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Chapitre 1

Rudiments de logique
et raisonnements

Les mathématiques sont sans aucun doute la science la plus rigoureuse : en mathématiques, soit
un résultat est vrai, soit il est faux, il n’y a pas d’entre-deux ! Au fil des siécles, un certain formalisme
a été mis en place pour rendre les démonstrations les plus rigoureuses et précises possible. Dans ce
chapitre, nous allons dans un premier temps nous familiariser avec les symboles qui sont utilisés
pour rédiger une démonstration, et nous passerons ensuite en revue quelques raisonnements qui

font partie de la boite a outils du mathématicien pour prouver des résultats. L’application des
différents types de raisonnement sera vue dans les chapitres ultérieurs.

1. Les quantificateurs

En mathématiques, on appelle « quantificateurs » ’ensemble des symboles qui permettent de
faciliter la rédaction d’une preuve, et qui permettent par exemple de préciser le domaine de validité
d’un résultat. Deux quantificateurs seront particuliérement utiles au lycée :

Y etd

Le quantificateur Y se lit « pour tout » ou « quel que soit », et permet d’annoncer, généralement
en début d’assertion, I’ensemble sur lequel I’assertion qui suit est vérifiée. Par exemple, Vx € R
signifie que ’assertion qui suivra est valable pour n’importe quel nombre réel z.

Le second quantificateur, 3, se lit « il existe », et permet d’indiquer qu’il existe au moins un objet
vérifiant une certaine propriété (explicitée juste aprés). Par exemple, 3IM € R,Vn € N, (-1)" < M
se lit « il existe un réel M tel que, pour tout entier naturel n, (—1)" est inférieur & M ».

Ainsi, les quantificateurs permettent d’écrire des assertions de maniére concise, compacte et sans
ambiguité. Il existe de nombreux autres quantificateurs, parmi lesquels se trouvent par exemple :

| - « tel que »

! - « unique »
= - « implique »

& - «est équivalent & »
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Pour éviter d’alourdir les notations, le quantificateur |/ (« tel que ») est souvent remplacé par
une simple virgule.

Dans certaines situations, 'ordre des quantificateurs importe peu. C’est par exemple le cas
lorsque I’on a sous les yeux une succession de V ou bien une succession de 3. En revanche, intervertir
V et 3 n’est pas sans conséquence. Prenons un exemple concret :

VneN,AM e R/ns M
AM eR/VneNn<sM

La premiére assertion stipule que pour tout entier naturel n, il est possible de trouver un réel M
qui soit plus grand que n, et cette assertion est bien vraie (par exemple en prenant M =n+1). La
seconde assertion stipule qu’il existe un réel M qui est plus grand que n’importe quel entier naturel,
et cette assertion est fausse (si 'on prend n’importe quel réel, il existera toujours un entier naturel
supérieur a ce réel). La seule différence entre les deux assertions est Iordre des quantificateurs,
mais 'une est vraie, et 'autre est fausse. La différence entre les deux assertions est que dans la
premiére, on choisit M aprés avoir fixé n (et donc, M peut étre différent en fonction des valeurs de
n), alors que dans la seconde, on choisit M avant d’avoir fixé n (et donc M doit étre valable pour

toutes les valeurs de n). Il faudra donc étre toujours vigilant lorsqu’une assertion fait intervenir a
la fois d et V.

2. Raisonnements par implications successives, par équivalences et par
double implication

Comme leurs noms l'indiquent, le raisonnement par implications successives, le raisonnement
par équivalences et le raisonnement par double implication permettent de prouver des implications
et des équivalences. Je profite de cette section pour rappeler la différence entre une implication
et une équivalence. Par exemple, considérons deux assertions quelconques notées A et B. Une
implication est une propriété a sens unique (A = B : si A est vraie, alors B est vraie), alors qu'une
équivalence est une propriété a double sens (A < B : si A est vraie, alors B est vraie, et si B est
vraie, alors A est vraie).

Lorsque A = B, on dit que A est une « condition suffisante » pour avoir B, car il suffit
de montrer que A est vérifiée pour montrer que B l’est aussi. On dit également que B est une
« condition nécessaire » pour A, puisque si B n’est pas vérifiée, alors A ne peut pas I'étre. En effet,
si A était vérifiée, B le serait également.

Lorsque A < B, on dit que A est une « condition nécessaire et suffisante » pour avoir B.

Les raisonnements par implications successives consistent & tirer une implication & partir d’une
ou des hypothéses initiales, et de déduire une autre implication & partir de ’assertion obtenue,
et encore une autre, etc., jusqu’a aboutir a I’implication que ’on souhaite démontrer. Les rai-
sonnements par équivalences sont analogues, mais en travaillant avec des équivalences au lieu de
manipuler des implications. Parfois, il n’est pas possible de démontrer directement une équiva-
lence, et on peut alors raisonner par double implication, en prouvant les deux sens de la propriété
séparément.

Jaimerais insister sur le fait qu’il faut étre trés vigilant & ne pas utiliser le symbole d’équivalence
de maniére abusive. Il est beaucoup plus fréquent d’écrire des fausses équivalences que des fausses
implications. Lorsque 1’on écrit une équivalence, il faut s’assurer que le sens retour est bien vérifié
(c’est généralement ce sens qui rend 'équivalence fausse), et il faut bien veiller & ne pas utiliser le
symbole d’équivalence par défaut et de facon machinale et systématique.
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3. Raisonnement par récurrence

Le raisonnement par récurrence permet de démontrer des résultats sur I’ensemble des entiers
naturels N. Son principe est relativement simple : si une propriété est vérifiée & un rang ny € N, et
si elle est héréditaire (c’est-a-dire que si elle est vérifiée a un rang n, alors elle 'est aussi au rang
n + 1), alors la propriété est vérifiée pour tout entier naturel supérieur a ng.

Prenons le temps de nous en convaincre. Supposons qu’une propriété est vérifiée pour ny € N
et qu’elle est héréditaire. Comme elle est héréditaire et qu’elle est vérifiée pour ng, on peut dire
qu’elle est vraie en ng + 1. Mais comme on a montré que la propriété est vraie en ngy + 1, on peut
désormais dire qu’elle est vérifiée en ng + 2 (puisqu’elle est toujours héréditaire). On peut de méme
montrer qu’elle est vérifiée en ng + 3, ng +4, etc. Elle est finalement vérifiée pour tout entier naturel
supérieur a ng.

On peut prendre comme analogie une chute de dominos : si un domino tombe, il fait chuter le
domino suivant avec lui. Mais attention & ne pas oublier que pour que tous les dominos tombent,
il faut que le premier chute.

