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Chapitre 1.

Pour la question 3, reconnaitre une somme géométrique. Etudier le signe
de Q. afin d’avoir les variations de P,,. Pour prouver —1 < u, < 0, calculer
Qn(—1). Pour obtenir I’équivalent de la question 6, partez de —1 < u,, < 0 afin
d’obtenir des bonnes inégalités pour appliquer le théoreme des gendarmes
In(Znn+1——2nuﬂ)> _q

et prouver que nl_l)ngoo ( N

Solution 1

1. Soient ) u, et ) v, deux séries & termes positifs telles que : ¥n € Nyun < vy Le
théoréme de comparaison affrme que si Y v, est convergente alors ) u, I'est

+o0 +0o0
aussiet Y un < ) vn.llaffrme aussi que si ), est divergente alors ) vy, I'est
n=0 n=0
+o00
aussi et Y vy, = +oo.
n=0

2. Voici un script Python permettant de représenter la fonction Pygo sur [—1,1] :

import matplotlib.pyplot as plt
import numpy as np
def P(n,x):
s =0
puissancex = 1
for k in range (0,2%n+1):
s += puissancex
puissancex *= X
return s
abs = np.linspace(-1,1,100)
ord [P(100,x) for x in abs]
plt.plot (abs,ord)
plt.show ()

On a obtenu:

200 -
175 4
150 4
125 4
100 -

75 4

50
254 J

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
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3. Soit x € R\ {1}, on a en reconnaissant une somme géométrique :

2n+1 1
Pr(x) =

x—1
On en déduit que :
(n+ 1) (x—1) — (x*™H1 —1)

Pr(x) = —

Qn(x)

= avec : Qn :x = 2nx?™ T — 2n4+ 1) + 1.

(x—1)2

4. P, comme Q,, sont de classe €* par somme. Pour tout réel x, on a:

Q' (x) =2n(2n + 1)x*™ —2n(2n 4 1)x*!
=2n(2n+DHx* T (x—1).

On obtient donc les variations de Q,, puis son signe :

X —00 Un 0 1 +o00
1 ~+o00
Variations 0/
de Qn(x) _—
—00 O
Signe de B
Qn(x) - * " -

Qn est continue et strictement croissante sur ] — oo, 0], elle réalise donc une bijection
de]—o0,0] sur} ﬂm (Qn(x)), Qn(0)|.s0it ] —co, 1. Comme 0 €] — 0, 1], le théoréme

de la bijection continue assure que Q, s’annule en un unique point w,, € |—o0,0].
Avec la connaissance du signe de Q.. on a celui de P/, sur R\ {1} et les variations
globales de P, puisque P,, est continue. On en déduit que P,, est décroissante sur
] — o0, u,] et croissante sur [u,,+oo [. La fonction P, afteint donc un minimum en
un unigue point u,, € R. On résume toutes ces informations dans ce tableau :

“+00 “+o00
Variations \ /
de P, (x)

Pn(un)
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On justifie les limites en +co gréce a cet équivalent : P, (x) = x2™. Remargquons que

Qn(—1) = —4n. Onen déduit que Qn(—1) < 0 < Tetdonc Qn(—1) < Qn(un) < Qn(0)
ce qui entraine par stricte croissance de Q. sur] — oo, 0] les inégalités suivantes :

-1 <u, <0.

. U, estl’'unigue racine de Q4 sur]—oo, 0]. En appliquant I'algorithme de dichotomie,
on obtient une approximation de w,, & 103 prés. Linstruction u(n) renverra donc
une approximation de u,, & 10~3 prés si on utilise ce programme :

def Q(n, x):
return 2 * n *x * *(2 *n+1)-(2 *n+1) * x * *(2 * n)+1$

def u(n):
a, b = -1,0
while b-a > 2 * 10 * *(-3):
c = (a+b)/2
if Q(n,a)*Q(n,c) < O:
b=c
else:
a=c
return c

. Onavuenquestion4que: -1 <u, <0,onendéduitque2n+1<2n+1-2nu, <
4n+1 puis, par croissance de In (en signalant que ces trois nombres sont strictement
positifs) et comme In(n) > 0, on obtient :

N2n+1) INC2n+1-2nu,) In@n+1)
In(n) In(n) In(n)

Comme INn2n + 1) = In(n) +In (2+ %) etln(dn+1) = In(n) +In (4+ %) on en

déduit :
i i
n (“ E) In(2n+1— 2nuy) (4+ {)
< <1+ .

