


CHAPITRE 1

ÉTUDE DE FONCTIONS

1.1 Exercices avec préparation

Soit n ∈ N∗. Pour tout x ∈ R, on pose : Pn(x) =

2n∑
k=0

xk.

1. Cours : Énoncer le théorème de comparaison pour les séries.

2. Écrire un script Python pour représenter P100 sur [−1, 1].

3. Pour x ∈ R\ {1}, montrer que P′
n(x) =

Qn(x)

(x− 1)2
avec Qn à déterminer.

4. Déterminer les variations de Pn. Montrer que Pn admet un minimum en
un unique point un et que −1 < un < 0.

5. Compléter ce code pour que le script u(n) donne une approximation
de un à 10−3 près :

def Q(n,x):
return ...

def u(n):
a, b = ..., ...
while b-a > ...:

c = (a+b)/2
...

6. Déterminer un équivalent simple de (ln (2n+ 1− 2nun))n∈N∗ .

7. En déduire la limite de (un)n∈N∗ .

8. Déterminer un équivalent de (un + 1)n∈N∗ .

Exercice 1 (Oral HEC 2023)
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4 Oraux corrigés et commentés ECG Mathématiques appliquées

Pour la question 3, reconnaître une somme géométrique. Étudier le signe
de Qn afin d’avoir les variations de Pn. Pour prouver −1 < un < 0, calculer
Qn(−1). Pour obtenir l’équivalent de la question 6, partez de −1 < un < 0 afin
d’obtenir des bonnes inégalités pour appliquer le théorème des gendarmes

et prouver que lim
n→+∞

(
ln (2n+ 1− 2nun)

ln(n)

)
= 1.

Indication

Solution 1

1. Soient


un et


vn deux séries à termes positifs telles que : ∀n ∈ N, un ⩽ vn. Le

théorème de comparaison affirme que si


vn est convergente alors


un l’est

aussi et
+∞
n=0

un ⩽
+∞
n=0

vn. Il affirme aussi que si


un est divergente alors


vn l’est

aussi et
+∞
n=0

vn = +∞.

2. Voici un script Python permettant de représenter la fonction P100 sur [−1, 1] :
import matplotlib.pyplot as plt
import numpy as np
def P(n,x):

s = 0
puissancex = 1
for k in range (0,2*n+1):

s += puissancex
puissancex *= x

return s
abs = np.linspace (-1,1,100)
ord = [P(100,x) for x in abs]
plt.plot(abs ,ord)
plt.show()

On a obtenu :
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Chapitre 1. Étude de fonctions 5

3. Soit x ∈ R\ {1}, on a en reconnaissant une somme géométrique :

Pn(x) =
x2n+1 − 1

x− 1
.

On en déduit que :

P′
n(x) =

(2n+ 1)x2n(x− 1) −
(
x2n+1 − 1

)
(x− 1)2

=
Qn(x)

(x− 1)2
avec : Qn : x → 2nx2n+1 − (2n+ 1)x2n + 1.

4. Pn comme Qn sont de classe C∞ par somme. Pour tout réel x, on a :

Q′
n(x) = 2n(2n+ 1)x2n − 2n(2n+ 1)x2n−1

= 2n(2n+ 1)x2n−1(x− 1).

On obtient donc les variations de Qn puis son signe :

x

Variations
de Qn(x)

Signe de
Qn(x)

−∞ 0 1 +∞

−∞−∞

11

00

+∞+∞

un

0

− + + + +

Qn est continue et strictement croissante sur ]−∞, 0], elle réalise donc une bijection

de ]−∞, 0] sur
]

lim
x→−∞ (Qn(x)) , Qn(0)

]
, soit ]−∞, 1]. Comme 0 ∈]−∞, 1], le théorème

de la bijection continue assure que Qn s’annule en un unique point un ∈ ]−∞, 0].
Avec la connaissance du signe de Qn, on a celui de P ′

n sur R\ {1} et les variations
globales de Pn puisque Pn est continue. On en déduit que Pn est décroissante sur
] −∞, un] et croissante sur [un,+∞ [ . La fonction Pn atteint donc un minimum en
un unique point un ∈ R. On résume toutes ces informations dans ce tableau :

x

Variations
de Pn(x)

−∞ un +∞

+∞+∞

Pn(un)Pn(un)

+∞+∞

Chapitre 1. Étude de fonctions
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6 Oraux corrigés et commentés ECG Mathématiques appliquées

On justifie les limites en ±∞ grâce à cet équivalent : Pn(x) ∼
±∞ x2n. Remarquons que

Qn(−1) = −4n. On en déduit que Qn(−1) < 0 < 1 et donc Qn(−1) < Qn(un) < Qn(0)
ce qui entraîne par stricte croissance de Qn sur ] −∞, 0] les inégalités suivantes :

−1 < un < 0.

5. un est l’unique racine de Qn sur ]−∞, 0]. En appliquant l’algorithme de dichotomie,
on obtient une approximation de un à 10−3 près. L’instruction u(n) renverra donc
une approximation de un à 10−3 près si on utilise ce programme :

def Q(n, x):
return 2 * n *x * *(2 *n+1) -(2 *n+1) * x * *(2 * n)+1$

def u(n):
a, b = -1,0
while b-a > 2 * 10 * *( -3):

c = (a+b)/2
if Q(n,a)*Q(n,c) < 0:

b=c
else:

a=c
return c

6. On a vu en question 4 que : −1 < un < 0, on en déduit que 2n+ 1 < 2n+ 1− 2nun <
4n+1 puis, par croissance de ln (en signalant que ces trois nombres sont strictement
positifs) et comme ln(n) > 0, on obtient :

ln(2n+ 1)

ln(n)
<

ln (2n+ 1− 2nun)

ln(n)
<

ln(4n+ 1)

ln(n)
.