Généralement, une démonstration par récurrence se rédigera en trois parties :

- Initialisation : dans cette partie, on montre que la propriété est vraie en un certain rang, qui
est souvent 0 ou 1, mais pas nécessairement.

- Hérédité : dans cette partie, on montre que la propriété est héréditaire, c’est-a-dire qu’elle
se propage de proche en proche. On débutera toujours cette partie par une phrase du type :
« Soit n € ... fixé. Supposons que la propriété est vérifiée au rang n. Montrons qu’elle reste
vraie au rang n + 1 ».

- Conclusion : on terminera par indiquer que la propriété étudiée est bien vérifiée sur I’ensemble
de travail.

4. Raisonnement par I’absurde

Le raisonnement par ’absurde consiste & supposer le contraire de ce que 'on veut prouver et
a montrer que cela aboutit (par exemple au terme d’une série d’implications successives) a une
contradiction ou & quelque chose d’absurde. Cela signifie alors que I’hypothése initiale était fausse.
Ainsi, si le contraire de I'assertion considérée est faux, on peut conclure que I'assertion est vraie.

Par exemple, considérons une classe ayant effectué une interrogation de cours. La moyenne des
notes est égale & 6. Montrons qu’au moins un éléve n’a pas appris sa lecon. Supposons donc que
tous les éléves ont appris leur lecon. Dans ce cas, tous les éléves auraient une note supérieure a
10. Par conséquent, la moyenne de la classe serait elle-méme supérieure & 10. Or, la moyenne de
classe est égale & 6, et on aboutit & une contradiction. Finalement, au moins un éléve n’a pas appris
correctement sa lecon.

5. Raisonnement par contraposée

Le raisonnement par contraposée repose sur 1’équivalence suivante, dans laquelle P et ) dési-
gnent deux assertions :

(P= Q)< (non Q= non P)

Ainsi, pour montrer I'implication P = (), on peut soit montrer directement (P = @), soit
montrer ( non @ = non P), les deux reviennent a la méme chose. Parfois, il est plus facile de
prouver la contraposée de I'implication initiale.
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6. Raisonnement par disjonction de cas

Le raisonnement par disjonction de cas consiste & décomposer la proposition que 1’on souhaite
montrer initialement en un nombre de sous-propositions que 1’on vérifie séparément. Ce type de
raisonnement est surtout utilisé en arithmétique. Par exemple, si I’on souhaite montrer un résultat
veérifié par tous les entiers, on pourra d’abord montrer ce résultat pour les entiers pairs, et ensuite
pour les entiers impairs. Le fait de distinguer les cas permet d’utiliser des résultats supplémentaires
que 'on ne peut pas appliquer dans le cas général.
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Deuxiéme partie

Les fonctions réelles






Chapitre 2
Généralités sur les fonctions

Cours

1. Comprendre le concept de fonction

Trés tot au cours de notre scolarité (pour ma part en classe de quatriéme), on nous parle
de fonctions mais personnellement, j’ai mis un certain nombre d’années a trouver une définition
satisfaisante de ce concept. On commence en général & nous parler des fonctions affines, c’est-a-
dire des fonctions de la forme f(z) = ax + b avec a et b deux nombres réels. Un peu plus tard,
on découvre les fonctions polynomiales de degré 2. Et de fil en aiguille, on se familiarise avec les
fonctions a travers des cas particuliers sans jamais s’interroger sur ce qui fait qu’une fonction est
une fonction.

Chercher une définition générale des fonctions nécessite une certaine forme d’abstraction dont
on n’a pas vraiment I’habitude au lycée. Mais je suis convaincu qu’en étant accompagné par une
personne qui a un peu plus de recul, les lycéens et collégiens sont tout a fait capables de faire
preuve d’abstraction et d’appréhender des concepts sans se restreindre a des cas particuliers. C’est
pourquoi, avant de se restreindre au cas particulier des fonctions réelles & variable réelle, j’aimerais
partager ma définition d’une fonction :

Une fonction est un objet mathématique qui permet d’associer & chaque élément d’un
ensemble, appelé domaine de définition ou ensemble de départ, un unique élément
d’un autre ensemble, appelé ensemble d’arrivée.

Je reconnais que cette définition est assez vague, mais elle doit forcément I’étre étant donné que
le concept de fonction est trés large. Je vais tenter de rendre ma définition un peu plus concréte en
repartant du premier exemple de fonction que ’on rencontre au cours de sa scolarité : les fonctions
affines. Considérons la fonction f définie pour tout réel z par f(z) = 2z — 3. Cette fonction
permet d’associer chaque nombre réel (noté ) & un autre nombre réel (noté f(z)). Par exemple,
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en remplagant = par des valeurs particuliéres, on constate que 2 est associé & 2x2—3 = 1, le nombre
—10 est associé au nombre 2x(—10)—3 = —23, etc. Je pense qu’a ce stade, il est relativement aisé de
voir les fonctions comme un lien entre deux nombres réels. Mais faisons un pas supplémentaire vers
I'abstraction. Dans I'exemple précédent, nous avons choisi comme ensembles de départ et d’arrivée
I’ensemble des nombres réels. Je pense qu’il s’agit de 'exemple le plus parlant étant donné que nous
sommes habitués & manipuler des nombres réels depuis notre plus jeune age. Mais une fonction
peut relier bien d’autres éléments entre eux : un réel avec un réel, un réel avec un vecteur, une
matrice avec un réel, une fonction avec une autre fonction, etc. Si certaines notions mentionnées
dans la phrase précédente ne vous disent rien, pas d’inquiétude : nous en parlerons en détail dans
ce livre.

Pour ne pas s’intéresser & un cas particulier, nous pouvons par exemple représenter les éléments
étudiés (nombres réels, vecteurs, matrices, etc.) par des croix a l'intérieur d’ovales qui symboliseront
I’ensemble de départ, noté E, et ’ensemble d’arrivée, noté F'. Les « liens » entre les éléments des
deux ensembles sont représentés sur la figure par des fléches :

A
[

Parmi les trois schémas ci-dessus, un seul correspond a une fonction telle que nous 1’avons définie
dans ’encadré précédent. Deux points essentiels vont permettre d’identifier le schéma correct. D’une
part, la définition indique que les éléments de ’ensemble E doivent étre associés & un unique
élément de F. Cette caractéristique des fonctions permet d’éliminer le schéma A, car I’élément
entouré est associé a deux éléments distincts de F. D’autre part, chaque élément de E doit étre
associé a un élément de F. On peut donc affirmer que le schéma B ne correspond pas & une fonction,
car I’élément de E entouré n’est relié & aucun élément de F. On parle alors d’« application » et
non pas de fonction. Le schéma C quant a lui respecte toutes les caractéristiques d’une fonction.
Il est important de noter que la définition d’une fonction n’exclut pas la possibilité qu’un élément
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de 'ensemble d’arrivée F' ne soit associé & aucun élément ou soit associé a plusieurs éléments de
I’ensemble de départ E.

