuve 2. On obtient
r=—8cm

Si c’était la cuve 1 qui était vidée puis remplie par le gaz d’indice no, la figure se serait

décalée de la méme distance mais cette fois-ci vers le haut.
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2.3 Interférences entre ondes gravitationnelles

L’interférométre de Michelson ci-dessous est entouré d’air d’indice de réfraction égal a
1. Le dispositif est en configuration « lame d’air ». On note alors : OI; = L. Le miroir

chariotable correspond au miroir M5 et on note e I’épaisseur de la lame d’air.

xr
M
I

T[ {sp+C} M,
AN Bl .,
Source étendué\j l |

F ECI‘&H

1. Quel est l'intérét de I’ensemble {S, + C'}? Quel est le nom de S, et de C'? Retrouver
la différence de marche induite en un point M de ’écran ainsi que l'intensité lumineuse

en ce point. Quelle est la figure observée a ’écran ?

2. On remplace I’ensemble {Source étendue + L.} par un laser et on éclaire le miroir
M5 sous incidence normale. Quelle est la nouvelle différence de marche? Quelle est

I'intensité lumineuse en M ? et en F'?

3. L’interférométre est désormais placé dans un milieu perturbé par des ondes gravita-
tionnelles, ce qui impose une variation de l'indice de réfraction de I'air dépendant des
axes z et y 1 ny =1 — 2:ny = 1+ 2. Que valent alors (OI3) et (OI)?

4. Quelle est la nouvelle différence de marche due seulement & la perturbation du milieu

par les ondes gravitationnelles ? Exprimer I'intensité lumineuse en F'.
5. En déduire la variation relative d’intensité entre la détection des ondes gravitationnelles
et la situation de repos. On effectuera un développement limité.
Données :
— Variation d’indice h =1 x 102!
— Taille d’'un bras L = 3km

— Longueur d’onde du laser A = 1 um
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Solution

& Rappel - Interférométre de Michelson

L’interféromeétre de Michelson est un dispositif permettant d’observer des interfé-
rences lumineuses a division d’amplitude. Une séparatrice sépare un faisceau incident
en deux faisceaux traversant chacun un bras de 'interférometre. Deux configurations

sont possibles :

Configuration « lame d’air » : les deux miroirs sont paralléles mais I'un d’eux
est charrioté de sorte & ce que les rayons, réfléchi et transmis, parcourt des
distances différentes via chaque bras ce qui induit une différence de marche; la

figure d’interférence, localisée a l'infini, est composé d’anneaux concentriques.

— Configuration « coin d’air » : les deux miroirs sont égale distance de la sé-
paratrice mais 'un des miroirs est incliné d’un certain angle par rapport a la
direction de l'autre miroir; la figure d’interférence, localisée au voisinage des

miroirs, est composé de franges rectilignes.

1. L’ensemble {S, + C} est constitué d’une lame séparatrice, S, et d’une compensa-

trice.

— La séparatrice est une lame semi-réfléchissante 50 :50 qui réfléchit la moitié de
I’énergie de 'onde incidente et transmet ’autre moitié. La compensatrice est
une lame transparente, généralement de méme épaisseur que la séparatrice ; elle
permet de compenser la différence de chemin optique induite entre les rayons
transmis et réfléchis par la séparatrice du fait que ’un traverse plusieurs fois
la lame. Ainsi, avec la compensatrice, les deux parties réfléchie et transmise
d’un rayon incident ont parcouru la méme distance dans le verre qui constitue
les lames en sortie de l'interférométre et aucune différence de chemin optique

supplémentaire n’est & prendre en compte.

Pour retrouver la différence de chemin optique induite en un point M de I’écran,
on travaille sur le modéle dit replié de l'interférométre ot 'on prend le symétrique
du bras portant le miroir M, par rapport & 'ensemble {S, + C'}. La source étant
placée dans le plan focal objet de la lentille L, chaque point de la source produit
des rayons qui entrent dans l'interférométre parallélement entre eux. On considére

un de ces rayons et on note ¢ 'angle d’incidence a I’entrée de l'interféromeétre. Ce

rayon se sépare en deux rayons qui interférent alors entre eux.
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M,

M,

On définit alors deux sources secondaires S et Sy desquelles proviendraient chacun
des deux rayons qui interférent, Sy étant le symétrique de S; par rapport au miroir
Ms. Les deux rayons étant paralléles entre eux, ils font partie d’'une méme onde
plane, dans lesquels les surfaces d’onde sont des plans. Ainsi, par le théoréme de
Malus, les points S; et H vibrent en phase. La différence de chemin optique calculée

en un point M de ’écran s’écrit donc

6= (S2M) — (51M)
= (SeH)+ (HM) — (S1 M)
— (SyH)
= NgirS2H
= NgirS1.59 COS 1

= 2Ngir€ COS 1T

Ainsi, par la formule de Fresnel, I'intensité lumineuse au point M s’écrit en fonction

de la différence de phase calculée au point M

I(M) = I]_ + 12 + 2\/ 11[2 COS(AQO)

Iy 1o [1o 1o (M)
=24 2 49 2 eos | 2n 2
9 9 + 5 9 cos< us \



OPTIQUE CCINP 25

47N gir€ CoS 1
=1 (1 + cos (mg\))

Les points qui vibrent en phase sont ceux associés & des rayons correspondant aux

mémes angles d’incidence. Cela donne lieu & une figure d’interférence ayant une

symétrique de révolution autour de ’axe optique de la lentille L. Ce sont donc des

franges circulaires, appelées « anneaux d’égales inclinaisons ».