Comme ln(2n + 1) = ln(n) + ln

2+

1

n


et ln(4n + 1) = ln(n) + ln


4+

1

n


, on en

déduit :

1+

ln

2+

1

n



ln(n)
<

ln (2n+ 1− 2nun)

ln(n)
< 1+


4+

1

n



ln(n)
.

Par quotient puis somme, on peut affirmer que :

lim
n→+∞


1+

ln

2+

1

n



ln(n)


 = 1 et lim

n→+∞


1+

ln

4+

1

n



ln(n)


 = 1.

Le théorème des gendarmes entraîne alors que :

lim
n→+∞


ln (2n+ 1− 2nun)

ln(n)


= 1

ce qui signifie que : ln (2n+ 1− 2nun) ∼
+∞ ln(n).

Chapitre 1. Étude de fonctions
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Chapitre 1. Étude de fonctions 7

Petit rappel pour prouver que un ∼
+∞ vn, on utilise les opérations pos-

sibles (produit, quotient, puissance) en partant de :
• Un polynôme est équivalent en l’infini à son monôme de plus

haut degré. Un polynôme équivaut en 0 à son terme de plus
bas degré.

• Si α est un réel non nul, si lim
n→+∞ (un) = 0 alors on sait que :

1 − cos (un) ∼
+∞

(un)
2

2
, exp(un) − 1 ∼

+∞ un , ln(1 + un) ∼
+∞ un,

sin (un) ∼
+∞ un, tan (un) ∼

+∞ un et enfin (1+ un)
α − 1 ∼

+∞ αun.

On peut aussi tenter de prouver que lim
n→+∞

(
un

vn

)
= 1 ce qui signifie

que un ∼
+∞ vn. C’est le cas en particulier si (un)n∈N et (vn)n∈N tendent

vers une même limite non nulle et non infinie.

Commentaires

7. Puisque Qn (un) = 0, on trouve que 2nu2n+1
n −(2n+1)u2n

n +1 = 0 soit, comme un ̸= 0
car Qn(0) ̸= 0, l’égalité suivante :

2nu1
n − (2n+ 1)u0

n = −
1

(un)2n

ce qui donne ln (2n+ 1− 2nun) = −2n ln (−un) (on signale de nouveau que les
quantités intervenant dans ln sont strictement positives). La question précédente
nous permet alors d’affirmer que :

ln (−un) ∼ −
ln(n)
2n

.

Il vient alors, grâce aux croissances comparées, que lim
n→+∞ (ln (−un)) = 0 et donc,

par composition, lim
n→+∞(un) = −1.

8. Posons hn = un + 1. Remarquons que −un = 1 − hn. Ainsi, d’après la question
précédente, on en déduit :

ln (1− hn) ∼ −
ln(n)
2n

.

Or lim
n→+∞(hn) = 0, donc hn ∼

+∞ − ln (1− hn). Finalement, il reste donc :

hn ∼
+∞

ln(n)
2n

.
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8 Oraux corrigés et commentés ECG Mathématiques appliquées

Soit t un réel positif ou nul fixé. Pour tout réel x, on pose :

Pt(x) = x3 + tx− 1.

1. Cours : Qu’appelle-t-on racine d’un polynôme ? Qu’appelle-t-on ordre
de multiplicité d’une racine d’un polynôme?

2. Montrer que le polynôme Pt admet une unique racine réelle u(t).

3. On note u :


R+ → R
t → u(t)

.

(a) Montrer que u (R+) ⊂]0; 1].
(b) Démontrer que la fonction u est strictement décroissante sur R+.
(c) Calculer lim

t→+∞(u(t)) (Indication : utiliser l’expression de Pt(u(t)).)

(d) Montrer que l’application u est bijective de R+ vers ]0; 1], de réci-
proque :

v :



]0; 1] � R+

y � 1− y3

y

(e) Représenter graphiquement grâce au langage Python la fonction
v sur ]0; 1]. En déduire le tracé de représentation graphique de la
fonction u.

(f) Justifier que la fonction u est continue sur R+.
(g) Démontrer que la fonction u est dérivable sur R+ puis déterminer,

pour tout réel positif t, une expression de u ′(t) en fonction de t et
u(t).

Exercice 2

On joue sur les fonctions réciproques dans cet exercice. Il faut jongler entre
le monde des abscisses et celui des images. Pour comparer u(t) et u(s) par
exemple, on va comparer Pt(u(t)) et Pt(u(s)). Pour démontrer des qualités sur
u, on va évoquer celle de v.

Indication

Solution 2

1. • Soient P ∈ R[x] un polynôme et a ∈ R ; on dit que a est racine de P si et seulement
si P(a) = 0.

• On dit que a est racine d’ordre k de P (k ∈ N∗) si et seulement si x → (x−a)k divise
P mais x → (x − a)k+1 ne divise pas P (ce qui signifie qu’il existe un polynôme Q
tel que P(x) = (x− a)kQ(x) pour tout réel x avec Q(a) ̸= 0).

2. Pt est de classe C∞ sur R (c’est un polynôme) et on a :

∀x ∈ R, P ′
t(x) = 3x2 + t

Chapitre 1. Étude de fonctions
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Chapitre 1. Étude de fonctions 9

et, comme t ⩾ 0, pour tout réel non nul x, on a :

P ′
t(x) ⩾ 3x2

> 0.

Comme de plus Pt est continue, on en déduit que Pt est strictement croissante sur
R. Rappelons que Pt est continue, on peut alors affirmer, par le théorème de la bi-

jection continue, que Pt réalise une bijection de R sur
]

lim
x→−∞ (Pt(x)) , lim

x→+∞ (Pt(x))

[
,

soit R car, comme Pt(x) ∼∞ x3, on peut affirmer que :

lim
x→+∞ (Pt(x)) = +∞ et lim

x→−∞ (Pt(x)) = −∞.

Le polynôme Pt admet bien une unique racine réelle u(t).