En termes de rédaction, la maniére la plus compléte d’introduire une fonction f définie sur un
ensemble FE et & valeurs dans un ensemble F' est la suivante :

f + E - F
z ~ f(z)
Il est important de remarquer que les fleches utilisées pour définir la fonction f sont différentes (—
a la premiére ligne, et - a la seconde).
Dans la suite de ce livre, nous nous intéresserons uniquement aux fonctions réelles & variables
réelles, c’est-a-dire les fonctions de la forme :
f+ I - R
z ~ f(z)

ou I désigne un sous-ensemble de R.

2. Vocabulaire

Le concept de fonction s’accompagne d’un vocabulaire précis que j’aimerais passer en revue
dans cette section. Soient F et F' deux sous-ensembles de R. Considérons la fonction f suivante :
f+ E - F

z = f(z)
De plus, considérons un réel = et notons y = f(x).
- F est appelé domaine de définition ou ensemble de départ de la fonction f.
- F est appelé ensemble d’arrivée de la fonction f.
- On dit que y est 'image de = par la fonction f.

- On dit que z est un antécédent de y par la fonction f.

Remarque : Le choix des articles dans les définitions ci-dessus est important. Par définition,
chaque élément x de E est associé & un unique élément de F', on parlera donc de « I'image de x ».
En revanche, un élément y de F' peut étre associé & plusieurs éléments de FE, c’est pourquoi on
parlera « d’'un antécédent » ou « des antécédents » de y.

Considérons par exemple la fonction f définie par :

fov [-1;45] - R
x b 20 =527+ 22+ 10

et dont le graphe est représenté ci-dessous :
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Graphiquement, on constate que :
- les antécédents de 2 par f sont —1, 2 et 4;
- I'image de 1 par f est 8;
- I'image de 3 par f est —2;
- 11 n’admet pas d’antécédent par f.
Ces résultats peuvent se retrouver par le calcul :
f(1)=1"-5x1>+2x1+10=1-5+2+10=8
F(-1) = (1)’ =5x(-1)° +2x(-1)+10=-1-5-2+10=2
F(2)=2"-5x2°+2x2+10=8-20+4+10=2
f(3)=3"-5x3"+2x3+10=27-45+6+ 10 = =2
F4)=4>-5x4>+2x4+10=64-80+8+10=2

3. Premiéres propriétés des fonctions : variations et signe

Soit E un sous-ensemble de R et f une fonction de E dans R.
- f est croissante sur I C E si et seulement si :

V(2y,20) € I7, 2y <29 = f(21) < f(2)
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- f est strictement croissante sur I C F si et seulement si :
2
V(z1,22) €17, 21 < a9 = f(21) < f(22)
- f est décroissante sur I C E si et seulement si :

Y(zy,20) € 127 ry <z = f(x1) 2 f(22)

f est strictement décroissante sur I C E si et seulement si :
2
V(wy,22) €17, 21 < w9 = f(21) > f(22)

- f est monotone sur I C E si et seulement si elle est croissante sur I ou décroissante sur
1.

Prenons 'exemple de la fonction g définie par :
g + [-22] - R
x - 2’

et dont le graphe est représenté ci-contre. Graphique-
ment, on constate que la fonction g est décroissante
sur [—2,0] et croissante sur [0,2]. Nous verrons plus
tard comment déterminer les variations d’une fonction
sans avoir besoin de son graphe. Les variations d’une
fonction peuvent étre résumées a l’aide d’un tableau
de variations :

-2 = 0 2

variations
de g
0

Soit E un sous-ensemble de R et f une fonction de E dans R.
- f est positive sur I C E si et seulement si :

Définition

Vzel, f(z)=0
- f est strictement positive sur I C F si et seulement si :

Vzel, f(x)>0
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- f est négative sur I C E si et seulement si :
Veel, f(z)<0
- f est strictement négative sur I C E si et seulement si :

Veel, f(z) <0

Prenons ’exemple de la fonction h définie par :

h + [-2,2] - R
T - x+1

et dont le graphe est représenté ci-contre. Graphique-
ment, on constate que la fonction h est négative sur
[-2,—1] et positive sur [—1,2]. On peut également dire
que h est strictement négative sur [ -2, —1[ et strictement -2 S 0 1 £
positive sur ] — 1,2]. Le signe d’une fonction peut étre
récapitulé a ’aide d’un tableau de signe :

signe
de h(z)

On remarquera que j’ai écrit « signe de h(z) » dans le tableau ci-dessus, alors que j’avais écrit
« variations de g » dans le tableau de variations de l'’exemple précédent. J’aimerais ici mettre en
avant la différence entre f et f(z). f désigne la fonction dans sa globalité, alors que f(z) est un
nombre : il s’agit de la valeur prise par la fonction f en x. Par conséquent, il faudra écrire dans les
démonstrations « la fonction f» et non pas « la fonction f(z) ». Puisque f(z) est un nombre, il
a une valeur constante, et ¢a n’a donc pas de sens de parler des « variations de f(z) » ; on parlera
plutét des « variations de f ». Par ailleurs, on peut parler du signe d’un nombre ou du signe d’une
fonction. Dans le tableau précédent, il serait donc envisageable d’écrire « signe de h » au lieu de
« signe de h(x) ». Mais a titre personnel, je préfére parler du « signe de h(x) » pour internaliser
la différence fondamentale entre h et h(zx).

4. Les fonctions affines

Puisque les fonctions affines sont généralement les premiéres fonctions que ’on rencontre au
cours de notre scolarité, j’aimerais leur consacrer une bréve partie.
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Soient F un sous-ensemble de R et a et b deux réels. On appelle fonctions affines les fonctions

f de la forme :
f+ E - R
r P ar+b

La courbe représentative d’une fonction affine est une droite et :
- a est appelé coefficient directeur de la droite.

- b est appelé ordonnée a l’origine de la droite.

Soient E un sous-ensemble de R et a et b deux réels. On définit la fonction f par :
f+ E - R
x + axr+b
- La fonction f est strictement croissante si et seulement si a > 0.
- La fonction f est strictement décroissante si et seulement si a < 0.

- La fonction f est constante si et seulement si a = 0.

DEMONSTRATION
Soient x, et x5 deux éléments de E tels que x; < 5. On a :

f(z2) = f(z1) = azy + b= (azy +b) = a(zy — 21)
Or, x5 — 2, > 0 par hypothése, donc :
flzy) = flz1)>0&=a>0

Finalement, f est croissante si et seulement si a > 0.
La démonstration est similaire dans le cas oul f est décroissante.