S Recommandations du jury

« L’origine de la différence de marche dans un montage interférentiel n’est pas tou-
jours bien comprise, que ce soit pour le dispositif des trous d’Young en montage de
Fraunhofer ou pour un interférométre de Michelson ». Ici en particulier, la différence
de marche est donnée par I’épaisseur de la lame d’air qui implique une différence de
parcours entre les rayons réfléechi et transmis par la séparatrice. Il faut veiller aussi
a étre clair sur la localisation des interférences. En 1'occurrence, les franges d’égales

inclinaisons sont localisées a l'infini.

2. En remplagant la source ponctuelle par un laser, on obtient en entrée de 'interfé-
rométre une onde plane dont les rayons sont paralléles & I'axe optique, c’est-a-dire

pour lesquels i = 0. La nouvelle différence de marche s’écrit
0 = 2engir

et I'intensité lumineuse, concentrée en un point, s’écrit

4 .
I=1, <1+cos (”i”“))

3. Dans le milieu perturbé par des ondes gravitationnelles, les chemins optiques
s’écrivent,

h h

(OL) =n, L= 1—5 e et (OL)=n,L= 1_|_§ e

4. La différence de chemin optique est due & la différence de parcours des rayons entre

réflexion et transmission. Ainsi, elle s’exprime en un point M de I’écran par

6(M) = (00)2 — (O0)
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= (0I2) + (120) — (OL) — (I, 0)

= 2(0I3) — 2(0I;) par le principe de retour inverse de la lumiére
=2L(n, —ny)

= 2hL

L’intensité lumineuse en I’ s’écrit donc

1) = (1 (29)
— I, (1 + cos <4W;’L>>

5. On peut réexprimer 'intensité lumineuse en F’ connaissant ’ordre de grandeur du

terme 2L ~ 4 x 107!, on peut approximer l'intensité lumineuse par

. 1 (4whL\?
I(F)~10<1+1 2( X

Ainsi, la variation relative d’intensité s’écrit

AI| |I(F)—2Ip| 1 (4xhL)\?

Iy | Iy 2 A
soit ‘AI =1x10"2

Iy
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3.1 Anneau sur une tige en rotation

On fait tourner une tige autour de 'axe vertical ascendant Oz & la vitesse angulaire
w. La tige est inclinée d’un angle 6y par rapport & ’axe. On place un anneau de masse m
susceptible de se déplacer sans frottement sur la tige. A 1’état initial, anneau est situé a
une distance 7o de l'origine O et part sans vitesse initiale. Deux référentiels sont a considérer

dans cette situation :
un premier référentiel supposé galiléen R,
et le référentiel R’ de la tige qui tourne dans le référentiel R
1. Définir le vecteur de rotation .
2. Faire le bilan des forces subies par ’anneau.

3. Ecrire 'énergie potentielle relative a la force d’inertie d’entrainement, en la prenant

nulle & lorigine.
4. En déduire I'énergie potentielle totale.
5. Déterminer la (les) position(s) d’équilibre et discuter sa (leur) stabilité.

6. Décrire les évolutions possibles de I'anneau en fonction de rg.

Solution

1l s’agit d’un exercice de mécanique du point en référentiel non galiléen. L’énoncé définit
en effet clairement un référentiel galiléen ainsi qu’un référentiel en mouvement de rotation

par rapport a ce référentiel.

B Rappel - Résolution d’un probléme de mécanique du point

1. Définition du systéme étudié
2. Définition du référentiel d’étude

3. Bilan des actions extérieures appliquées au systéme : forces et éventuellement

puissance et/ou moment associés
4. Application d’un des théorémes fondamentaux de la mécanique
— théoréme de la résultante cinétique (deuxiéme loi de Newton)
théoréme de I’énergie cinétique/mécanique
— théoréme du moment cinétique

5. Obtention de I’équation du mouvement
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Bien que I’énoncé ne l'exige généralement pas explicitement, il faut veiller & bien définir

le systéme étudié ainsi que le référentiel d’étude en début de résolution.

On assimile I'anneau & un point matériel noté M de masse m en mouvement dans le

référentiel R’ lié A la tige en rotation par rapport au référentiel galiléen R.

1. Le vecteur rotation est un vecteur dont la norme correspond a la vitesse angulaire
du systéme étudié dirigé et orienté selon le vecteur unitaire lié & ’axe de rotation .

Ici, il peut étre défini par
W =we;

2. Les forces appliquées au systéme sont les suivantes :

Poids ? = m7 = —mgu_z>

— Reéaction du support, purement normale car les frottements solides sont négli-

—
gés Ry
e . — -
Force d’inertie d’entrainement f;, = —mag
— Force d’inertie de Coriolis f;. = —mEZ

avec @, laccélération d’entrainement dont Iexpression se simplifie en définissant H

le projeté orthogonal du point matériel M sur ’axe de rotation Oz
e
ac = —w?HM
et a; laccélération de Coriolis d’expression

ae =2 ANV (M)

A Attention A

= Ne pas oublier les forces d’inertie lors de 1’étude du mouvement d’un systéme
dans un référentiel non galiléen, en particulier la force d’inertie de Coriolis pour

un référentiel en rotation.