On cherchait ici à prouver qu’une équation a des solutions. Voici trois
idées pour réaliser cette tâche :

• On la résout : C’est la base et à essayer avant la suite. C’est
jouable a priori si c’est une équation du second degré ou une
équation faisant intervenir une fonction qu’on peut détruire
grâce à des réciproques (ln et exp,

√
· et x → x2...)

• Théorème des valeurs intermédiaires : On réécrit notre équa-
tion sous la forme f(x) = 0, on prouve la continuité de f, on
cherche deux réels a et b tels que f(a) et f(b) soient de signes
opposés. On pourra alors conclure que notre équation a au
moins une solution (mais on ne sait pas le nombre de solutions).

• Théorème de la bijection continue : On écrit notre équation
sous la forme f(x) = 0 , prouve la continuité et la stricte mo-
notonie de f, explicite l’image de f et on note si 0 appartient
(une et une seule solution) ou non (aucune solution) à l’image
de f.

Commentaires

3.(a) On a Pt(0) = −1, Pt(u(t)) = 0 et Pt(1) = t donc :

Pt(0) < Pt(u(t)) ⩽ Pt(1)

On en déduit, par stricte croissance de Pt, que 0 < u(t) ⩽ 1 ce qui est le résultat
qu’on souhaitait établir.

(b) Soient t et s deux réels strictement positifs tels que t < s. On a :

Pt(u(s)) = (u(s))3 + tu(s) − 1

= (t− s)u(s) car (u(s))3 + su(s) − 1 = 0 car Ps(u(s)) = 0

Or u(s) > 0 (d’après la question précédente), donc Pt(u(s)) < 0. Or Pt(u(t)) = 0,
on a donc :

Pt(u(s)) < Pt(u(t)).

Par stricte croissance de Pt, on en déduit que u(s) < u(t). La fonction u est donc
strictement décroissante.

Chapitre 1. Étude de fonctions
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10 Oraux corrigés et commentés ECG Mathématiques appliquées

(c) La fonction u est décroissante (d’après la question précédente) sur R+, elle est
minorée (par 0 par exemple puisque u (R+) ⊂]0; 1]), elle admet donc une limite
ℓ en +∞ d’après le théorème de la limite monotone et on peut affirmer que ℓ
appartient à [0, 1]. On a :

∀t ∈ R+, (u(t))
3 − 1 = −t× u(t).

Si ℓ ̸= 0, alors lim
t→+∞(−t × u(t)) = −∞, donc lim

t→+∞
(
(u(t))3 − 1

)
= −∞. Or, par

somme, lim
t→+∞

(
(u(t))3 − 1

)
est ℓ3−1, c’est donc (par unicité de la limite) absurde,

cela prouve donc que ℓ = 0.
(d) Soit y un élément de ]0, 1]. Posons t = v(y), on a :

Pv(y)(y) = y3 + v(y)× y− 1

= y3 +
1− y3

y
× y− 1

= 0.

Or Pv(y) a un unique zéro, c’est u(v(y)). On en déduit que u(v(y)) = y. Tout y

de ]0, 1] admet donc v(y) pour antécédent par u, u est donc surjective. Étant
injective (car strictement décroissante) et surjective, u est bijective de R+ vers
]0, 1]. De u(v(y)) = y vérifiée pour tout y de ]0, 1], on peut alors déduire que u est
bijective de R+ vers ]0; 1] et v est sa réciproque.

(e) Comme v est l’application



]0; 1] � R+

y � 1− y3

y

, il est aisé de la représenter gra-

phiquement. Pour représenter u, qui est la réciproque de v, on peut faire la sy-
métrie par rapport à la première bissectrice. On peut aussi le faire en Python
en passant de plot(t,y) dans le programme à plot(y,t). On propose donc le
programme suivant :

import numpy as np
import matplotlib.pyplot as plt

def v(y):
return 1/y-y**2

y=np.linspace (0.01 ,1 ,100)
t=v(y)
plt.subplots ()
plt.xlabel(’$y$’);plt.ylabel(’$t$’)
plt.plot(y,t,label=r’$t=v(y)$’)
plt.legend ()
plt.subplots ()
plt.ylabel(’$y$’);plt.xlabel(’$t$’)
plt.plot(t,y,label=r’$y=u(t)$’)
plt.legend ()

Chapitre 1. Étude de fonctions
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Chapitre 1. Étude de fonctions 11

On a obtenu :

0.0 0.2 0.4 0.6 0.8 1.0

y

0

20

40

60

80

100

t

t= v(y)

0 20 40 60 80 100

t

0.0

0.2

0.4

0.6

0.8

1.0

y

y=u(t)

(f) Par quotient, la fonction v est continue et strictement décroissante sur ]0, 1]. Par
le théorème de la bijection continue, on peut affirmer que, la fonction u, en
tant que réciproque de v, est bien continue sur R+.

(g) Par quotient, la fonction v est de classe C1 sur ]0, 1] et, pour tout y dans ]0, 1], on
a :

v ′(y) =
−3y3 − (1− y3)

y2

=
−2y3 − 1

y2

La dérivée de v ne s’annulant pas, on sait, d’après le cours, que la fonction u
est de classe C1 sur v (]0, 1]), i.e. sur R+. Or, pour tout réel positif t, on a :

u(t)3 + t× u(t) − 1 = 0,

Chapitre 1. Étude de fonctions
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cela donne alors :

∀t ∈ R+, (3(u(t))2 + t)× u ′(t) + u(t) = 0

soit, pour tout réel positif t, puisque 3(u(t))2 + t ̸= 0, l’égalité suivante :

u ′(t) = −
u(t)

3(u(t))2 + t
.