5. Les fonctions polynomiales du second degré

Soient F un sous-ensemble de R et a, b et ¢ trois réels avec a # 0. On appelle fonctions
polynomiales de degré 2 les fonctions f de la forme :
f + E - R
r b ar’+br+c
Les courbes représentatives de ces fonctions sont appelées des paraboles.

Remarque : Dans la définition précédente, il est important de garder & ’esprit que le coefficient a
doit étre non nul pour parler de fonction polynomiale du second degré.
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Soient E un sous-ensemble de R et a, b et ¢ trois réels avec a # 0. Soit f la fonction définie
par :
f + E - R
r - ar’ +br+c
- Si a > 0, la courbe représentative de f est une parabole orientée vers le haut.

- Si a < 0, la courbe représentative de f est une parabole orientée vers le bas.

,
\.

a>0 a<0

Soient E un sous-ensemble de R et a, b et ¢ trois réels avec a # 0. Soit f la fonction définie
par :
f+ E - R
r - ar’ +br+ec
On appelle discrimant de f le réel A défini par :

A =b? - dac

\ J

Soient E un sous-ensemble de R et a, b et ¢ trois réels avec a # 0. Soit f la fonction définie
par :

f + E - R
T P ar’+br+ec
Le nombre de solutions de I’équation f(x) = 0 dépend du signe du discriminant de f noté

A

- Si A >0, I'équation f(z) = 0 admet deux solutions réelles distinctes z; et xq :

b+ VA

-b—+VA
= ————et
2a

1 2a

T2
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- Si A =0, I’équation f(z) = 0 admet une seule solution réelle, appelée racine double :

-b

0= 9g

- Si A <0, I'équation f(x) = 0 n’admet pas de solution réelle.

Remarques :
- Les solutions de I’équation f(x) = 0 sont appelées « racines » du polynome.

- Cette méthode permet de trouver facilement (si elles existent) les racines d’un polyndme
du second degré. Mais ¢a n’est pas toujours le moyen le plus rapide de les déterminer. En
effet, certains polyndémes admettent ce que ’on appelle des « racines évidentes », c’est-a-dire
des racines qui peuvent se trouver rapidement en un coup d’ceeil. Plutét que de se lancer
directement dans la méthode de résolution avec le discriminant, j’invite le lecteur a regarder
dans un premier temps si 0, 1, —1, 2 et —2 ne seraient pas racines du polynoéme étudié. Au
début, cela vous paraitra certainement assez long (d’autant plus que si cette méthode n’est pas
concluante, il faudra de toute facon passer par le discriminant), mais avec de I’entrainement,
on peut gagner un temps précieux et faire trés bonne impression auprés d’un jury. Cela est
d’autant plus vrai qu’une fois que I’on connait une racine, il est trés rapide de trouver la
seconde (nous verrons la méthode dans un instant).

Soit f une fonction polynomiale du second degré définie sur R.
- 1l existe trois réels a, b et c tels que a # 0 et :

Yz €R, f(z) = az” + bz + ¢

Cette forme est appelée « forme développée ».
-b

%,ona:

- En posant a =

Vz eR, f(z) = alz — ) + f(a)

Cette forme est appelée « forme canonique ».
- Dans le cas ou I’équation f(z) = 0 admet deux solutions distinctes, notées z, et x5, on
a:
Vo €R, f(z) = a(z — 21)(z — 22)
Dans le cas ou I'équation f(x) = 0 admet une seule solution, notée xy, on a :

Vz €R, f(z) = alz — z)°

Dans les deux cas, cette forme est appelée « forme factorisée ».
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Remarques :

- A partir de la forme canonique d’un polynéme, on peut trouver les coordonnées de son sommet,
qui sont (a, f(a)). Ce sommet peut étre un minimum ou un maximum.

- Si P’on développe la forme factorisée, on obtient :
Vz €R, f(z) = ar” — a(zy + 22)7 + az1 25
En égalisant cette expression avec la forme développée, on déduit que :
¢ = ariTy

Ainsi, si ’on connait une racine non nulle du polynéme, on peut trouver la seconde en écrivant :

c
T2 = Gz,

6. Parité et périodicité

Soit f une fonction définie sur un intervalle I de R.
- f est dite paire si et seulement si :

Veel,-zxelet f(-2)=f(x)
- f est dite impaire si et seulement si :

Veel,-zxelet f(-2)=—f(x)

\. J

Remarques :
- Les fonctions cos et sin sont respectivement paire et impaire.
- La courbe représentative d’une fonction paire est symétrique par rapport a I’axe des ordonnées.

- La courbe représentative d’une fonction impaire est symétrique par rapport a l’origine du repére.

Soient T € R* et f une fonction définie sur R. f est dite T-périodique si et seulement si :

VzeR, f(z+T) = f(z)

Remarque : La courbe représentative d’une fonction T-périodique est constituée d’un motif élé-
mentaire de longueur T qui se répéte indéfiniment.
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Exercices

Exercice 1

Soit f une fonction dont la courbe représentative est donnée ci-dessous :

5

45/5 i 13 LI o 4

/ N

5 N

/ -
Compléter les phrases suivantes & partir de la figure précédente :
1. L’image de 0 par la fonction f est ... .

2. Les ... de 3 par la fonction f sont —4, —2 et 6.

3. 2 et 4 ont pour ... —3.

4. Un ... de =1 par f est 5.

Exercice 2

Soit f, g et h les fonctions définies par :
f+ R - R
x +» (z-3)(z+2)
g : R\{-1} - R
-2
z+1
h : R, - R
T P x+9

€T [ d

1. Calculer f(0), f(=3), g(3), g(1), h(9) et h(4).

2. Résoudre les équations suivante :

flz)=0;g(x)=5;h(z)=5
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Exercices

Exercice 3

Soient f, g et h trois fonctions dont les courbes représentatives sont données ci-dessous :

4

3

Cs 2

Cy

-1

Identifier parmi ces trois fonctions laquelle est périodique,

impaire.
Exercice 4

laquelle est paire et laquelle est

Résoudre les équations suivantes sur [ :

1.2°+32-1=0,1I=R 6. —2°—3x=3,I=R
2

2.1‘2—2x=—1,1=R 7.2 +32°+2=0,1=R
3.2 " +6x=-4,I=R

’ 8.3x—-3yJxr=6,I=R
4. 32°-8r+12=0,I=R 1‘/— ’
5. 20 +82+8=0,1=R 9. x+-=3,I=R"

Exercice 5
1. Soit f la fonction définie par :
f+: R - R

2
r = x +2xr-8

Déterminer la forme canonique et la forme factorisée de f.