T —nm In(m) In(m)

Par quotient puis somme, on peut affirmer que :

In (2 + l)
im [1+— " 16t lim [14+— "/
n— o0 IN(n) n—+00 INn(n)

Le théoréme des gendarmes entraine alors que :

(In(Zn—H —Znun)> 1

lim in(m)

n—+o0o

ce qui signifie que : In(2n+ 1 — 2nu,) = INn(m).
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ommentaires

Petit rappel pour prouver que u,, ~ vy, on utilise les opérations pos-
+oo

sibles (produit, quotient, puissance) en partant de :

e Un polyndme est équivalent en I'infini & son mondme de plus
haut degré. Un polyndme équivaut en 0 & son terme de plus
bas degré.

e Si a est un réel non nul, si nirrgoo (un) = 0 alors on sait que :

1—cos(un) ~ (un)* explun) — 1 ~ N +uy) ~ u
n +o0 2 ! n +o0 ! n +o00 e
sin (un,) I u,, tan (u,) I u, etenfin (1 +u,)*—1 o [oaT i
On peut aussi tenter de prouver que lim ) _qce qui signifie

n—+oo \ v,

que u, ~ v,.C’estle casen particulier si (wn)ney €F (Vi) nen fendent
“+00
vers une méme limite non nulle et non infinie.

7. Puisque Q,, (1) = 0, on frouve que 2nu2™ ! — (2n+1)u™ +1 = 0 soit, comme u,, # 0
car Qn(0) # 0, I'égalité suivante :

1
n

ce qui donne INn(2n+1—2nu,) = —2nIn(—u,) (on signale de nouveau que les
quantités intervenant dans In sont strictement positives). La question précédente
nous permet alors d’affirmer que :

INn(m
I (—p) ~ —
2n
Il vient alors, grdce aux croissances comparées, que Iirn (In(—uyn)) = 0 et donc,
n—-—+o0o

par composition, IIm (u,) =—1.
n—+oo

8. Posons h,, = u, + 1. Remarquons que —u,, = 1 — h,. Ainsi, d’aprés la question
précédente, on en déduit :

In(m)
|n (] - hn) ~ —7
Or IirQ (hn) =0, donc h, ot In (1 —hy,). Finalement, il reste donc :
n—-+oo o0
IN(n)
fn foo 2n
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Soit t un réel positif ou nul fixé. Pour tfout réel x, on pose :
Pe(x) = x> +tx— 1.
1. Cours : Qu’appelle-t-on racine d’un polyndme ? Qu’appelle-t-on ordre
de mulfiplicité d'une racine d’un polynéme ?
2. Montrer que le polyndbme P, admet une unique racine réelle u(t).

3. Onnote u: Ry —R :
t — u(t)

(a) Montrer que u (R) clo; 1].
(b) Démontrer que la fonction u est strictement décroissante sur R, .
(c) Calculer tﬂT (u(t)) dndication : utiliser I'expression de Py (u(t)).)

(d) Montrer que |'application u est bijective de R, vers ]0; 1], de réci-

progue :
{]O;l] — R, \
v 1—y
—
J y

(e) Représenter graphiquement gréce au langage Python la fonction
v sur ]0; 1]. En déduire le tracé de représentation graphique de la
fonction w.

() Justifier que la fonction u est continue sur R, .

(@) Démontrer que la fonction u est dérivable sur R, puis déterminer,
pour tout réel positif t, une expression de u/(t) en fonction de t et
u(t).

On joue sur les fonctions réciproques dans cet exercice. Il faut jongler entre
le monde des abscisses et celui des images. Pour comparer w(t) et u(s) par
exemple, on va comparer P, (u(t)) et P (u(s)). Pour démontrer des qualités sur
u, on va évoquer celle de v.

Solution 2

1. e Soient P € R[x] un polyndme et a € R; on dit que a est racine de P si et seulement
siP(a)=0.
e Ondit que a est racine d’ordre k de P (k € N*) si et seulement si x — (x—a)* divise
P mais x — (x — a)**! ne divise pas P (ce qui signifie qu’il existe un polyndme Q
tel que P(x) = (x — a)*Q(x) pour tout réel x avec Q(a) # 0).
2. P, est de classe €* sur R (c’est un polyndbme) et on a:

Vx € R, P/(x) =3x? +t

10
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et, comme t > 0, pour tout réel non nul x, on a:

P{(x) > 3x?
> 0.

Comme de plus P; est continue, on en déduit que P; est strictement croissante sur
R. Rappelons que P, est continue, on peut alors affirmer, par le théoréme de la bi-

jection continue, que P; réalise une bijection de R sur} lim (P¢(x)), IirD (Pe(x)) |,
X——00 X—+00

soit R car, comme P, (x) ~ x3, on peut affirmer que :
[ee]

lim (Pi(x) = +oo €t lim_(Py(x)) = —co.