1. Cours : Donner la définition d’une valeur propre ainsi que d’un sous-
espace propre pour une matrice A ∈ Mn(R).

2. Soient n un entier supérieur à 2 et (En) l’équation suivante d’inconnue x
réel strictement positif :

(En) : f(x) =
1

n
avec f : x → ln2(x)

x
,

(a) Dresser le tableau de variations de f sur [1,+∞[.
(b) Démontrer que l’équation (En) admet deux solutions, que l’on no-

tera αn et βn, telles que : 1 ⩽ αn ⩽ e2 ⩽ βn.

3. À l’aide de l’outil informatique, représenter sur un même graphe la
courbe représentative de f ainsi que les droites Di, 1 ⩽ i ⩽ 6, où Di

a pour équation y =
1

i
, pour i ∈ �1, 6�. Quelles conjectures peut-on

émettre sur le sens de variations et les limites de (αn)n⩾2 et (βn)n⩾2 ?

4.(a) Démontrer que la suite (βn)n⩾2 est strictement monotone.
(b) Montrer que la suite (βn)n⩾2 admet une limite que l’on précisera.

(c) Soit la suite (un)n⩾2 définie par un =
βn

n
. Prouver que un ∼

n→+∞ ln2(n)

en admettant que ln(un) = o
n→+∞ (ln(n)).

(d) En déduire un équivalent de (βn)n⩾2.

5.(a) Montrer que la suite (αn)n⩾2 admet une limite que l’on précisera.
(b) Donner un équivalent de (αn − 1)n⩾2. Comment pourrait-on vérifier

ce résultat avec l’outil informatique?

Exercice 3

Pensez à utiliser le théorème de la bijection continue dans la question 2. Dans
les questions 3 et 4, appuyez-vous sur le tableau de variations. Pour comparer
βn et βn+1, comparez avant f(βn) et f(βn+1). Même astuce avec αn et αn+1.
Pour toutes les histoires d’équivalents, souvenez vous que an ∼

n→+∞ bn signifie

que lim
n→+∞

(
an

bn

)
= 1.

Indication
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Chapitre 1. Étude de fonctions 13

Solution 3

1. Soit λ un réel.
• On dit que λ est valeur propre de A lorsqu’il existe une matrice colonne X non

nulle qui vérifie AX = λX.
• Le sous-espace propre de A associé à λ est l’ensemble : Ker(A−λIn), c’est donc
{X ∈ Mn,1(R) tel que AX = λX}.

2.(a) f est dérivable sur [1;+∞[ par quotient car, pour tout x de [1;+∞[, on a x > 0 et
x ̸= 0. Pour tout x de [1;+∞[, on a :

f ′(x) =
ln(x)(2− ln(x))

x2
.

Si x ∈]1;+∞[, ln(x) > 0 d’où :

f ′(x) > 0 ⇐⇒ 2− ln(x) > 0

⇐⇒ x < e2.

Pour compléter le tableau de variations de f, on note que f(1) = 0, f(e2) = 4e−2

donc f(e2) ≈ 0, 54 et lim
x→+∞(f(x)) = 0 par croissances comparées. D’où le tableau

de variations de f :

x 1 e2 +∞
Signe de f ′(x) 0 + 0 −

f
0

4e−2

0

(b) • f étant continue et strictement croissante sur [1, e2], elle réalise, d’après le
théorème de la bijection continue, une bijection de l’intervalle [1, e2] sur l’in-

tervalle [f(1), f(e2)], soit [0, 4e−2]. Comme
1

n
∈ [0, 4e−2] car 4e−2 ≈ 0, 54 et

1

n
⩽

1

2
, il existe un unique réel αn ∈ [1, e2] tel que f(αn) =

1

n
.

• De même, f étant continue et strictement décroissante sur [e2,+∞[, elle réa-
lise une bijection de [e2,+∞[ sur ] lim

x→+∞(f(x)), f(e
2)], soit ]0, 4e−2] : il existe donc

un unique réel βn ∈ [e2,+∞[ tel que f(βn) =
1

n
.

Ainsi l’équation (En) admet deux solutions αn et βn, et elles vérifient :

1 ⩽ αn ⩽ e2 ⩽ βn.

On remarque que f ⩽ 4e−2 d’après la question précédente. Comme
4e−2 < 1, on en déduit que pour tout réel strictement positif, f(x) ̸= 1,
l’équation (E1) n’admet donc pas de solution.

Commentaires

Chapitre 1. Étude de fonctions
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14 Oraux corrigés et commentés ECG Mathématiques appliquées

3. Voici les courbes représentatives de f et des droites Di d’équation y =
1

i
avec

i ∈ [[1, 6]] :

On a utilisé le programme suivant :

import math as m
import numpy as np
import matplotlib.pyplot as plt

def f1(x):
return(m.log(x)**2/x)

def trace ():
x=np.linspace (1 ,100 ,100000)
y=[f1(t) for t in x]
plt.plot(x, y)
for i in range (1,7):

z=[1/i for t in x]
plt.plot(x, z)

plt.show()

Au vu du graphique, on peut penser que (αn)n⩾2 (les points) décroît et converge
vers 1, (βn)n⩾2 (les losanges) croît et tend vers +∞.

4.(a) Par définition, (βn, βn+1) ∈ [e2,+∞[2 et vérifient :

f(βn+1) < f(βn)

car f(βn) =
1

n
et f(βn+1) =

1

n+ 1
. Or f est strictement décroissante sur [e2,+∞[

donc βn < βn+1 La suite (βn)n⩾2 est bien strictement croissante.
(b) Par l’absurde, supposons que la suite (βn)n⩾2 converge. Notons ℓ sa limite, on

peut affirmer que ℓ ⩾ e2 car, pour tout entier n supérieur à 2, βn ⩾ e2 et on
invoque le passage à la limite dans les inégalités. Comme f est continue sur
[e2,+∞[, on a donc lim

n→+∞(f(βn)) = f(ℓ). Or, pour tout entier n supérieur à 2,

f(βn) =
1

n
donc lim

n→+∞(f(βn)) = 0. On en déduit que f(ℓ) = 0 ce qui est absurde
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Chapitre 1. Étude de fonctions 15

car la fonction f ne s’annule pas sur [e2,+∞[ d’après son tableau de varia-
tions. On en déduit que (βn)n⩾2 diverge et comme cette suite est croissante,
on conclut que :

lim
n→+∞(βn) = +∞ .