2. Soit g la fonction définie par :

g : R - R

z - (z-2)7°-1

Déterminer la forme développée et la forme factorisée de g.

3. Soit h la fonction définie par :

h : R - R
z + 2x+2)(x-

4)

Déterminer la forme développée et la forme canonique de h.
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Exercice 6
Soit f la fonction définie par :

f R - R
r - 4 —8r-5

Déterminer les coordonnées du sommet de la parabole représentative de f.

En déduire le tableau de variations de f.

W o=

Déterminer les solutions de I'équation f(z) = 0.
4. En déduire le tableau de signe de f.

Exercice 7
Résoudre les inéquations suivantes sur R :

1. 22=32+220 4. 222 +8x <8
2. 22+ +1<0 5 -2 —=32+1<0
3. 22 +2+2>0 6. =222 —=5r+320

Exercice 8

1. Soit f une fonction définie sur R. Déterminer l'expression de f sachant qu’il s’agit d'une
fonction polynomiale du second degré et que :

f(=1)=5;f(1)=-5; f(2) = -1

2. Soit g une fonction polynomiale du second degré définie sur R. Déterminer I'expression de g
sachant que la courbe représentative de g est donnée ci-dessous :

/

Cy
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Exercice 9

Exercices

Soit ABCD un rectangle tel que AB = 6 cm et AC =4 cm. On note E, F', G et H les points

appartenant respectivement a [AB], [BD], [DC] et [C A] et tels que AE = BF = DG = CH = z.
Enfin, on note A(z) laire du quadrilatére EFGH, exprimée en c¢cm?2.

6
|
f )
c G /7, D
/7 N
-
X ;/
H
— 4
F
-
1
v
// B
I —

1. Déterminer I'ensemble de définition de A.

9.
6.

Démontrer que :
A(z) = 22° - 107 + 24
Déterminer les valeurs de z pour lesquelles I'aire de EFGH vaut exactement 16 cm?2.

Déterminer la valeur de x pour laquelle A est minimale, et préciser la valeur de A correspon-
dante.

Déterminer le tableau de variations de A.
En déduire 'aire maximale de EFGH.

Exercice 10

Une entreprise fabrique chaque jour x pots en céramique avec z € [0,80]. On considére que le
cotit de production, exprimé en euros, vaut, :

C(z) = 2° = 30z + 250

1. Déterminer le cotit pour produire 30 pots en céramique.

Chaque pot est vendu a un prix de 26 €. Déterminer I’expression de la recette de I’entreprise,
notée R, en fonction de .

Justifier que le bénéfice de I'entreprise pour la production et la vente de x pots est donnée,
pour tout z € [0,80], par :

B(z) = —2° + 56z — 250
Déterminer les valeurs de x permettant a ’entreprise d’étre rentable, c’est-a-dire d’avoir un
bénéfice strictement positif.
Dresser le tableau de variations de B sur [0, 80].

En déduire la valeur de x pour laquelle le bénéfice est maximal. Quelle est la valeur de ce
bénéfice ?
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Corrigés

Exercice 1

1. L’image de 0 par la fonction f est 0.

2. Les antécédents de 3 par la fonction f sont —4, —2 et 6.
3. 2 et 4 ont pour image —3.

4. Un antécédent de —1 par f est 5.

Exercice 2

1. Ona:
f(0)=(0-3)(0+2)=-3%x2=—6
f(=3)=(-3-3)(-3+2)=-6x(-1)=6
=352
1-2 1

h(9) = V9 +9 = V18 = 3V2
h(4) =V4+9=v13
2. On a les équivalences suivantes :
fz)=0e=(z-3)(z+2)=0=2x-3=00uz+2=0=z=30uzs=-2

Les solutions de ’équation f(x) = 0 sont {-2,3}.
Par ailleurs, on a :

r—2

7
@x_l_l=5=>:c—2=5(1:+1)=>—4x=74=x=—

4

7
Ainsi, 'unique solution de I’équation g(x) = 5 est -7

Enfin, on a :
hMz)=beoVr+9=F=1+9=25<2=16

L’unique solution de ’équation h(x) = 5 est 16.

Exercice 3

La courbe C; est symétrique par rapport & ’origine du repere, donc la fonction f est impaire.

La courbe C; est symétrique par rapport a I’axe des ordonnées, donc la fonction g est paire.

La courbe Cj, est constituée d’'un motif qui se répéte réguliérement, donc la fonction h est
périodique.
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Exercice 4

1.

Le discriminant du polynome étudié est A = 32 —=4x1x (=1) = 13. Comme A > 0, 'équation
admet deux solutions réelles distinctes :

3 VI3 34 VT3
=g s

Zq 4 5

.Ona:

- 2r=-1ea2°-20+41=0
Le discriminant du polynome étudié est A = (=2)> —4x1x 1 = 0. Comme A est nul,
I’équation admet une seule solution réelle :

Remarque : On pouvait également remarquer 1’identité remarquable et en déduire que ’équa-
tion se rameéne a (2 —1)% = 0.
On a:

20 +62= -4 22  +6z+4=0

Le discriminant du polynéme étudié est A = 62 —4x2x4 =4. Comme A > 0, I’équation
admet deux solutions réelles distinctes :

_6-v4

-6+ V4
T 4 =—2etz2=—‘/_=

1 -1

. Le discriminant du polynéme étudié est A = (—=8)° —4 x 3 x 12 = —80. Comme A < 0,

I’équation n’admet pas de solution réelle.

Le discriminant du polynome étudié est A = 87 —4x2x8=0. Comme A est nul, ’équation
admet une seule solution réelle : g
Ty = T = =2
On a:
2’ -3r=3=2"+3r+3=0
Le discriminant du polynéme étudié est A = 32-4x1x3=-3 Comme A < 0, ’équation
n’admet pas de solution réelle.

