


4 Introduction

Au chapitre 10 on définit les projections duales prévisibles et les compensateurs pré-
visibles que l’on illustre par les processus en forme d’échelons compensés. On montre
à l’aide de ces projections que l’intégrale de Lebesgues-Stieltjes d’un processus prévi-
sible localement borné par une martingale locale à variation finie est une martingale
locale à variation finie. On établit enfin le théorème de décomposition des martingales
locales.
Le chapitre 11 est consacré à la théorie de l’intégrale sochastique. On construit direc-
tement l’intégrale des processus prévisibles relativement à des processus intégrateurs
très généraux en suivant l’élégante méthode de l’Institut Indien de Statistiques (Ka-
randikar, Rao [6])
Au chapitre 12 on définit la variation quadratique et la covariation en utilisant l’in-
tégrale stochastique et on établit la formule d’Ito.
Au chapitre 13 on montre en construisant l’isométrie d’Ito que les martingales sont des
intégrateurs et que l’intégrale stochastique d’un processus prévisible localement borné
par une martingale locale est une martingale locale. On démontre enfin les inégalités
de Burkholder et on définit les espaces Mp de martingales.
Au chapitre 14 on établit le théorème de Bichteler-Dellacherie qui montre l’équivalence
entre processus intégrateurs et semi martingales. On en déduit la décomposition de
l’intégrale d’un processus comme somme d’une intégrale de Lebesgue-Stieltjes et d’une
intégrale stochastique par rapport à une martingale locale. On démontre enfin le
théorème de Girsanov-Meyer sur les changements de probabilités.
Le chapitre 15 est consacré à l’orthogonalité des martingales. On définit les martin-
gales purement discontinues et on établit la décomposition des martingales locales en
somme de martingales locales continues et purement discontinues ainsi que la décom-
position des intégrales corspondantes.
Au chapitre 16 on établit la formule de Fefferman, la dualité des espaces de martingales
et le théorème de représentation des martingales.
Le chapitre 17 est consacré aux familles markoviennes et à l’étude des semi groupes
que l’on applique aux semi groupes de Feller.
Au chapitre 18 on expose la théorie générales des équations stochastiques par rapport
à une semi martingale et à une fonctionnelle de processus non nécéssairemen mar-
kovienne. On utilise la méthode de découpage de la semi martingale en tronçons de
norme finie présentée notamment par Philip Proter [10].
Le théorème de continuité en fonction des conditions initiales, le cas particulier des
équations markoviennes et celui de la restriction du domaine à un ouvert sont étudiés
au chapitre 19.
Le chapitre 20 est consacré à l’étude de certaines propriétés des diffusions. On intro-
duit l’usage de la simulation. On illustre l’utilisation des diffusions pour exprimer les
solutions des équations aux dérivés partielles dans le cas du problème de Dirichlet
et du problème de Cauchy, en particulier on établit la formule de Feynmann-Kac.
On montre enfin le théorème de Cameron-Martin et les critères de Kazamaki et de
Novikov qui permettent la simplification d’une équation stochastique en éliminant le
terme de dérive (drift) au prix d’un changement de probabilité.
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Chapitre 1

Espaces mesurables

On présente les définitions générales du calcul des probabilités et du calcul stochas-
tique : tribus, espaces mesurables, espaces de probabilités, applications mesurables et
processus stochastiques.
On établit le théorème de décomposition d’une mesure signée µ en la différence de
deux mesures positives. On construit pour cela d’abord la décomposition de Hahn de
l’espace Ω en deux parties mesurables disjointes N négative et P positive telles que
pour toutes sous parties mesurables N ′ de N on a µ(N ′) ≤ 0 et pour toutes sous
parties mesurables P ′ de P on a µ(P ′) ≥ 0. On obtient alors la décomposition de
Jordan de µ = µ+ − µ− en posant µ+(A) = µ(A ∩ P ) et µ−(A) = −µ(A ∩ N).
On démontre ensuite les théorèmes de classe monotone. D’abord le lemme des classes
monotones permet l’extension d’une propriété satisfaite dans une classe S d’événe-
ments stables par intersection finie (π - système) à la tribu σ(S) engendrée par S.
Le premier théorème de classe monotone établit que pour un π - système S sur un
ensemble non vide Ω et un espace vectoriel H d’applications de Ω dans R qui contient
les constantes, les indicatrices des éléments de S et les limites des suites dans H
croissantes et bornées, l’espace H contient toutes les applications σ(S) mesurables et
bornées de Ω dans R.
Le deuxième théorème de classe monotone est une généralisation ou la classe des
indicatrices d’un π - système S est remplaçée par une partie G de H stable par
produit.
Le troisième théorème de classe monotone est adapté aux besoins de la théorie de
l’intégration stochastique du chapitre 11. Dans ce résultat H n’est pas à priori un
espace vectoriel mais il contient une algèbre G.

1.1 Espaces mesurables et probabilités
Dans une expérience aléatoire on note en général Ω l’ensemble des résultats ou réali-
sations possibles de cette expérience. Un événement est un ensemble de réalisations,
donc un sous ensemble de Ω. Une tribu F sur Ω est un ensemble d’événements pou-
vant se produire au cours d’une expérience aléatoire.
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