X—+00

Le polyndme P, admet bien une unique racine réelle u(t).

ommentaire

On cherchait ici & prouver qu’une égquation a des solutions. Voici trois
idées pour réaliser cette tache :

e On larésout : C’est la base et & essayer avant la suite. C’est
jouable a priori si ¢’est une équation du second degré ou une
équation faisant intervenir une fonction qu’on peut détruire
grace a des réciproques (In et exp, /- et x — x2...)

o Théoréeme des valeurs intermédiaires : On réécrit notre équa-
fion sous la forme f(x) = 0, on prouve la continuité de f, on
cherche deux réels a et b tels que f(a) et f(b) soient de signes
opposés. On pourra alors conclure que notre équation a au
mMoins une solution (mais on ne sait pas le nomibre de solutions).

o Théoréme de la bijection continue : On écrit notre équation
sous la forme f(x) = 0 , prouve la continuité et la stricte mo-
notonie de f, explicite I'image de f et on note si 0 appartient
(une et une seule solution) ou non (aucune solution) a I'image
de f.

3.(@) ON A P(0)=—1,Pi(u(t)) =0etP(1)=tdonc:
P:(0) < Pe(u(t)) < P(1)

On en déduit, par stricte croissance de P, que 0 < u(t) < 1 ce qui est le résultat
qgu’on souhaitait établir.
(b) Soient t et s deux réels strictement positifs tels que t <s. On a:

Pe(u(s)) = (u(s))® + tu(s) — 1
= (t—s)u(s) car (u(s))® + su(s) — 1 =0 car Pg(u(s)) =0
Oru(s) > 0 (d’aprés la question précédente), donc Pi(u(s)) < 0. Or P (u(t)) =0,

onadonc:
Pi(u(s)) < Pe(u(t)).

Par stricte croissance de P, on en déduit que u(s) < u(t). La fonction u est donc
strictement décroissante.
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La fonction u est décroissante (d’aprés la question précédente) sur RT, elle est
minorée (par 0 par exemple puisque u (R, ) CJO; 1)), elle admet donc une limite
L en +oo d’apres le théoréme de la limite monotone et on peut affirmer que ¢
appartient & [0,1]. Ona:

vt e Ry, (u(t)® —1=—txu(t).

Si¢ # 0, alors lim (—t x u(t)) = —co, donc lim ((u(t))* —1) = —co. Or, par
t—+oo t—+o0
somme, Iirp ((u(t))® — 1) est£3—1, c’est donc (par unicité de la limite) absurde,
—+00
cela prouve donc que { = 0.

Soit y un élément de 10, 1]. Posons t = v(y), on a:
Puy)(y) =y? +v(y) xy—1
1—y3
3
=y3+ xy—1
Yy y Yy
—0.

Or P, ) @ un unique zéro, c’est u(v(y)). On en déduit que u(v(y)) = y. Tout y
de 10, 1] admet donc v(y) pour antécédent par u, u est donc surjective. Etant
injective (car strictement décroissante) et surjective, u est bijective de R* vers
10,1]. De u(v(y)) =y Vvérifiée pour tout y de 10, 1], on peut alors déduire que u est
bijective de R, vers ]0; 1] et v est sa réciproque.

— R,
1 —y3 . il est qisé de la représenter gra-

—

phiguement. Pour représenter u, qui est la ryéciproque de v, on peut faire la sy-
métrie par rapport & la premiére bissectrice. On peut aussi le faire en Python
en passant de plot (t,y) dans le programme 4 plot(y,t). On propose donc le
programme suivant :

10; 1]
Comme v est I'application {
Yy

import numpy as np
import matplotlib.pyplot as plt

def v(y):
return 1/y-y**2

y=np.linspace(0.01,1,100)

t=v(y)

plt.subplots ()

plt.xlabel (’$y$’);plt.ylabel (*$t$°’)
plt.plot(y,t,label=r’$t=v(y)$’)
plt.legend ()

plt.subplots ()

plt.ylabel (’$y$°’);plt.xlabel (*$t$°)
plt.plot(t,y,label=r’$y=u(t)$’)
plt.legend ()

12
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On a obtenu:

100 - — t=V(y)
80
60
404
20
04

0.0 0.2 0.4 0.6 0.8 1.0

y

1.04 — y=ult)
0.8
0.6

>

0.44
0.24
0.01

0 20 40 60 80 100

() Par quotient, la fonction v est continue et strictement décroissante sur 10, 1. Par
le théoréme de la bijection continue, on peut affirmer que, la fonction u, en
tant que réciproque de v, est bien continue sur R, .