En posant X = x2, on obtient ’équation suivante :
X*+3X+2=0

Le discriminant du polynome étudié est A = 32 -4x1%x2=1. Comme A > 0, 'équation
admet deux solutions réelles distinctes :

i S A
==

—3+\/T_

X, 5

—2 et X2 = -
2 1.
Comme X = z°, on en déduit que :
2 2
' =-2ouz" =-1
Or, comme le carré d’un réel est toujours positif, on en conclut que I’équation n’admet pas
de solution sur R.
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8. En posant X = /z, on obtient I’équation suivante :
3X?-3X=6=3X"-3X-6=0

Le discriminant du polynome étudié est A = (=3)° —4 x 3 x (=6) = 81. Comme A > 0,
I’équation admet deux solutions réelles distinctes :

_ 3-8 _
==

Comme X = +/z, on en déduit que :

3++/81

X, 6

—1etX2= 2

Vr=-lou+z =2
Or, laracine d’un réel est toujours positive, et on en conclut que 'unique solution de I’équation
sur R, est 4.
9. On a:
1 2 2
x+5=3@33 +1=3ze= 2" -3z+1=0

Le discriminant du polynome étudié est A = (=3)> =4 x 1x 1 = 5. Comme A > 0, I'équation
admet deux solutions réelles distinctes :

_3-+5
-T2

_3+\/5
- 2

A et To

Exercice 5

1. Il est possible de déterminer la forme canonique d’un polynéme du second degré de deux
maniéres différentes :

- La premiére méthode consiste & appliquer la formule du cours, en sachant que ’abscisse
du sommet de la parabole est donnée par :

_h_=2
T2 T2 T
Par ailleurs, on a f(—1) = =9. On en conclut que :

VzeR, flz)=(z+1)°-9

- La seconde méthode consiste a reconnaitre le début d’une identité remarquable & partir
de z° + 2z et de corriger ensuite par le terme en dehors du carré. Dans le cas présent,
2% + 2z est le début de lidentité remarquable (z + 1)?, mais si lon développe ce carré, on
récupére un 1 en trop. Pour arriver au —8 de la fonction initiale, il faut donc soustraire 9
et on retrouve 1’expression obtenue précédemment, :

VzeR, flz)=(z+1)°-9

Déterminons désormais la forme factorisée de f. On a A = 22 —4x1x (-8) = 36. Comme
A > 0, le polynéme admet deux racines réelles distinctes :

-2 —-+/36 -2+ /36

rp=——=——=—-4etrg=——5—=2
2 2

On en déduit :

VzeR, f(z) =(x+4)(z-2)
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2. Déterminons d’abord la forme développée de g. On a :
VieR g(z)=(x-2)°-1=a2"-do+4-1=2"—4z+3

Le discriminant du polynome est A = (—4)2 -4x1x3=4. Comme A > 0, le polynome
admet deux racines réelles distinctes :

4-4
5 =

On en déduit la forme factorisée de ¢ :

w
‘o
o0
=
.
o
O

_4+\/Z_
==

T = 1 et zq 3
VreR,g(x) = (x—1)(z - 3)
3. Déterminons d’abord la forme développée de h. On a :
VzeR,h(zx) =2(z +2)(xz—4) = 22° — 4z — 16
Déterminons désormais la forme canonique de h. On a :

Vo € R h(z) = 22” — o =16 = 2(a” - 220 - 8) =2((2 = 1)* = 9) = 2(x — 1)* - 18

Exercice 6

1. L’abscisse zg du sommet de la parabole de f est donnée par :

_ b _ § =1
Ts= 9,787
Par ailleurs, on a f(1) = —9. Ainsi, les coordonnées du sommet de la parabole de f sont

(1;-9).
2. Le coefficient dominant de f est positif, donc la parabole est orientée vers le haut. On en
déduit le tableau de variations suivant :

variations \ /
de f

-9

3. Le discriminant du polynome associé a f est A = (=8)> =4 x4 x (=5) = 144. Comme A > 0,
léquation f(x) = 0 admet deux solutions réelles distinctes :

8 — 144 1 8++/144 5
=g =Tpeim=T g =3

4. On déduit des questions précédentes le tableau de signe suivant :

z —00 —% g +00
signe : 3 :
de f(z) + ¢ 9 +
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Exercice 7

1. Commengons par résoudre 1’équation 2% =32 +2 = 0. Le discriminant associé au polynéme est
A = (—3)2 —4x1x2=1. Comme A > 0, I’équation admet deux solutions réelles distinctes :

_3-41 3441
== ==

Comme le coefficient dominant du polyndme est positif, sa parabole représentative est orientée
vers le haut, et on en déduit le tableau de signe suivant :

2

T 1et xy

T -0 1 2 +00
signe de + _ 4
2’ -3z +2 0 v

Par conséquent, les solutions de I'inéquation sont ] — 00, 1] U [2, +00[.

2. Commencons par résoudre ’équation 22 +2+1 = 0. Le discriminant associé au polynoéme est
A=1"-4x1x1=-3. Comme A < 0, ’équation n’admet pas de solution réelle. Comme le
coefficient dominant du polyndme est positif, sa parabole représentative est orientée vers le
haut, et on en déduit le tableau de signe suivant :

T —00 + 00

signe de
2
" +zrz+1

Par conséquent, I'inéquation n’admet pas de solutions sur R.

3. Commencons par résoudre I’équation 2%+ 2 +2 = 0. Le discriminant associé au polynéme est
A=1"-4%x1x2=-7. Comme A < 0, I’équation n’admet pas de solution réelle. Comme le
coefficient dominant du polynéme est positif, sa parabole représentative est orientée vers le
haut, et on en déduit le tableau de signe suivant :

T — 00 + 00

signe de
2
T +x+2

Par conséquent, I'inéquation est toujours vérifiée sur R.

4. On a:
222 +82 <8 = 22" -8 +8>0
(7))
Commencgons par résoudre ’équation 227 — 8z + 8 = 0. Le discriminant associé au polynoéme 0
est A = (—8)2 —4x2x8 = 0. Comme A est nul, 'équation admet une unique solution réelle : bo
£ =
8 E S
Tog = 4_1 =2 o
O

Chapitre 2. Généralités sur les fonctions 35




Comme le coefficient dominant du polyndme est positif, sa parabole représentative est orientée
vers le haut, et on en déduit le tableau de signe suivant :

(7}
‘o
00

}
S
o x —00 2 +00
O
signe de + +
22" —8x+8 0

Par conséquent, les solutions de I'inéquation sont ] — 0o, 2[U]2, +00[, autrement dit R\{2}.

5. Commencons par résoudre I’équation —2? =32+ 1 = 0. Le discriminant associé au polynome
est A = (—3)2 —4x(-1)x1=13. Comme A > 0, ’équation admet deux solutions réelles

distinctes :
_3-VI3_-3+vI3 343 -3-VI3
N=To Ty YT T T T
Comme le coefficient dominant du polyndme est négatif, sa parabole représentative est orien-

tée vers le bas, et on en déduit le tableau de signe suivant :

x ) =3-+13 -3+/13 +00
2 2
signe de _ + B
2° -3z +2 0 0

Par conséquent, les solutions de I’inéquation sont :

e D
—00, D) U D) , +00

6. Commencons par résoudre I'équation f(z) = 0 avec f(z) = —22° — 5z + 3. Le discriminant
associé au polynome est A = (=5)° —4 x (-2) x 3 = 49. Comme A > 0, I'équation admet
deux solutions réelles distinctes :