(c) Soit n un entier supérieur à 2. On sait que un =
βn

n
, on a donc :

ln(un)

ln(n)
=

ln(βn) − ln(n)
ln(n)

=
ln(βn)

ln(n)
− 1.

D’après l’énoncé, ln(un) = o
n→+∞ (ln(n)) i.e. lim

n→+∞

(
ln(un)

ln(n)

)
= 0 soit :

lim
n→+∞

(
ln(βn)

ln(n)
− 1

)
= 0.

On en déduit que lim
n→+∞

(
ln(βn)

ln(n)

)
= 1 autrement dit ln(βn) ∼

n→+∞ ln(n).

Par ailleurs f(βn) =
1

n
, i.e.

ln2(βn)

βn
=

1

n
donc un = ln2(βn).

Comme on a montré que ln(βn) ∼
n→+∞ ln(n), on conclut que

un ∼
n→+∞ ln2(n).

(d) Comme βn = nun, on en déduit que : βn ∼
n→+∞ n ln2(n).

5.(a) (αn, αn+1) ∈ [1, e2]2 et vérifient f(αn) > f(αn+1) car
1

n
>

1

n+ 1
. Or f est stricte-

ment croissante sur [1, e2] donc αn+1 < αn. La suite (αn)n⩾2 est donc strictement
décroissante. (αn)n⩾2 étant de plus minorée par 1, elle converge vers une limite
ℓ, ℓ ∈ [1, e2] car, pour tout entier n supérieur à 2, αn ∈ [1, e2] et par passage à la
limite dans les inégalités.

Attention, on ne peut pas passer automatiquement de Un ⩾ Vn

à lim
n→+∞(Un) ⩾ lim

n→+∞(Vn) en invoquant le passage à la limite dans

les inégalités. Il faut absolument prouver que lim
n→+∞(Un) et lim

n→+∞(Vn)

existent et sont finies avant!

Commentaires

f étant continue sur [1, e2], on en déduit que lim
n→+∞(f(αn)) = f(ℓ) soit f(ℓ) = 0 car

lim
n→+∞

(
1

n

)
= 0. Comme f ne s’annule qu’en 1 sur [1, e2], on peut affirmer que

ℓ = 1. En conclusion, (αn)n⩾2 converge et lim
n→+∞(αn) = 1.

Chapitre 1. Étude de fonctions

16 17

9782340-111431.indd   179782340-111431.indd   17 17/11/2025   09:1517/11/2025   09:15



16 Oraux corrigés et commentés ECG Mathématiques appliquées

(b) ln(x) ∼
x→1

x− 1 et lim
n→+∞(αn) = 1 donc ln(αn) ∼

n→+∞ αn − 1.

Par ailleurs, f(αn) =
1

n
donc ln2(αn) =

αn

n
donc ln2(αn) ∼

n→+∞
1

n
car αn →

n→+∞ 1.

On en déduit que ln(αn) ∼
n→+∞

1√
n

puis, comme ln(αn) ∼
n→+∞ αn − 1, cet équi-

valent :
αn − 1 ∼

n→+∞
1√
n
.

Pour vérifier ce résultat avec l’outil informatique, on peut utiliser l’algorithme de
Newton ou de dichotomie pour calculer une valeur approchée de αn solution

de l’équation f(x) −
1

n
= 0 sur [1, e2], puis on vérifie que, pour n suffisamment

grand,
√
n(αn − 1) est proche de 1.

1.2 Exercices sans préparation

Pour tout n ∈ N, soit fn la fonction définie sur l’intervalle [0, 1] par :

∀x ∈ [0, 1], fn(x) =

x
0

ent2 dt−
1
x

e−nt2 dt.

1. Montrer que la fonction fn est strictement monotone sur [0, 1].

2. Établir l’existence d’un unique réel de [0, 1], noté cn, tel que :

cn

0

ent2 dt =
1
cn

e−nt2 dt.

3. Montrer que la suite (cn)n∈N est convergente.

Exercice 4 (Oral HEC 2016)

Il faut dériver fn pour s’en sortir. On vous rappelle que si g(x) =
x
0

h(t)dt et si

k(x) =

0
x

h(t)dt alors g ′(x) = h(x) et k ′(x) = −h(x). Après, c’est du classique

théorème de la bijection continue.

Indication

Solution 4

1. Comme les intégrandes sont ici continues, le théorème fondamental du calcul
intégral permet de dire que fn est dérivable et, pour tout x de [0, 1], on a :

f′n(x) = enx2

+ e−nx2

Chapitre 1. Étude de fonctions
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Chapitre 1. Étude de fonctions 17

donc, par somme, f′n > 0, on peut donc affirmer que fn est strictement croissante
sur [0, 1].

2. La fonction fn continue et strictement croissante sur [0, 1], elle réalise donc, d’après
le théorème de la bijection continue, une bijection de [0, 1] sur [fn(0), fn(1)]. Comme

fn(0) = −

∫1
0

e−nt2 dt et fn(1) =
∫1
0

ent2 , par positivité de l’intégration (invocable car

les intégrandes sont continues et positives et les bornes sont dans le sens croissant),
on peut affirmer que :

fn(0) ⩽ 0 et 0 ⩽ fn(1).

On peut donc conclure que l’équation fn(x) = 0 d’inconnue x ∈ [0, 1] admet une
unique solution cn, cela veut précisément dire qu’il existe un unique réel cn de [0, 1]
tel que :

∫cn

0

ent2 dt =
∫1
cn

e−nt2 dt.