(@) Par quotient, la fonction v est de classe @' sur 10, 1] et, pour tout y dans 10, 1], on

& S )
-3y —(0—-y
Vi(y) =
y 2
—2y3 -1
==

La dérivée de v ne s’annulant pas, on sait, d"apres le cours, que la fonction u
est de classe €' surv (]0,1]), i.e. sur R*. Or, pour tout réel positif t, on a :

u(t) +txult)—1=0,

13



Chapitre 1.

cela donne alors :
vt e RT, (B(u(t))? +1) x u'(t) +u(t) =0
soit, pour tout réel positif t, puisque 3(u(t))? + t # 0, I'égalité suivante :

u(t)

Y e

1. Cours : Donner la définition d‘une valeur propre ainsi que d’un sous-
espace propre pour une matrice A € M, (R).

2. Soient n un entier supérieur a 2 et (E,,) I'équation suivante d’inconnue x
réel strictement positif :

2
(En): f(x) = l avec f:x — M,
n X

(a) Dresser le tableau de variations de f sur [1, +ool.
(b) Démontrer que I’'équation (E,,) admet deux solutions, que I'on no-
tera o, et Bn. tellesque : 1 < o < e? < B

3. A I'aide de I'outil informatique, représenter sur un méme graphe la

courbe représentative de f ainsi que les droites D;, 1 < i < 6, ou D;

a pour équation y = % pour i € [1,6]. Quelles conjectures peut-on

émettre sur le sens de variations et les limites de (o )n>2 €t (Bn)ns2?
4.(a) Démontrer que la suite (Bn)n>2 est strictement monotone.

(b) Montrer que la suite (Bn)n>2 admet une limite que I'on précisera.

Bn 2(

(c) Soit la suite (un)n>2 définie par u,, = o Prouver que u,, ~ IN“(n)
en admettant que In(u,,) = o (In(n)).
(d) En déduire un équivalent de (fn)n>2.

5.(a) Montrer que la suite (et )n>2 admet une limite que I'on précisera.

(b) Donner un équivalent de (o, — 1)n>2. Comment pourrait-on vérifier
ce résultat avec |'outil informatique ?

Pensez & utiliser le théoreme de la bijection continue dans la question 2. Dans
les questions 3 et 4, appuyez-vous sur le tableau de variations. Pour comparer
Bn et Bni1. comparez avant f(B,) et f(Pny1). Méme astuce avec «,, et o 1.

Pour toutes les histoires d’équivalents, souvenez vous que a,, ~ by, signifie
n—+oo

. an
im (— | =1.
que an—oo <bn)

14
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Solution 3

1. Soit A un réel.
e On dit que A est valeur propre de A lorsqu’il existe une matrice colonne X non
nulle qui vérifie AX = AX.
e Le sous-espace propre de A associé a A est I'ensemble : Ker(A—AI,), c’est donc
{X € My 1 (R) tel que AX = AX]}.
2.(a) f est dérivable sur [1; +ool par quotient car, pour tout x de [1; +oco[, ON a x > 0 et
x # 0. Pour tout x de [1; +oco[, ONn O :

/) = M2 —InG)
X
Six €]1; +ool, In(x) >0 d'ou :
f'(x) >0<=2—In(x) >0
— x < e’

Pour compléter le tableau de variations de f, on note que f(1) =0, f(e?) = 4e2
donc f(e?) =~ 0,54 et IirD (f(x)) = 0 par croissances comparées. D'ou le tableau
X—+00

de variations de f :

X 1 ez —+00

Signe de f'(x)| 0 + 0 _

4e2
f S [
0 0

(b) e f étant continue et strictement croissante sur [1, e?], elle réalise, d’aprés le
théoréme de la bijection continue, une bijection de I'intervalle [1, e?] sur I'in-
tervalle [f(1),f(e?)], soit [0,4e~2]. Comme 111 € [0,4e 2] car 4e 2 ~ 0,54 et

1 1. \ ) p 1
— <5 il existe un unique réel «, € [1,e?] tel que (o) = -

¢ De méme, f étant continue et strictement décroissante sur [e?, +ool, elle réa-
lise une bijection de [e?, +-oo[ sur] ﬂm (f(x)), f(e?)], soit10,4e~2] : il existe donc
X o0

un unique réel B, € [e?, +ool tel que f(B,) = %

Ainsi I’équation (E,,) admet deux solutfions «,, et B3,,, et elles vérifient :

1< o <e? <P

ommentaires

On remargue que f < 4e—2 d’aprés la question précédente. Comme
4e=2 < 1, on en déduit que pour tout réel strictement positif, f(x) # 1,
I’équation (E;) n’‘admet donc pas de solution.