3. On peut montrer que la force d’inertie d’entrainement dérive d’une énergie poten-
tielle dans le cas d’un mouvement dans un référentiel en rotation uniforme. En effet,
en se munissant d’un repére cylindrique (u_;, ug, uz), la force d’inertie d’entraine-

ment s’écrit

— —
fie = mw?HM = mw2pzTZ,
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avec p = rsinfy = HM. On peut donc écrire cette force sous la forme

_) %
fie = _grad Ep

— 1,22 _ 1 2.2¢;.?2 — —
avec Ej, = —sw?p” = —swr‘sin“fp et £, =0en r = 0.

. La réaction normale du support et la force d’inertie de Coriolis ne travaillent pas.

—
En effet, Ry est par définition perpendiculaire a la tige, donc a 7/R(M) puisque
le point M glisse sur la tige; c’est également le cas de f;. puisque le résultat du

produit vectoriel & A 7/R(M) et orthogonal a 7/R(M). La seule autre force qui

dérive d’une énergie potentielle est le poids. Son expression est donnée par

Ep pes = mgz = mgr cos bty

On en déduit donc I'expression de 1’énergie potentielle totale du point matériel

1
E,iot(M) = —imw2r2 sin? 6y + mgr cos

. On se retrouve avec une énergie potentielle fonction de la variable . Les positions

d’équilibres sont données par les maxima de la fonction E) 0¢(r). On calcule alors

la dérivée de la fonction

dFE
dp’wt = —mw?rsin® 6y + mg cos 6y
r

et on cherche les valeurs r., annulant cette dérivée :

AEp 1ot

1 =0& fmwQTeq sin” 0y + mgcosty =0
r

Teq

Si 6y = 0, alors il n’existe pas de position d’équilibre. Sinon,

gcos by

Teq = —o—5—
w2 sin? 6,

La stabilité de la position d’équilibre est donnée par le signe de la dérivée seconde

de I'énergie potentielle calculée en r.,.

d%E .
TT’;‘” = —mw?sin? 6y < 0
r

La dérivée seconde étant négative en r.q, cette position est une position d’équilibre

instable. Elle correspond alors & un maximum local d’énergie potentielle.
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6. Une unique position d’équilibre instable a été trouvée. Toute évolution du systéme

tend a 1’éloigner de cette position.

— Si fy = 0, alors I'anneau ne présente pas de position d’équilibre. Dans ce cas-
ci, la tige est verticale et la force d’inertie d’entrainement est nulle. I’anneau

glisse vers le bas sous l'effet du poids, » — 0.

g cos o

— Si 6y # 0, 'anneau présente une unique position d’équilibre 7., = 515 e

Si rg = req, alors 'anneau reste fixe dans le référentiel R'. Si rg < ¢4, alors

l’anneau glisse vers le bas de sorte a ce que r — 0. Si 79 > 74, alors 'anneau

glisse vers le haut et r croit jusqu’a quitter la tige.
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3.2 Tige reliée & un ressort

On considére une tige de masse m, de longueur 2a, de centre de masse G, fixée en O
et d’extrémité A. En A est fixé un ressort de constante de raideur k et de longueur & vide
lo. La tige posséde un moment d’inertie I = ma?2. La tige est en rotation dans le plan 2Oy
sans frottement. On note ? le champ de pesanteur. A I’équilibre, la tige est horizontale et

le ressort sera considéré constamment parallele a I’axe vertical Oy.

/\y LIILIIIIIIIIIIIIII T

L7

\
7
x

0

Rappeler les conditions d’équilibre pour un solide dans un référentiel galiléen.
Faire un bilan des forces s’appliquant sur la tige.

Trouver alors une relation entre la longueur [, du ressort a 1’équilibre et [j.
Exprimer le moment cinétique de la tige.

Déterminer I’équation vérifiée par 1’angle de rotation 6(t).

AN T .

Exprimer la période des petites oscillations T7.

Solution

1l s’agit d’un exercice de mécanique du solide en référentiel galiléen. La mise en équation
se fera via 'application du théoréme du moment cinétique conformément a la facon dont les

questions posées.

On étudie le mouvement de la tige de longueur 2a, de masse m et de centre de masse

G dans le référentiel du laboratoire supposé galiléen.

1. Un solide est & 1’équilibre dans un référentiel donné si et seulement si sont centre
de masse est au repos et qu’il n’est animé d’aucun mouvement de rotation. Cela
impose donc la nullité de la résultante des forces et ainsi que du moment de la

résultante par rapport a n’importe quel point fixe dans le référentiel d’étude.

2. Les actions appliquées au systéme sont les suivantes :



MECANIQUE, POINT/SOLIDE CCINP 33

— Poids ﬁ = m? = —mngy> appliqué au point G
— Force de rappel du ressort ? =k(l - ZO)LTy> appliquée au point A

— Liaison pivot au point O ; dans la cas d’une liaison parfaite, son moment calculé

par rapport a 'axe Oz perpendiculaire au plan de la figure est nul.

Le poids et la force de rappel du ressort sont connues. Cependant, nous avons assez peu
d’information sur la réaction qui maintient la tige au point O si ce n’est que le moment
résultant selon I’axe Oz est nul (liaison pivot parfaite). Nous allons donc utiliser la nullité

du moment de la résultante pour obtenir ’expression de ..