3. Par croissance de la fonction exponentielle, on peut affirmer que pour tout t de
[0, 1], on a :

e(n+1)t2 ⩾ ent2 et − e−(n+1)t2 ⩾ −e−nt2

ce qui donne par croissance de l’intégration (invocable par continuité des inté-
grandes et car les bornes sont dans le sens croissant car cn ⩾ 0) les inégalités sui-
vantes :

∫cn

0

e(n+1)t2dt ⩾
∫cn

0

ent2dt et
∫cn

0

−e−(n+1)t2dt ⩾
∫cn

0

−e−nt2dt

et donc, par somme, l’inégalité suivante :

fn+1 (cn) ⩾
∫cn

0

ent2 dt−
∫1
cn

e−nt2 dt

⩾ 0

que l’on traduit en fn+1 (cn) ⩾ fn+1 (cn+1) . Puisque fn+1 est strictement croissante
sur [0, 1], on a : cn ⩾ cn+1. La suite (cn)n∈N est décroissante et, d’après la question
précédente, minorée (par 0), elle est donc convergente d’après le théorème de
la limite monotone.
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18 Oraux corrigés et commentés ECG Mathématiques appliquées

Pour tout réel x, on pose : th (x) =
exp(x) − exp(−x)

exp(x) + exp(−x)
.

1. Montrer que la fonction th est une bijection de R sur ] − 1, 1[. On note
Argth sa bijection réciproque.

2. Calculer Argth (0) et Argth
(
1

3

)
.

3. On admet que Argth est dérivable sur ] − 1, 1[ et que, pour tout y de
] − 1, 1[, on a :

Argth ′(y) =
1

th ′(Argth (y))
.

Simplifier l’expression de Argth ′.

4. Soit la fonction f suivante : f : x → Argth
(
1+ 3th (x)

3+ th (x)

)
. Déterminer le

domaine de définition Df de f, montrer que f est dérivable et expliciter
f ′.

5. Trouver deux réels a et b tels que f : x → ax+ b.

Exercice 5

Au début, c’est de nouveau le théorème de la bijection continue. Dans la
quatrième question, vous allez obtenir un résultat particulièrement simple qui
expliquera la dernière question.

Indication

Solution 5

1. Par quotient (∀x ∈ R,exp(x) + exp(−x) > 0 donc exp(x) + exp(−x) ̸= 0), th est de
classe C∞ sur R. Pour tout réel x, on a :

th ′(x) =
(exp(x) + exp(−x))2 − (exp(x) − exp(−x))2

(exp(x) + exp(−x))2

=
4

(exp(x) + exp(−x))2
.

On en déduit que th ′ > 0. th est donc strictement croissante. Or th est continue
donc, par le théorème de la bijection continue, th réalise une bijection de R sur]

lim
x→−∞ (th (x)) , lim

x→+∞ (th (x))

[
, soit ] − 1, 1[ car :

th (x) ∼
+∞

exp(x)
exp(x)

∼
+∞ 1.

De plus, th est impaire donc lim
x→−∞(th (x)) = − lim

x→+∞(th (x)).

Chapitre 1. Étude de fonctions

20 21

9782340-111431.indd   209782340-111431.indd   20 17/11/2025   09:1517/11/2025   09:15



Chapitre 1. Étude de fonctions 19

2. • th (0) = 0 donne Argth (0) = 0.
• Pour tout réel x, on a :

x = Argth
(
1

3

)
⇐⇒ 1

3
= th (x)

⇐⇒ 3(exp(x) − exp(−x)) = exp(x) + exp(−x)

⇐⇒ 3(exp(2x) − 1) = exp(2x) + 1

⇐⇒ exp(2x) = 2

⇐⇒ x = ln(
√
2).

On en déduit que Argth
(
1

3

)
= ln(

√
2).

3. Pour tout réel x, on a :

1− th 2(x) =
(exp(x) + exp(−x))2 − (exp(x) − exp(−x))2

(exp(x) + exp(−x))2

=
exp(2x) + exp(−2x) + 2− exp(2x) − exp(−2x) + 2

(exp(x) + exp(−x))2

=
4

(exp(x) + exp(−x))2

= th ′(x).

On en déduit donc que, pour tout y de ] − 1, 1[, on a :

Argth ′(y) =
1

th ′(Argth (y))

=
1

1− th 2(Argth (y))

=
1

1− y2
.

4. Argth est définie sur ] − 1, 1[, on en déduit que par quotient et composition, pour
tout réel x, on a :

f(x) est définie ⇐⇒




3+ th (x) ̸= 0

−1 <
1+ 3th (x)

3+ th (x)
< 1

⇐⇒ −1 <
1+ 3th (x)

3+ th (x)
< 1 car th (x) ∈] − 1, 1[ donc 3+ th (x) ̸= 0

⇐⇒ −3− th (x) < 1+ 3th (x) < 3+ th (x) car 3+ th (x) > 0

⇐⇒


−4 < 4th (x)

2th (x) < 2

⇐⇒ −1 < th (x) < 1.

Or, pour tout réel x, on a th (x) ∈] − 1, 1[. D’après cette démonstration, f est définie
sur R. On a vu que Argth est dérivable sur ] − 1, 1[. Par composition, f est donc
dérivable sur R.
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5. Pour tout réel x, on a :

f ′(x) = Argth ′
(
1+ 3th (x)

3+ th (x)

)
× 3th ′(x)(3+ th (x)) − th ′(x)(1+ 3th (x))

(3+ th (x))2

= Argth ′
(
1+ 3th (x)

3+ th (x)

)
× 8th ′(x)

(3+ th (x))2
.

On a vu que, pour tout y de ] − 1, 1[, on a :

Argth ′(y) =
1

1− y2
.