15
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3. Voici les courbes représentatives de f et des droites D; d’équation y = % avec
ie[1,6]:

f
4
0.8
0.6
& T
ol [ \
aolle 1
O-217¢
105 I 5 10 15 20 25 30 35 40 45 50 655 60 65 70 75 80 85

On a ufilisé le programme suivant :

import math as m
import numpy as np
import matplotlib.pyplot as plt

def f1(x):
return(m.log(x)**2/x)

def trace():
x=np.linspace(1,100,100000)
y=[£f1(t) for t in x]
plt.plot(x, y)
for i in range(1,7):
z=[1/1i for t in x]
plt.plot(x, z)
plt.show ()

Au vu du graphique, on peut penser que (an)n>2 (Ies points) décroit et converge
vers 1, (Bn)n>2 (Ies losanges) croit et tend vers +oo.
4.(a) Par définition, (Bn, Bni1) € [e2, +oo[? et vérifient :

f(Bns1) < f(Bn)

1 1 o
car f(fn) = o et f(Bns1) = o Or f est strictement décroissante sur [e2, +oo[

donc B, < Bnt1 Lasuite (Bn)n>2 est bien strictement croissante.

(b) Par I'absurde, supposons que la suite (Bn)n>2 converge. Notons £ sa limite, on
peut affirmer que ¢ > e? car, pour fout entier n supérieur & 2, f,, > e et on
invoque le passage a la limite dans les inégalités. Comme f est continue sur
[e?, +o0[, on a donc ningw(f([sn)) = f(£). Or, pour fout entier n supérieur a 2,

f(Bn) = % donc nﬂmw(f(ﬁn)) = 0. On en déduit que f({) = 0 ce qui est absurde
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car la fonction f ne s’annule pas sur [e?, +oo[ d’aprés son tableau de varia-
fions. On en déduit que (Bn)n>2 diverge et comme cette suite est croissante,
on conclut que :

I (Bn) = +o0]
(c) Soit n un entier supérieur a 2. On sait que u,, = BT: onadonc:
INn(un) _ IN(Bn) —In(n)
In(m) In(n)
Cn(pn)
" In(m)
D’aprés’énoncé, In(u,) = o (In(n))ie. lm (In(un)> =0soit:
n—+oo n—+oo \ IN(M)
. IN(Bn) _
n'ﬂ‘m( nm) ]) =0
On en déduit que lim <|n(6“)> =1 autrement ditIn(fn) ~ In(n)
n—+eo \ IN(M) ™ 4o '
1 In*(Bn)

1
Par ailleurs f(Bn) = —. i.e. = — donc un = IN*(Bw).
n n

n
Comme on a montré que In(B.) ~ In(n), on conclut que
n—+o00

un ~ In*(n).
n—-+o0o

() Comme By =nun, onen déduit que : fn  ~ nin?(n).

5.(Q) (&n, xny1) € [1,e2]% et vérifient f(an) > f(anyq) car % > %ﬂ Or f est stricte-

ment croissante sur [1, e2] doNC o1 < oy LA suite (ag)ns>2 est donc strictement
décroissante. (an)n>2 €tant de plus minorée par 1, elle converge vers une limite
¢, ¢ € [1,e?] car, pour tout entier n supérieur & 2, «,, € [1,e?] et par passage a la

limite dans les inégalités.
ommentaire

Attention, on ne peut pas passer automatiquement de U, > V,
a I_|m (U,) > I_|)rg (Vn) en invoquant le passage a la limite dans
n (o) n o]

les inégalités. Il faut absolument prouver que I_m (u,) et I_@ (V)
existent et sont finies avant!

f étant continue sur [1, e2], on en déduit que |irr+1 (f(en)) = f(£) soit f(¢) = 0 car

. 1 , . )
I_|>rr+1 (E) = 0. Comme f ne s‘annule qu’en 1 sur [1,e?], on peut affrmer que
n o0

¢ =1. En conclusion, (an)n>2 converge et lim (x,) =1.
n—-+oo
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®) In(x) ~ x—1et Im (an)=1doncIn(xn) ~ on—1.
x—1 Tl*}J]rOO n—-+o0o 1
Par ailleurs, f(an) = — donc IN?(x,) = < donc I*(ay,) ~ —caran, — 1.
n ] n n—+oo N n—-+oo
On en déduit que In(x,) ~ —= puis,comme In(atn) ~ oan — 1, cet équi-
n—+00 \/TT. n—-+o0o
valent :
1
oy — 1

n~>N+oo ﬁ.
Pour vérifier ce résultat avec I’outil informatique, on peut utiliser I’algorithme de
Newton ou de dichotomie pour calculer une valeur approchée de «,, solution

de I'équation f(x) — % = 0 sur [1,e?], puis on vérifie que, pour n suffisamment
grand, yn(e«, — 1) est proche de 1.

1.2 Exercices sans préparation

P Exercice 4 (Oral HEC 2016, N

Pour tout n € N, soit f,, la fonction définie sur I'intervalle [0, 1] par :

X 1
Wx € [0, 1], F(x) =j et gt — J et gt
0 x

1. Montrer que la fonction f,, est strictement monotone sur [0, 1].

2. Etablir I'existence d’un unique réel de [0, 1], noté c,,, tel que :
@n 5 1 5

J et dt = J e "t dt.