A Attention A

5 Lorsque 'on calcule le moment d’une force qui s’exerce sur un solide, il faut tenir
compte du point d’application de la force! Pour une force ? qui s’exerce sur un
solide en un point A, le moment de la force calculé par rapport & un point fixe

O du référentiel se calcule par la relation

Mo(F)=0AnTF

3. On consideére la tige dans son état d’équilibre, c’est-a-dire a I’horizontale. Calculons
le moment de chacune des actions extérieures s’exercant sur la tige par rapport a

l’axe Oz fixe dans le référentiel :

— poids : Mz(?) = —mga avec a le bras de levier de la force qui a pour effet
de faire tourner le point G dans le sens indirect autour de ’axe Oz, d’olt un
moment négatif

— force de rappel : /\/lz(?) = 2ak(l. — ly) avec 2a le bras de levier de la force
qui a pour effet de faire tourner le point A dans le sens direct autour de I'axe
Oz, d’olt un moment positif

— liaison pivot : M, (liaison) = 0 dans I'hypothése d’une liaison pivot parfaite

La condition d’équilibre de la tige permet d’écrire

M (P) + M.(F) + M. (liaison) = 0

mg

< —mga + 2ak(l. —lg) =0< 1. =1y + o

4. Le moment cinétique de la tige calculé par rapport & son axe de rotation Oz s’écrit
2

en faisant intervenir la vitesse angulaire w = 6 ainsi que le moment d’inertie I = ma
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L,=1w= ma>0

& Rappel - Théoréme du moment cinétique appliqué 4 un solide en rotation

Le moment cinétique d’un solide en rotation autour d’un axe fixe peut s’exprimer
simplement en définissant le moment d’inertie. Si I'on appelle Oz 'axe autour du-
quel le solide est en rotation, on peut définir une grandeur scalaire appelée moment

d’inertie que ’on note généralement J, définit par

J. = [[f p*(n)d*m(ar)

MeVy

avec p(M) la distance entre un point M du solide et ’axe Oz. Cette définition qui est
la plus générale possible pour le moment d’inertie n’est généralement pas exigible.

Pour un ensemble discret de points matériels, cette grandeur se définit par

N
J. = Z mzp?
i=1

Dans ce cas, le moment cinétique scalaire du solide calculé par rapport & I'axe de

rotation se définit & partir du moment d’inertie et de la vitesse angulaire
L,=Jw

Dans cette situation, on veillera donc & exprimer les différents moments (en particulier

les moments de force) sous leurs formes scalaires.

5. On reprend le calcul des moments des actions extérieures calculés par rapport a

I’axe de rotation Oz pour une position quelconque de la tige :
— poids : MZ(?) = —mga cos 6 avec acosf le bras de levier de la force
— force de rappel : MZ(?) = 2acosOk(l—1y) avec 2a cos le bras de levier de la
force et [ la longueur du ressort qui peut s’écrire [ = [, —ya = lo+ 52 —2asin 6,
d’ont MZ(?) = 2acos Ok(5 — 2asinf)
— liaison pivot : M (liaison) = 0 dans I’hypothése d’une liaison pivot parfaite
L’application du théoréme scalaire du moment cinétique au mouvement de la tige

dans le référentiel d’étude galiléen s’écrit, pour des moments calculés par rapport a

I'axe Oz fixe dans le référentiel d’étude,
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dL,

T MZ(B) + MZ(?) + M, (liaison)

& ma®0 = —mga cos 0 + 2a cos Ok (% — 2asin 9)

.4k
< 60+ —cosfsind =0
m
6. Dans I'approximation des petites oscillations autour de la position d’équilibre (tige

horizontale, donc 6., = 0), on considére § < 1rad, ce qui implique au premier ordre

en 0 cosf ~ 1 et sinf = . L’équation du mouvement devient

.4
9:—k9:0
m

On reconnait ’équation différentielle décrivant le comportement d’un oscillateur

harmonique de pulsation propre wo = %. La période associée aux petites oscil-
lations vaut donc
m
Ty =27
0 4k
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3.3 Pierre dans une benne en mouvement

On considére une pierre de masse m se trouvant dans la benne d’un camion. On appelle o
I’angle que forme la benne avec 'horizontale. Le camion accélére constamment, et le vecteur
accélération est @. La réaction de la benne sur la pierre est ﬁ On appelle u le coefficient
de frottement entre la pierre et la benne.

1. Effectuer un bilan des forces dans le référentiel lié & la benne et exprimer les forces

dans la base associée.

2. Exprimer une condition sur g pour que la pierre reste immobile.

3. Exprimer en fonction de « une condition sur a pour que la pierre se mette en mou-

vement.
4. On considére désormais que la pierre est en mouvement. Déterminer les équations

horaires du mouvement de la pierre.
On suppose maintenant que le camion s’arréte et que la benne se met en mouvement de
rotation uniforme autour de 'axe Oz & une vitesse angulaire constante w.

5. Effectuer un bilan des forces dans le référentiel lié & la benne et exprimer les forces

dans la base associée.

Solution

Il s’agit d’un exercice de mécanique du point en référentiel non galiléen en translation

par rapport a un référentiel galiléen.

On étudie le mouvement de la pierre de masse m assimilée & un point matériel M
dans le référentiel de la benne en translation de vecteur accélération @ par rapport
au référentiel terrestre supposé galiléen. On muni le référentiel de la benne d’un repére
cartésien plan d’axes Oz aligné avec le fond de la benne, faisant donc un angle « avec

I’horizontal et Oy orthogonal & Oz et ascendant.