On peut alors terminer notre calcul de dérivée. Pour tout réel x, on a alors :

f ′(x) = Argth ′
(
1+ 3th (x)

3+ th (x)

)
× 8th ′(x)

(3+ th (x))2

=
1

1−

(
1+ 3th (x)

3+ th (x)

)2
× 8(1− th 2(x))

(3+ th (x))2

=
8(1− th 2(x))

(3+ th (x))2 − (1+ 3th (x))2

=
8− 8th 2(x)

9+ 6th (x) + th 2(x) − 1− 6th (x) − 9th 2(x)

=
8− 8th 2(x)

8− 8th 2(x)

= 1.

f est donc dérivable sur R et f ′ : x → 1. On déduit des calculs précédents qu’il
existe un réel a tel que :

∀x ∈ R, f(x) = x+ a.

De f(0) = Argth
(
1

3

)
, soit f(0) = ln(

√
2), on déduit que, pour tout réel x, on a :

f(x) = x+ ln(
√
2).
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Chapitre 1. Étude de fonctions 21

Pour comprendre Argth ′(y) =
1

th ′(Argth (y))
et le domaine de dé-

rivabilité de Argth , prenons une fonction f dérivable sur I et bijec-
tive sur I. Pour trouver l’ensemble sur lequel f−1 est dérivable, il faut
d’abord chercher la partie J de I sur laquelle f ′ ne s’annule pas et en
prendre l’image par f (forcément, l’ensemble de dérivabilité de f−1

est une partie de l’ensemble de définition de f−1 donc une partie
de l’ensemble d’arrivée de f). f−1 est dérivable sur f(J). D’autre part,

∀x ∈ f(J), on a : (f−1) ′(x) =
1

f ′(f−1(x))
. Pour retrouver cette formule,

partez de l’égalité évidente f−1 ◦ f = id que vous dérivez comme
une composée :

((f−1) ′ ◦ f)× f ′ = 1

ce qui donne, si f ′(x) ̸= 0, l’égalité (f−1) ′(f(x)) =
1

f ′(x)
puis celle vou-

lue en posant y = f(x) (soit x = f−1(y)).

Commentaires

Soit n un entier naturel non nul. Pour tout réel x, on pose :

f(x) =

n−1∑
k=0

⌊
x+ k

n

⌋
et g(x) = f(x) − ⌊x⌋ .

1. Démontrer que, pour tout réel x, pour tout entier m, on a :

⌊x+m⌋ = ⌊x⌋+m.

2. Démontrer que, pour tout réel x, f(x+ 1) − f(x) = 1.

3. Que peut-on en déduire pour g?

4. En déduire que : f : x → ⌊x⌋.

5. En déduire que, pour tout entier m, on a :
⌊m
2

⌋
+

⌊
m+ 1

2

⌋
= m.

Exercice 6

Rappelons que ⌊x⌋ désigne la partie entière de x. Pensez à bien réinvestir les
questions, la question 2 donne la réponse à la question 3 puis celle-ci donne
la réponse de la question 4. Pour la question 4, commencez par calculer g(x)
pour x dans [0, 1[ puis utilisez la propriété découverte dans la question 3.

Indication
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Solution 6

1. Soient x un réel et m un entier.

On rappelle que ⌊x⌋ est le plus grand entier plus petit que x, c’est
comme ça qu’on le calcule. Attention, ⌊x+ y⌋ = ⌊x⌋+⌊y⌋ et ⌊x× y⌋ =
⌊x⌋ × ⌊y⌋ sont des propriétés fausses en général. Avancez avec pru-
dence!

Commentaires

(a) Comme ⌊x⌋ ⩽ x, on a bien ⌊x⌋+m ⩽ x+m.
(b) Soit p un entier tel que p ⩽ x+m. Dans ce cas p−m ⩽ x. Or p−m est un entier,

on en déduit, d’après les propriétés de ⌊x⌋, que :

p−m ⩽ ⌊x⌋

ce qui implique p ⩽ ⌊x⌋+m.

De plus, par somme, ⌊x⌋+m est un entier. ⌊x⌋+m est donc le plus grand entier plus
petit que x+m, ce qui signifie que ⌊x+m⌋ = ⌊x⌋+m.

2. D’après la définition de f, on a :

f(x+ 1) − f(x) =

(
n−1∑
k=0

⌊
x+ 1+ k

n

⌋)
−

n−1∑
k=0

⌊
x+ k

n

⌋

=

(
n∑

k=1

⌊
x+ k

n

⌋)
−

n−1∑
k=0

⌊
x+ k

n

⌋
par changement d’indice

=

⌊
x+ n

n

⌋
−

⌊
x+ 0

n

⌋
par télescopage

=
⌊ x
n

+ 1
⌋
−
⌊ x
n

⌋

=
⌊ x
n

⌋
+ 1−

⌊ x
n

⌋
d’après la question précédente

= 1.

3. On en déduit :

g(x+ 1) = f(x) + 1− ⌊x+ 1⌋
= f(x) + 1− ⌊x⌋− 1 d’après la première question
= g(x).

g est donc une fonction périodique de période 1.

4. Soit x un élément de [0; 1[. Pour tout k de �0, n − 1�, on a : 0 ⩽ x + k < n et donc

0 ⩽
x+ k

n
< 1. Ainsi, pour tout k de �0, n− 1�, on a :

⌊
x+ k

n

⌋
= 0
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Chapitre 1. Étude de fonctions 23

ce qui par somme donne f(x) = 0 puis g(x) = 0. Par 1-périodicité de g, on peut
donc affirmer que g est nulle ce que l’on peut traduire ainsi :

f : x → ⌊x⌋ .

5. On a donc prouvé que, pour tout entier naturel non nul n, pour tout réel x, on a :

n−1∑
k=0

⌊
x+ k

n

⌋
= ⌊x⌋ .