0

Cn

3. Montrer que la suite (cn),, oy 5T convergente.

Il faut dériver f,, pour s’en sortir. On vous rappelle que si g(x) = J h(t)dt et si

0
0

k(x) = | h(t)dt alors g’(x) = h(x) et k/(x) = —h(x). Aprées, c’est du classique
théoréme de la bijection continue.

Solution 4

1. Comme les intégrandes sont ici continues, le théoreme fondamental du calcul
intégral permet de dire que f,, est dérivable et, pour tfout x de [0,1],on a:

fl(x) =e™ e ™

18



Etude de fonctions

donc, par somme, fi, > 0, on peut donc affirmer que f,, est strictement croissante
sur [0, 1].

. La fonction f, continue et strictement croissante sur [0, 1], elle réalise donc, d’aprés

le théoréme de la bijection continue, une bijection de [0, 1] sur [f, (0), f,,.(1)]. Comme
1

1
fn(0) = —J e ™ dtetf,(1) = J e™’, par positivité de I'intégration (invocable car

0 0
les intégrandes sont continues et positives et les bornes sont dans le sens croissant),
on peut affirmer que :

fa(0) <0 et 0< ().

On peut donc conclure que I'équation f,, (x) = 0 d’inconnue x € [0, 1] admet une
unigue solution c¢,,, cela veut précisément dire qu’il existe un unique réel c,, de [0, 1]
tel que :

n 1
Jc e™’ dt :J e " dt.

0 Cn

. Par croissance de la fonction exponentielle, on peut affirmer que pour tout t de
[0,1],ona:

e(n+1)t2 > ent2 et 7e—(n—0—1]t2 > 7e—nt2

=

ce qui donne par croissance de l'intégration (invocable par continuité des inté-
grandes et car les bornes sont dans le sens croissant car ¢, > 0) les inégalités sui-
vantes :

Cn

Cn Cn Cn
J e+t gt > J e’ dt et J e (Nt ge > J —e "t
0 0 0 0

et donc, par somme, I'inégalité suivante :

1
ent’ dt—J e ™ dt

Cn

Cn

fn+1 (Cn) >J
0

>0

que I'on traduit en £, 11 (cn) = fny1 (cng1) . Puisque 1,1 est strictement croissante
sur[0,1], 0N a:cp > cnyr. Lasuite (cn), oy €5t décroissante et, d'aprés la question
précédente, minorée (par 0), elle est donc convergente d’aprés le théoreme de
la limite monotone.
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Exercice 5

Au début, c’est de nouveau le théoreme de la bijection contfinue. Dans la
quatrieme question, vous allez obtenir un résultat particulierement simple qui
expliguera la derniere question.

Solution 5

1. Par quotient (vx € R,exp(x) + exp(—x) > 0 donc exp(x) + exp(—x) # 0), th est de
classe €> sur R. Pour tout réel x, on a:

(exp(x) + exp(—x))? — (exp(x) — exp(—x))?
(exp(x) + exp(—x))?
4
(exp(x) + exp(—x))*’

th'(x) =

On en déduit que th’ > 0. th est donc strictement croissante. Or th est continue
donc, par le théoréme de la bijection continue, th réalise une bijection de R sur

]Xﬂmoo (th (%)) ,Xﬂmw (th (x)) [ soit ] —1,1[car:

exp(x)
th (x) +oo exp(x)

~ 1.
+o00

De plus, th estimpaire donc lim (th (x)) =— Ilim (th (x)).
X——00 X—>+00
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e th (0) = 0 donne Argth (0) = 0.
e Pour foutréelx,ona:

x = Argth (%) — % =th (x)
< 3(exp(x) — exp(—x)) = exp(x) + exp(—x)
<~ 3(exp(2x) — 1) = exp(2x) + 1
<~ exp(2x) =2

— x =In(V2).

On en déduit que Argth (%) =In(v2).
. Pour tout réel x, ona:

(exp(x) + exp(—x))* — (exp(x) — exp(—x))*

(exp(x) + exp(—x))?

exp(2x) + exp(—2x) + 2 — exp(2x) — exp(—2x) + 2
(exp(x) + exp(—x))?

1—1th2(x) =

4
~ (exp(x) + exp(—x))?
—th '(x).

On en déduit donc que, pour touty de ] —1,1[,ona:

1
th /(Argth (y))
1
~1—th ?(Argth (y))
1
Sl v

Argth ’(y) =

. Argth est définie sur] — 1, 1[, on en déduit que par quotient et composition, pour
fout réelx,on a:

34+1h (x) £0
f(x) est définie < e 1+ 3th (x) ]
3+t
s 1< 13N Carth (x) € — 1,10 donc 3+ h (x) £0

3+1h (x)
—— 3-th(x) < 14+3th (x) <3+1th (x) car3 +th (x) > 0

—4 < 4th (x)
T \2th(x) <2

— -1 <th(x) <.