1. Les forces s’appliquant sur la pierre sont les suivantes :

~ Poids P = myg = —mg(sirﬂﬁ —|—_c>os iy
— Reéaction du support ﬁ =Ry + Ry = Rrug + RN@)
H
— force d’inertie d’entrainement f;, = —md = ma(— cos Qi + sin alT;)

2. La pierre reste immobile dans le référentiel de la benne tant que les forces qui

s’appliquent dessus se compensent :

— = =
?-I—RN-FRT-F]C@‘E:O
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Ensuite, par projection selon les axes Ox et Oy, on obtient

Rr =mgsina+ macosa et Ry =mgcosa —masina

& Rappel - Lois de Coulomb du frottement solide

On considére un solide en contact avec une surface exercant. De ce contact résulte
une action subie par le solide nommeée réaction du support séparée en deux compo-
santes, normale & la surface R—N> et tangente a la surface R—>T Les lois de Coulomb
du frottement solide donnent une relation entre ces deux composantes selon I’état de

glissement ou non du solide par rapport au support :

— lorsque le solide glisse sur le support, la réaction tangentielle est de sens op-
posé au vecteur vitesse du solide et de norme proportionnelle & la norme de la
réaction normale

— —
|| = o |2
avec up le coefficient de frottement dynamique;

— tant que le solide est immobile par rapport au support, la réaction tangentielle
est majorée en norme
— —
| ] < s |

avec pg le coefficient de frottement statique.

Les coefficients de frottements ug et pp sont théoriquement différents et dépendent
des matériaux constituant les surfaces en contact et de ’état de surface. Générale-

ment, on considére pugs = up, comme c’est le cas dans le probléme résolu ici.

Par les lois de Coulomb du frottement solide, tant que la pierre est immobile, la

norme de la réaction tangentielle est majorée

Rr < uRy

o> mg sin o + ma cos «
Bz :
mgcos o — masin o

tana +a
que l'on peut réécrire p > gtana+a
g —atano

On peut remarquer qu’en absence d’accélération du référentiel de la benne a = 0, on
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retrouve 'inégalité entre I’angle d’inclinaison de la surface par rapport a ’horizontal et le
coefficient de frottement

W > tana
3. Si le minorant de p est négatif, alors la pierre ne sera jamais immobile. Cela donne
une condition sur ’accélération a du camion

g
~ tana

4. On considére que la pierre est en mouvement dans le référentiel lié a la benne non

galiléen. Le théoréme de la résultante cinétique nous permet d’écrire
e
m@ (M) =P + Ry + Ry + fou

Le mouvement, de la pierre est un mouvement de translation parallélement & la
surface de la benne, donc & I'axe Oz. En projetant selon les axes Ox et Oy, on
obtient

T = Rpr —mgsina — macosa

0= Ry —mgcosa+ masina

On est dans le cas ou la pierre glisse sur la surface de la benne. Par les lois de Cou-
lomb du frottement solide, on a la relation suivante entre les normes des réactions
normale et tangentielle

Rp = uRy

On obtient

T = puRy —mgsina — macosa

Ry = mgcosa —masina

On obtient alors

Z = p(mgcosa — masina) — mgsina — ma cos «

que l'on peut réécrire & = mg(pcos a — sin ) — ma(psin « + cos a)

On obtient ainsi un mouvement rectiligne uniformément accéléré selon ’axe Ozx.
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L’équation horaire du mouvement s’écrit
14 . .
x(t) = xo + §t (mg(pcosa — sina) — ma(psin a + cos a))

5. Dans le cas ou la benne est en rotation uniforme dans le référentiel terrestre, le

bilan des forces est le méme que précédemment & la différence des forces d’inertie :

— force d’inertie d’entrainement ﬂ = w%ﬁ/l avec H le projeté orthogonal du
point matériel M sur 'axe de rotation du référentiel de la benne
force d’inertie de Coriolis f;. = —2mw A W(M) avec W le vecteur rotation
associé au mouvement du référentiel de la benne et 7(M ) le vecteur vitesse

de la pierre dans le référentiel de la benne.
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3.4 Erreur de pilotage d’un satellite

On place en orbite un satellite autour de la Terre de rayon rg & une vitesse vg. Aprés une

erreur de pilotage, la vitesse change et devient vo(1 + ¢) avec € < 1.

Quelle est la nouvelle trajectoire du satellite ?

Solution

Il convient ici d’étudier les propriétés du mouvement du satellite autour de la Terre dans

le référentiel géocentrique. Ce mouvement est un mouvement a champ de force centrale.

& Rappel - Force centrale

On appelle force centrale une force dont la droite d’action passe toujours par un
méme point fixe dans le référentiel d’étude. En coordonnées sphériques centrées au
centre de force, une telle force peut s’exprimer sous la forme ? =F 1TT> Le moment
cinétique calculé par rapport au centre de force d’un point matériel soumis seulement

4 une telle force se conserve. Le mouvement a alors les propriétés suivantes :
— le mouvement est plan;

le vecteur reliant le point matériel au centre de force balaie des aires égales &

intervalles de temps égaux.

On peut également définir la constante des aires C' = 720. Cette quantité est constante

du fait de la conservation du moment cinétique.

On étudie le mouvement du satellite de masse m, assimilé & un point matériel M,
dans le référentiel géocentrique supposé galiléen. Le satellite n’est soumis qu’a I’attraction
gravitationnelle de la Terre d’expression

mMT
F =g w

avec Mr la masse de la Terre et r la distance entre le point M et le centre de la Terre.