_5-V49 1

xl—_—4—§etx2

_5+/49
-2

Comme le coefficient dominant du polyndme est négatif, sa parabole représentative est orien-
tée vers le bas, et on en déduit le tableau de signe suivant :

x —00 -3 % +00
signe 3 3
e () ! ' "

Par conséquent, les solutions de I’inéquation sont [—3, 5}.
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Exercice 8

1. Comme f est une fonction polynomiale de degré 2, il existe trois réels a, b et c tels que :

V:z:ER,f(x)=a:z:2+bx+c

On en déduit donc :

f(-1) = a-b+c = 5
@y = —5 = a+b+c = =5
f(2) = da+2b+c = -1
i;:é;b a+c = 0
—— b = —5
da+c = 9
c = -a
= b = -5
3a = 9
c = -3
=<0b -5
a = 3

Finalement, on a :

Yz eR, f(z)=32"-52-3

2. On constate sur le graphe que les coordonnées du sommet de la parabole de g sont (2;—3).

Ainsi, il existe un réel a tel que :
VreR, g(x) =alz - 2)2 -3
Par ailleurs, on remarque que g(0) = 1 et :
g(0)=1le=4a-3=1=a=1

Finalement, on a :
VzeR,g(z) = (x—2)2—3=x2—4x+1

Exercice 9

1. La fonction A est définie sur [0,4].

2. L’aire du quadrilatére EF'GH est obtenue en soustrayant les aires des triangles AEH, EBF,

GDF et CHG a laire du rectangle ABCD. Ainsi :

Ve € [0,4], A(z) = 24 - x(42— z) sc(62— z) x(42— z) 36(62— )

=24-x(4-2)—-2(6—-1x)
=227 — 10z + 24

3. Il s’agit de résoudre I’équation suivante :

A(x) =16 = 22° — 100 +24 =16 = 22" =102 +8 =0
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Le discriminant du polynéme est A = (—10)2 —4x2x8 =36. Comme A > 0, 'équation
admet deux solutions réelles distinctes :

10 — /36 10+V36 _

T = 1 =1eta:2= 1

w
‘o
o0
e
.
o
O

Les deux solutions obtenues appartiennent bien au domaine de définition de A, et on en
conclut que laire de EFGH vaut 16 cm? si et seulement si x vaut 1 ou 4.

4. Le coefficient dominant de A est positif, ce qui implique que la parabole représentative de A
est orientée vers le haut. Ainsi, son sommet correspond & un minimum. Déterminons 1’abscisse
xg du sommet de la parabole représentative de A, donnée par :

-b 10 5

TSS9, =T 2

5 -
5 appartient bien au domaine de définition de A, et on en déduit que 'aire de EFGH est

5
minimale lorsque = = 5 De plus :
5 5\ 5 25 23
A(§)=2X(§) —10X§+24=7—25+24=?

5. On déduit des questions précédentes le tableau suivant :

T 0

R[S

4

24 16

variations \ /
de A 23

6. La question précédente permet de conclure que 'aire de FFGH est maximale lorsque x = 0.
A vaut alors 24. En effet, si z = 0, les rectangles ABCD et EFGH sont confondus, et ils ont
donc la méme aire.

Exercice 10

1. On a:

C(30) = 30% = 30 x 30 + 250 = 250

La production de 30 pots en céramique cotite 250€ a I'entreprise.

2. On a:
Vz € [0,80], R(z) = 26x

3. Ona:

Yz € [0,80], B(z) = R(z) - C(x) = 262 — (2° — 30z + 250) = —2° + 56z — 250
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4. Commencons par résoudre I’équation :
B(z) =0 —2° + 562 - 250 =0

Le discriminant associé au polynome est A = 562 —4x (=1) x (=250) = 2136. Comme A > 0,
I’équation admet deux solutions réelles distinctes :

-56 — V2136 —-56 + V2136
x1=_—2251,1et$2=_—224,9
Le coefficient dominant du polynoéme étant négatif, sa parabole est orientée vers le bas, et on
en déduit le tableau de signe suivant :

x 0 T2 1 80
signe de _ -
B(z) 0 + 0

Ainsi, Pentreprise réalise un bénéfice positif lorsqu’elle produit et vend entre 5 et 51 pots en
céramique.

5. L’abscisse x5 du sommet de la parabole est donnée par :

—56
335'=__2=28

Par ailleurs :
B(28) = —28” + 56 x 28 — 250 = 534

On obtient le tableau de variations suivant :

534

variations /
de B

—-250 -2170

6. L’entreprise réalise un bénéfice maximal lorsqu’elle produit et vend 28 pots en céramique.
Son bénéfice vaut alors 534€.
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Chapitre 3
Dérivation

Cours

1. Préambule

En mathématiques, les fonctions peuvent avoir des allures et des propriétés diverses et variées.
Je pense néanmoins que l'on peut s’accorder & dire que les fonctions les plus simples sont les
fonctions affines, c’est-a-dire les fonctions de la forme :

f(x) =ax +b, avec (a,b) € R?

En effet, les courbes représentatives de ces fonctions sont des droites, et on peut difficilement
faire plus simple qu'une droite. Le probléme est que dans la majorité des cas, les fonctions que 1’on
étudie ne sont pas des fonctions affines, et ont des courbes représentatives qui ne sont donc pas
des droites. Pourtant, si 'on « zoome » suffisamment sur la courbe d’une fonction, elle va finir par
ressembler & une droite, et & partir d’un certain moment, on ne parviendra méme plus a distinguer
sa courbure : tout est une question d’échelle !

L

L’image du milieu et de droite correspondent approximativement au grossissement d’un facteur
2 et 10 de I'image de gauche. Ainsi, en grossissant I'image d’un facteur 10, on passe d’une courbure
évidente & une courbure quasiment indistinguable. Dés lors, on peut raisonnablement envisager
d’approximer localement (c’est-a-dire sur un petit intervalle) une courbe par une droite.

A ce stade, la question qui vient naturellement est : comment choisir la droite qui approxime

le mieux la courbe considérée? Intuitivement, on choisirait certainement la droite qui épouse la
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courbure de la courbe au niveau du point en lequel on se place. Nous pouvons certainement nous
accorder sur le fait que, sur I'image ci-dessous, 'approximation du milieu semble plus satisfaisante
que les deux autres.

s

Si ce que nous venons de voir vous semble assez logique, alors vous avez compris 'idée qui se
cache derriére la dérivation. Dans la suite de ce chapitre, nous verrons comment formaliser ces
idées.