Or, pour tout réel x, on a th (x) €] — 1, 1[. D’aprées cette démonstration, f est définie
sur R. On a vu que Argth est dérivable sur ] — 1,1[. Par composition, f est donc
dérivable sur R.
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5. Pour tout réel x, on a:

£(x) = Argth ’ (1 + 3th (x)) 3th '(%)(3 +th (x)) —th '(x)(1 + 3th (x))

3+1h (x) (3+1th (x))?
14 3th (x) 8th /(x)
3+1h (%) ) “Gath (x)?

= Argth ’(
Onavuque, pourtfoutyde]—1,1,ona:

Argth '(y) =

1—y?’

On peut alors terminer notre calcul de dérivée. Pour tout réel x, on a alors :

) — Argth (1 +3th (x)) 8th ’(x)

3+th() ) B+th (x)?2
1 L 80 —th ?(x))
_(1+3’rh(x))2 (3+1th (x))?
3+th (x)
8(1—th %(x))
(3+1th (x))2 = (1+3th (x))?

B 8 — 8th 2(x)

~ 94+6th (x) +th 2(x) — 1 —6th (x) — 9th 2(x)
~ 8-8th?(x)

- 8- 8th ?(x)

=1.

f est donc dérivable sur R et f/ : x — 1. On déduit des calculs précédents qu’il
existe un réel a tel que :
Vx € R, f(x) =x+ a.

De f(0) = Argth <%) , soit £(0) = In(v/2), on déduit que, pour tout réel x, on a:

f(x) = x +In(v2).
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Etude de fonctions

Pour comprendre Argth ’(y) et le domaine de dé-

1
~ th/(Argth (y))
rivabilité de Argth , prenons une fonction f dérivable sur I et bijec-
tive sur I. Pour trouver |’ensemble sur lequel £~ est dérivable, il faut
d’abord chercher la partie ] de T surlaquelle f' ne s’annule pas et en
prendre I'image par f (forcément, I'ensemble de dérivabilité de !
est une partie de I’'ensemble de définition de f~! donc une partie
de I'ensemble d’arrivée de f). f~! est dérivable sur f(]). D’ autre part,

vx € f(J),ona: (f1)(x) . Pour retrouver cette formule,

1
- (X))
partez de I'égalité évidente £~ o f = id que vous dérivez comme
une composée :
(F 1) of) x f' =1

ce qui donne, si f/(x) # 0, I'égalité (1) (f(x)) = ﬁ puis celle vou-

lue en posant y = f(x) (soit x = =1 (y)).

Soit n un entier naturel non nul. Pour tout réel x, on pose :

n—1

0= Y |25 ot gt =10~ 1.

k=0

1. Démontrer que, pour tout réel x, pour tout entier m, on a :
[x+m| = [x]|+m.

Démontrer que, pour tout réel x, f(x + 1) — f(x) = 1.
Que peut-on en déduire pour g ?
En déduire que : f: x — |x].

o A oD

En déduire que, pour tout entier m, on a : [EJ 4 {LHJ =m

N

Rappelons que |x| désigne la partie entiére de x. Pensez & bien réinvestir les
questions, la question 2 donne la réponse & la question 3 puis celle-ci donne
la réponse de la question 4. Pour la question 4, commencez par calculer g(x)
pour x dans [0, 1] puis utilisez la propriété découverte dans la question 3.
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Solution 6

1. Soient x un réel et m un entier.

ommentaires

On rappelle que |x| est le plus grand entier plus petit que x, c’est
comme ¢a qu’on le calcule. Attention, [x +y| = [x]+|y] et [x xy] =
|x| x |y] sont des propriétés fausses en général. Avancez avec pru-
dence!

(@) Comme |x] < x,onabien [x] +m < x+m.
(b) Soit p un entier tel que p < x + m. Dans ce cas p — m < x. Or p — m est un entier,
on en déduit, d’aprés les propriétés de x|, que :

p—m< x]
ce quiimplique p < |x] +m.

De plus, par somme, |x] +m est un entier. |x| +m est donc le plus grand entier plus
petit que x + m, ce qui signifie que |x + m] = |x] +m.

2. D’apres la définition de f, on a

flx+1)—f(x) = (E rﬁHkJ) “i VH{J

k=0 k=0

-(E151)-5 15

X+n x+0 )
J - { J par télescopage
1

J par changement d’indice

J d’apres la question précédente

3. On en déduit :

gx+1)=fx)+1—|x+1]
= f(x) +1—|x] — 1 d’aprés la premiére question
g(x).

g est donc une fonction périodique de période 1.