Cette force est centrale, le mouvement du satellite est donc plan. On se placera dans la

base polaire (u7,uj).
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& Rappel - Force newtonienne

Une force newtonienne est une force centrale et conservative dont I’expression est de

F-Ep

r2

la forme

en coordonnées polaires. La force est attractive si K < 0, répulsive si K > 0. L’énergie

potentielle dont dérive la force a alors pour expression

K
E, = — + constante
r

la constante étant généralement prise en r — oco. Les forces d’interaction électrosta-
tique et gravitationnelle sont des cas particuliers de forces newtoniennes.

Un systéme soumis uniquement & une force newtonienne est donc conservatif, i.e.
d’énergie mécanique constante. Son énergie mécanique peut s’écrire, en coordonnées
polaires, sous la forme

1
E,, = 5m7*2 + Epesr(r)

avec E, .¢7(r) une fonction de r appelée énergie potentielle effective.

La force d’interaction gravitationnelle étant conservative, elle dérive d’une énergie

potentielle qui peut s’exprimer

mMT
r

E,=-G
» L i I . lai
L’énergie mécanique du satellite peut donc s’écrire, en coordonnées polaires,

mMT

1 )
E,, = im(r2 +720%) - ¢

En introduisant la constante des aires C' = 726, on réécrit

1 5, mC mMr
Em = §m’r‘ + ﬁ — r
On pose alors
mC mMr
Epesr =529

I’énergie potentielle effective. On se rameéne alors & 1’étude d’un mouvement unidimen-

sionnel
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& Rappel - Trajectoire possible en présence d’attraction gravitationnelle

Pour un point matériel soumis & 'attraction gravitationnelle, I’étude du mouvement
se raméne & un mouvement unidimensionnel décrit par la seule coordonnée r des
coordonnées polaires. On utilise alors la fonction énergie potentielle effective d’ex-

pression
mC mMr
Eperr =529

r

L’allure de la fonction est la suivante :

Ep esi(r)

Il y a alors quatre trajectoires possibles :
min

— Trajectoire circulaire si F,, = peff
Trajectoire elliptique si 0 > E,, > ;"é?f
— Trajectoire parabolique si F,,, =0

— Trajectoire hyperbolique si F,, > 0

Le satellite est initialement en orbite circulaire. Son énergie mécanique a pour expres-

sion . M
mmip

B, = —mui —

m = 5mvy —§ .

Suite & l'erreur de pilotage, la vitesse devient vo(1 +€) et 1’énergie mécanique devient

1 M
E;n:—mvg(l—i—e)Q—(]m r
2 To

L’énergie mécanique est donc légérement supérieure au minimum d’énergie poten-

tielle : on reste dans le cas d’un état lié mais la trajectoire devient elliptique.

On peut estimer le demi-grand axe de 'ellipse & 'aide de ’énergie mécanique. Par la

premiére loi de Kepler, la Terre est & I'un des foyers de la trajectoire. On considére les



MECANIQUE, POINT/SOLIDE CCINP 43

deux points de ’ellipse par lesquels le satellite passe lorsqu’il est le plus éloigné, appelé
apogeée et noté A, et le plus proche de la Terre, appelé périgée et noté P. En ces points,
7 = 0 car on passe respectivement par un maximum et un minimum de la distance Terre-
satellite. La vitesse est donc orthoradiale en ces points. Le moment cinétique du satellite

calculé par rapport au centre de la Terre s’écrit donc

— —
Lr(A)=mTAA VA = mratn A VAUG = MrAvAUL

H
et de méme Lp(P)= mrpvpi,

Ainsi, par conservation du moment cinétique, r 4v4 = rpvp. Enfin, par conservation de
I’énergie mécanique,
E,, =E,(A) =E,(P)
1 2 TTLMT 1 2 mMT

Em: §mFUA*g A et Emzimvpfg "

On peut alors obtenir une expression de 1’énergie mécanique en calculant

1 1
14 Ep(A) — TgEm(P) = gmrivi — GramMyp — §m7’1231)123 — GrpmMr

rA—T mM-
On en déduit FE,, = —gmMT% = — r
Y — TP 2a

avec a = % le demi-grand axe de l'ellipse.

En utilisant les deux expressions de 1’énergie mécanique, sachant que I’énergie méca-

nique est conservée au cours du mouvement, on obtient

1 9 2 mMT mMT
- 1 — - _
ZmUO( +e)y -6 o g 2a
Cg04e?, 21
GMr )
GMrry

= a

= 2

QQMT — 7'0’00(1 + 6)2

On peut simplifier cette expression en réexprimant la vitesse vy dans le cas du mou-
vement circulaire. En exprimant l'accélération dans le repére de Frenet, on obtient dans

le référentiel géocentrique

d 2 M
m—v?—i—mv—ﬁ = gm 2T
dt 70 5
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ce qui donne % = 0 soit un mouvement uniforme. La vitesse s’exprime donc par
GMr
Vo =
To

On en déduit 'expression du demi-grand axe

B GMrro
o QQMT — QMT(l + 5)2

a

__ T
2—(1+¢)?

Sachant que € < 1, on peut simplifier cette expression

= a=

1 1

~ ~1+2
(1t S2—(142e o117

Ainsi  a =~ ro(1 + 2¢)
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4.1 Expérience de Millikan

Dans l'expérience historique de Millikan, des gouttelettes d’huile de rayon r de masse
volumique 7 préalablement chargée ¢ chutent dans une enceinte pleine d’air de masse volu-
mique r,, de viscosité dynamique 7, ot régnent le champ de pesanteur et un champ électrique
vertical uniforme et constant. On se propose de déterminer la charge ¢ (a priori un multiple
de e) par la mesure de la vitesse limite atteinte par une gouttelette aprés avoir précisé la

forme de la force de trainée subie par la gouttelette

? = f%Ctpm"Qvﬁ

oil U est la vitesse de la gouttelette.
On donne la courbe expérimentale (en échelle log-log) du coefficient de trainée C; en

fonction du nombre de Reynolds R..