Soit m un entier. On a donc en particulier, puisque 2 est un entier naturel non nul et
m un réel, l’égalité suivante :

1∑
k=0

⌊
m+ k

2

⌋
= ⌊m⌋

ce qui donne, puisque ⌊m⌋ = m car m est un entier, directement la réponse sou-
haitée.
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CHAPITRE 2

INTÉGRATION

2.1 Exercices avec préparation

1. Cours : Fonctions équivalentes au voisinage de +∞.

2. Soient n un entier naturel et fn la fonction :



R+ → R

x →
1
0

tne−tx dt
.

(a) Montrer que fn est décroissante sur R+.
(b) Étudier la suite (fn(0))n⩾0. En déduire la limite de (fn(x))n⩾0.

3.(a) Soit x un réel strictement positif. Montrer que :

fn+1(x) =
n+ 1

x
fn(x) −

e−x

x
si n ⩾ 1.

(b) Expliciter les fonctions f0 et f1.

(c) Montrer que pour tout entier naturel n, fn(x) ∼
x→+∞

n!
xn+1

.

4.(a) Montrer que tout réel x > 0, on a : fn(x) =
1

xn+1

x
0

une−u du.

(b) En déduire que la fonction fn est dérivable sur R∗
+ et déterminer sa

dérivée f′n.
(c) Comparer pour tout réel y ⩾ 0, les deux réels y et 1−e−y. En déduire

que la fonction fn est continue en 0.

Exercice 1 (Oral HEC 2016)
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26 Oraux corrigés et commentés ECG Mathématiques appliquées

On va utiliser à peu près tous les outils possibles dans cet exercice :
• Croissance de l’intégration dans les questions 2 (comparer f(x) et f(y)

avec 0 ⩽ x ⩽ y) et 4)c),
• Intégration par parties dans la question 3)a) dont le résultat est réinvesti

en question 3)b) et 3)c),
• Changement de variable dans la question 4)a)
• Théorème fondamental de l’analyse dans la question 4)b).

Indication

Solution 1

1. Cours : On dit que deux fonctions f et g sont équivalentes au voisinage de +∞ si

lim
x→+∞

(
f(x)

g(x)

)
= 1.

2.(a) Soient x et y deux réels tels que 0 ⩽ x ⩽ y. Soit t un réel de [0, 1], on a −tx ⩾ −ty,
puis, par croissance de exp, exp(−tx) ⩾ exp(−ty), puis, comme tn ⩾ 0, ces
inégalités :

tn exp(−tx) ⩾ tn exp(−ty) ⩾ 0.

Par croissance de l’intégration, invocable car les bornes sont dans le sens crois-
sant et les intégrandes sont continues, on obtient :

1
0

tne−tx dt ⩾
1
0

tne−ty dt ⩾ 0

ce qui signifie fn(x) ⩾ fn(y) ⩾ 0 et prouve la décroissance et la positivité de fn.

(b) Sans problème, on obtient : fn(0) =
1

n+ 1
. (fn(0))n⩾0 est donc une suite conver-

gente et décroissante, elle converge vers 0. On a vu que fn était une fonction
décroissante et positive, on en déduit, si on fixe x un réel positif, que :

0 ⩽ fn(x) ⩽ fn(0).

Comme lim
n→+∞(0) = 0 et lim

n→+∞ (fn(0)) = 0, on en déduit par le théorème des

gendarmes que lim
n→+∞(fn(x)) = 0.

3.(a) Comme x ̸= 0, par intégration par parties, ce qui est possible car les fonctions

t → −
e−tx

x
et t → tn+1 sont de classe C1 sur [0, 1], on obtient :

fn+1(x) =

[
−
1

x
e−txtn+1

]1
0

+

1
0

1

x
e−tx(n+ 1)tn dt

= −
e−x

x
+

n+ 1

x
fn(x).
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Chapitre 2. Intégration 27

Intégrer du produit n’est pas une évidence. Quand on a du produit
ou quand on veut faire une intégration par parties, on exprime ce
qu’on veut intégrer sous forme d’un produit (quitte à écrire l’inté-
grande f(t) sous la forme 1× f(t)) :

• L’un des deux termes jouera le rôle de u ′, on va l’intégrer.
• L’autre jouera le rôle de v, on va le dériver.

C’est à vous de choisir judicieusement la partie de la fonction que
vous souhaitez dériver et celle que vous voulez intégrer. Si on part deb
a

u ′(t)v(t)dt, il reste alors à calculer
b
a

u(t)v ′(t)dt : Observez cette

dernière intégrale et demandez vous si elle est plus jolie que celle
d’origine (sinon, ça ne sert à rien!).

Commentaires

(b) Soit x un réel positif, on a :

f0(x) =

1
0

e−tx dt

=

[
−
1

x
e−tx

]1
0

=
1− e−x

x
.

En utilisant la question précédente, on en déduit :

f1(x) = −
e−x

x
+

0+ 1

x
f0(x)

=
1− e−x − xe−x

x2
.

(c) On peut faire une petite récurrence. Puisque lim
x→+∞

(
1− e−x

)
= 1, on a bien

1− e−x

x
∼

x→+∞
1

x
, ce que l’on peut écrire ainsi :

f0(x) ∼
x→+∞

0!
x0+1

.

Soit un entier naturel n tel que fn(x) ∼
x→+∞

n!
xn+1

. Grâce à la question 3.a), on

peut affirmer que :

xn+2

(n+ 1)!
fn+1(x) =

xn+1

n!
fn(x) −

xn+1e−x

(n+ 1)!
.

Le second membre tend vers 1 lorsque x tend vers +∞ par somme et d’après
l’hypothèse de récurrence. Cela achève notre récurrence car le fait que

lim
x→+∞

(
xn+2

(n+ 1)!
fn+1(x)

)
= 1 signifie précisément que fn+1(x) ∼

x→+∞
(n+ 1)!
xn+2

.
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