4. Soit x un élément de [0; 1[. Pour fout k de [O,n—1],ona: 0 < x+k < n et donc
x+k
0<

< 1. Ainsi, pour tout k de [0,n—1],on a:

=k
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ce qui par somme donne f(x) = 0 puis g(x) = 0. Par 1-périodicité de g, on peut
donc affirmer que g est nulle ce que I'on peut fraduire ainsi :

fix— |x].
. On a donc prouvé que, pour tout entier naturel non nul n, pour tout réel x, on a:

“Z]{x:kJ_LXJ'

k=0

Soit m un entier. On a donc en particulier, puisque 2 est un entier naturel non nul et
m un réel, I'égalité suivante :

5[5 -

ce qui donne, puisque |m| = m car m est un entier, directement la réponse sou-
haitée.
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CHAPITRE 2

INTEGRATION

2.1 Exercices avec préparation

Exercice 1 (Oral HEC 2016)
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On va utiliser & peu prés tous les outils possibles dans cet exercice :
e Croissance de l'intégration dans les questions 2 (comparer f(x) et f(y)
avec 0 < x < y) et 4)c),
e Intégration par parties dans la question 3)a) dont le résultat est réinvesti
en question 3)b) et 3)c),
¢ Changement de variable dans la question 4)a)
e Théoreme fondamental de I'analyse dans la question 4)b).

Solution 1

1. Cours : On dit que deux fonctions f et g sont équivalentes au voisinage de +oo si

. fx)\
m (W) =1

2.(a) Soient x ety deux réels tels que 0 < x < y. Soit t unréel de [0,1], on A —tx > —ty,
puis, par croissance de exp, exp(—tx) > exp(—ty), puis, comme t™ > 0, ces
inégalités :

thexp(—tx) > thexp(—ty) = 0.

Par croissance de I'intégration, invocable car les bornes sont dans le sens crois-
sant et les intégrandes sont continues, on obtient :

1 1
J the ™ dt > J the W dt >0
0 0

ce qui signifie ., (x) > f(y) > 0 et prouve la décroissance et la positivité de f,,.

(b) Sans probléme, on obtient : f,(0) = ——
n+1

gente et décroissante, elle converge vers 0. On a vu que f,, était une fonction
décroissante et positive, on en déduit, si on fixe x un réel positif, que :

- (fn(0)) 50 €St donc une suite conver-

Comme |irr+1 (0) =0 et Iirr+1 (fn(0)) = 0, on en déduit par le théoreme des
gendarmes que IirD (fa(x)) =0.

3.(a) Comme x # 0, par intégration par parties, ce qui est possible car les fonctions

—tx
t— —

ett— t"*+1 sont de classe €' sur [0, 1], on obtient :

1

1 1
frir(x) = {ffe*t"t““} +J —e ¥+ NDt" dt
X 0 0o X
e x 1
L L
X X
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Intégration

ommentaire!

Intégrer du produit n“est pas une évidence. Quand on a du produit
ou quand on veut faire une intégration par parties, on exprime ce
qu’on veut intégrer sous forme d’un produit (quitte & écrire I'inté-
grande f(t) sous la forme 1 x f(t)) :

e L'un des deux termes jouera le rble de u’/, on va I'intégrer.

e L'autre jouera le réle de v, on va le dériver.
C’est a vous de choisir judicieusement la partie de la fonction que
vous souhaitez dériver et celle que vous voulez intégrer. Si on part de

b b
J u/(t)v(t)dt, il reste alors & calculer | u(t)v’(t)dt : Observez cette

a

a
derniere intégrale et demandez vous si elle est plus jolie que celle
d’origine (sinon, ¢a ne sert a rien).

(b) Soit x un réel positif, on a :

1
[
x 0

1-e
-—

En utilisant la question précédente, on en déduit :

e ™ 041
f1(x) =— — fo(x)
_l—e*—xe

x2

(c) On peut faire une petite récurrence. Puisque lrp (1 fe"‘) = 1, on a bien
X [o'e]

1—e™ ™ 1 , L L
~ —,ce que |'on peut écrire ainsi :
X xX—+00 X
0!
folx ~  —,
o(x) x—+o00 xO+1

Soit un entier naturel n tel que f,,(x)

. Grace a la question 3.a), on

Xrtoo X+
peut affirmer que :

n+2 Xn—H Xn+1e—x

X
!fn+] (x) = ——fn(x) — CESE

(n+1) nl

Le second membre tend vers 1 lorsque x tend vers +oo par somme et d’apres
I’hypothéese de récurrence. Cela achéve notre récurrence car le fait que

, X" _ . (m+1)!
Xlrpoo man (x) ) = 1 signifie précisément que 1 (x) e 2
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