104 S 1B e 10 B 3 B B s 1 31 e B 1 s B e ) B B 1 e o B L e
©)
&g 107 1
=
<
<
—
)
<5} 0 o
< 10
=)
=
2
O —2 | |
1
E 0
Q
o
O
10_4 T T T T T T A A T A e I A MU A

1072 107* 10° 10t 10® 10® 10* 10° 10° 107
Nombre de Reynolds, Re

1. Exprimer le nombre de Reynolds de la gouttelette en fonction de son rayon, de sa
vitesse et d’autres constantes. Que peut-on en déduire selon sa valeur ?

2. Rappeler 'unité de 7.

3. On modélise la courbe par une fonction affine pour R, < 1:log(C;) = a -log (R.) +
log(b). A I'aide du graphe, déterminer a et b.

4. En déduire ’expression de ? en fonction de 7, r, et v.

5. Déterminer I'expression de la vitesse limite vy, de la gouttelette. En déduire la valeur

numérique ¢ sachant qu’on mesure v}, = 0,10mms™'.
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Données :
— r=1,0pm
— pa=13kgm™3
— pn =886kgm~3
— E=100kVm™!
— ¢g=9,81ms2
n=1,0 x 1075 USI

Solution

1. Le nombre de Reynolds est un nombre sans dimension qui s’exprime en fonction
des ordres de grandeur des caractéristiques de ’écoulement d’un fluide autour d’un
obstacle : la vitesse d’écoulement v, la taille de 'obstacle correspondant ici au
diamétre 2r de la sphére en ordre de grandeur, de la masse volumique du fluide p

et de sa viscosité dynamique 7

_ 2prv
Ui

On peut estimer le type d’écoulement en fonction de sa valeur. Typiquement,

Re

un écoulement & petit nombre de Reynolds pourra étre considéré comme la-
minaire ;
— un écoulement & grand nombre de Reynolds pourra étre considéré comme

turbulent.

& Rappel - Nombre de Reynolds

Le nombre de Reynolds peut se définir & partir de la viscosité dynamique 7 ou de la

viscosité cinématique v

_pLV LV
==

Il est défini & la base comme le rapport de ’accélération convective par le terme de

Re

diffusion visqueuse qui apparaissent dans I’équation de Navier-Stokes

(7 &d) 7
%]

Re = H
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2. L’unité de la viscosité dynamique est le poiseuille, noté Pl, qui correspond a des
Pas.
3. On utilise les coordonnées des points A et B de la droite modélisant I’évolution de

C} a bas nombre de Reynolds. La pente s’écrit

0 logCip —logCiy  log0,024 —log24
~ logRep —logRey  log103 —logl

Ensuite, on retrouve ’ordonnée & ’origine en écrivant que
logh =1logCy 4 — alogRes = log 24

Ainsi, pour Re < 1,

24
logCy = —logRe +log24 < Cy = Re
e

4. On en déduit donc que, dans cette gamme de nombre de Reynolds,

1 124 124
F= —ZCprr?v Y = — = —prrPu = —= 1 prr2o
2 2Re

On obtient ? = —6777]7“7

On retrouve ’expression de la force de trainée de Stokes appliquée typiquement dans les

cas d’écoulements laminaires.

5. On étudie le mouvement d’une goutte d’huile assimilée & un point matériel de masse
m et de charge ¢ dans le référentiel du laboratoire supposé galiléen. Le systéme est
soumis aux forces suivantes :

— poids = myq = inrdpn g
— force de trainée ? = —6mrv
poussée d’Archim_e‘;de ﬁ = —mfluide? = —%777“3[),17
— force électrique F,; = qﬁ
Le théoréme de la résultante cinétique appliqué au mouvement d’une goutte d’huile

en mouvement dans le référentiel du laboratoire galiléen permet d’écrire

a7 4
me = gﬂrs(ph —pa) g — 6mr v + qﬁ
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On suppose la vitesse limite atteinte, soit % = 0. On en déduit

4 —
57”"3(% — pa) G — 6mNrig, + qﬁ =0

Par projection sur ’axe vertical ascendant, on en déduit

4
377" (Pa = pn)g + 6707 VL + ¢F = 0
373 (pn — pa)g — qF

6mnr

< Ulim =
On en déduit également ’expression de la charge d’une goutte

§7T7"3(ph — Pe)g — 6TV,
E

AN. ¢=18x10""Y"C=~e

q:
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4.2 Tourbillon océanique

On étudie le mouvement de masses d’air dans l'atmosphére & proximité du pole Nord.
On se repérera a l'aide de 'axe Oz vertical ascendant, 'altitude z = 0 correspondant &
I'interface océan-atmospheére ou régne la pression Py. On notera p la masse volumique de

lair et ¥ le champ des vitesses.

1. On rappelle I’équation de Navier-Stokes

p(f+(7~gr7&)7> — grad P+ pq +nAT + X

Donner la signification des différents termes.

2. On note 27 = QT’LT; le vecteur rotation de la terre. Donner ’expression et la signifi-
cation de X}

3. On considére un champ de vitesse stationnaire de la forme o' (M) = v, (2)ug +v,(2)iy.-

On admettra par ailleurs que le champ de pression ne dépend que de z. Simplifier

I’équation de Navier-Stokes. Déterminer le champ de pression.
4. Déterminer le systéme différentiel liant v, (2) et v, ().

5. On définit la grandeur complexe V. = v, + jv, avec j2 = —1. De quelle équation
différentielle est solution V 7 En déduire I'expression de v,, et v, et justifier 'appellation

« spirale d’Ekman ».

Solution

1. Voici la signification des termes apparaissant dans ’équation de Navier-Stokes :

—
% + (7 . grad) o correspond au champ eulérien d’accélération, avec %—?

I’accélération locale et (7 . gr?i) ¥ Daccélération convective ;

— p7 représente la force volumique de pesanteur;

— fgﬂi P I’équivalent volumique des forces de pression qui s’appliquent au sein
du fluide;

— nA? correspond & I’équivalent volumique des forces de viscosité qui s’ap-

pliquent au sein du fluide;

7 correspondent & d’autres densités volumiques de force.
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2. L’étude se fait dans le référentiel terrestre non galiléen en rotation uniforme dans
le référentiel géocentrique galiléen. Ici, la densité volumique de force supplémen-
taire Xk correspond aux force d’inertie dues au caractére non galiléen du référentiel
d’étude. Considérons une particule de fluide de masse d3m centrée en un point M

du référentiel. On doit se retrouve donc avec deux composantes :
— force d’inertie d’entrainement d3ﬁ = d3m02m avec H le projeté orthogo-
nal du point M sur I'axe de rotation
— force d’inertie de Coriolis dSE — _dPmx 20 A 7(M)
Comme on se situe proche du pole Nord de sorte & ce que 'on puisse considérer

HM = 0. Ainsi, on n’aura que la composante d’inertie de Coriolis dans la densité

volumique de force. On peut finalement écrire
_>
o= XPV = —-Pmx 20 AT

soit X} = —2p6 AT

ki est donc nulle. En consi-

3. On se place en régime staionnaire. I’accélération locale
dérant un champ de vitesse de la forme o (M) = v,(2)uz + v, (2)iy, Uaccélération

convective se réécrit

(7 arad ) 7 = (vwai + vyéfy) (0o ()T + vy (2)T) = O

L’équation de Navier-Stokes se simplifie donc en

— —
0 =—grad P+ pg +17A7 + ?
L’équivalent volumique des forces de pression s’écrit

— dP
grad P = —u
dz

—
La force volumique de Coriolis est orthogonale & (27, donc a u.. 11 en est de méme
pour I’équivalent volumique des forces de viscosité dont la direction est la méme
que celle du champ des vitesses . La projection I’équation de Navier-Stokes selon

I’axe Oz permet donc d’obtenir I’équation suivante

0=
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On en déduit le champ de pression par intégration de cette équation, avec P la
pression en z =0

P(z) =Py — pgz

On retrouve ’expression du champ de pression dans un fluide homogéne en équilibre
hydrostatique dans le champ de pesanteur.

6. La force volumique d’inertie de Coriolis se réécrit

X = 20 AT = 2p(00T) A (0ol + 0,T) = —2pQ7(0aT, — vy T3

L’équivalent volumique des forces de viscosité s’écrit également

Par projection de I’équation de Navier-Stokes selon les axes Ox et Oy, on obtient
le systéme suivant

2
0= ndd;’; + 2p027v,
0= — 20070,

7. On pose V. = v, + juy. Si l'on calcule la dérivée seconde de cette grandeur, on
obtient

d?v _ d?v, d? Uy

pLr pLr pL2r
22 T a2 a2 =2 7 Uy+2‘77v =2

0
(s + juy) = 2/ =Ty
n
d2V pQT
= 9Ty
< dz2 J

On obtient une équation différentielle linéaire du second ordre & coefficients
constants. L’équation caractéristique associé s’écrit r2 — 2JPTT = 0. Les racines
de cette équation sont de la forme

1+ L
r::t+] psoT

V2 7
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On pose h = , /p?’} . On en déduit que V est de la forme
T

z

V(z) = Aexp ((1+))7

) + Bexp (—(1 +j)%)

avec A et B deux constantes complexes. L’axe Oz est vertical ascendant, on travaille

donc avec z > 0. La fonction ne pouvant diverger en z — +00 , on en déduit

V(z) = Bexp (~(1+7); )

Comme v, = Re(V) et v, = Im(V/), on peut en déduire que le champ de vitesse ¥’

et de la forme

v = <A1 coS <%) Uy + Az sin (%) u_>y) xp (_%)

avec A1 et Ay deux constantes réelles. Ainsi, le vecteur vitesse décrit une spirale

convergeant vers l’axe & mesure que ’on gagne ou perde de I'altitude. I’écoulement

est donc décrit par des lignes de courant en spirale de rayon décroissant avec z.