2. Taux d’accroissement et nombre dérivé

Considérons une fonction f définie sur un intervalle I de R. Comme expliqué précédemment,
I'une des idées liée a la dérivation est d’approcher localement, par exemple au point d’abscisse
a € I, la courbe représentative de f par une droite, la difficulté étant de déterminer la meilleure
droite possible pour répondre a ce probléme. En premiére approximation, il est possible de choisir
la droite passant par le point d’abscisse a et un autre point, par exemple d’abscisse a + h avec
heR}:

I ——— -
1(@) t--—pfy
f;v a,—&l-h

Cependant, cette droite ne semble pas trés satisfaisante pour approximer la courbe. Une idée
pour obtenir une meilleure approximation serait de rapprocher le point H de A (autrement dit, de
diminuer h) :
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J@-+R)fmnnnnnnnnannnnnannae “
f(@) ==
clz, a,-fl—h

La nouvelle droite semble étre une meilleure candidate, mais on se doute que 1’on peut mieux
faire en rapprochant encore les deux points :

flath)pammmmaaaaas

f(a) """ A

"
1
'
1
1
1
"
1
'
1
1
1
1

a

Ca+h

Vous l'aurez sans doute compris : plus on diminuera la valeur de h, et par conséquent plus on
rapprochera le point H du point A, plus la droite (AH) sera proche de I'idée que 'on se fait de
« la meilleure droite approximant la courbe de f en a ».

Chapitre 3. Dérivation 43



Soit f une fonction définie sur un intervalle I de R. Soit a € T et h € R}. Sia+h € I, on
appelle taux d’accroissement de f entre a et a + h le nombre :

fla+h) - f(a)

ra(h) = S

Remarque : Le taux d’accroissement ainsi définie correspond au coefficient directeur de la droite
(AH) sur les figures précédentes. En effet le coefficient directeur de (AH) s’obtient par :

yn —ya _ fla+h) = f(a) _ fla+h) - f(a)

TH —TA a+h—a h

Soit f une fonction définie sur un intervalle I de R. Soit a € I et h € R} tel que a + h € I.
Si le taux d’accroissement de la fonction f entre a et a + h tend vers un nombre réel quand
h tend vers 0, on dit que f est dérivable en a. Dans ce cas, la limite du taux d’accroissement
quand h tend vers 0 est appelé nombre dérivé de f en a et est noté f'(a) :

fla+h) - f(a)
h

= 7a(h)

f'(a) = lim

Remarques :

- Un chapitre entier sera consacré aux limites de fonctions. A ce stade, vous pouvez retenir que
pour déterminer la limite de 7,(h) quand h tend vers 0, il suffit de remplacer h par 0 dans
Pexpression de 7,(h).

- D’aprés ce que I'on a dit précédemment le nombre dérivé de f en a, s’il est bien défini, correspond
A la pente locale de f au point d’abscisse a.

- f'(a) se lit « f prime de a ».

3. Calcul de dérivées

Une fonction f est dérivable sur un intervalle I si et seulement si elle est dérivable en tout
point de I.
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Le tableau ci-dessous récapitule les dérivées usuelles, qu’il est impératif de connaitre parfaite-
ment :

Domaine de validité | Fonction f | Dérivée f'

R k, ke€R 0
R T 1
R 2’ 2x
R 2", neN na""!
R* 1 1
z a2

R sin cos T

R Ccos T —sinz

R e’ e’
R} Inz %

DEMONSTRATION

Nous ne démontrerons pas toutes les formules du tableau ci-dessus, car cela deviendrait rapidement
répétitif. Nous ne démontrerons que trois des neuf résultats.

i. On considére la fonction :

fi + R - R

Soit h > 0. On a:

2 2 2 2 2
VmER,Tx(h):fl(x-‘-hf)L fl(x):(x+hf)b LA +2hxh+h T o ih

On en déduit :
lim7,(h) = 2z
h=0

Finalement, on a bien :
Yz eR, fi(z) = 2z
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ii. On considére la fonction :

fa R* - R
pon
Soit h > 0. On a :
. z+h) - folz T —h -1
Vo B () = LM fle) | T S
On en déduit : 1
R

Finalement, on a bien :
* 1
Vo eR", fy(z) = -
x

iii. On considére la fonction :
fs ¢+ Ry - R
A Y £
Soit h > 0. On a :

_ fs(x+h) - fy(xz) vr+h-+zx
B - h

Yz e Ry, 7, (h) -
(Vx + h = x)(Vz + h + Jz)

h(Vz + h + /x)
B h
h(Vz + h + /x)
1
CVzth+ Jz
On en déduit : 1
lim7,(h) = —
tim () = 5=
Finalement, on a bien :
* 1
Vz € R}, fy(z) = NG

Remarque : Un chapitre entier sera consacré aux fonctions exponentielle et logarithme népérien,
mais j’ai d’ores et déja indiqué les dérivées de ces deux fonctions dans le tableau précédent pour
qu’il soit complet et utilisable a posteriori.

Propriété

Soient I et J deux intervalles de R. Soient f une fonction définie sur I et a valeurs dans J,
et g une fonction définie sur J. Soit x € I. Si f est dérivable au point d’abscisse = et si g
est dérivable au point d’abscisse f(z), alors g o f est dérivable en z et :

(g0 f)(2) = f(2)g (f(=))
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Les fonctions que ’on rencontre ne sont généralement pas aussi simples que celles présentées
dans le tableau précédent. Le plus souvent, on s’intéresse a des fonctions qui font intervenir plusieurs
fonctions de référence. La propriété ci-dessus permet de généraliser les résultats vus précédemment :

Y . P 1
u a valeurs dans | Fonction f | Dérivée f

1 n-1
R u', neN nuu"
1 o
*
R u )
U
u’
%
R. Vu —
24/u
. I
R sinu U COSU
|
R cosu —u sinu
1
R e” ue”
’LL’
*
R Inu m

Remarque : Si I'on considére u(z) = z, on retrouve les résultats présentés plus tot.

Soient I un intervalle de R et u et v deux fonctions dérivables sur I.
i. La fonction u + v est dérivable sur [ et :

Vo el (u+v)(z)=u(z)+0' ()
ii. Pour tout réel k, la fonction ku est dérivable sur I et :
Yz € I, (ku)(z) = ku'(z)
iii. La fonction uv est dérivable sur I et :
Vo el (w)(z) = u'(z)v(z) + u(@)v'(z)

iv. Si de plus la fonction v ne s’annule pas sur I, alors la fonction % est dérivable sur I et :

Veel, (%), (z) = u'(2)v(z) - u(@)v'(x)

v(z)?
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Remarque : On veillera a connaitre parfaitement ces résultats pour éviter de sortir des monstruo-

sités telles que «ta—dérivée-dun—-produit-estle-preduit-des-dérivées—» ou encore «Ja—dérivée-dun
gretient-estle-quotient-des-dérivées—-.

4. Dérivée et sens de variations

Théoréme

Soit f une fonction dérivable sur un intervalle I de R. Soit J C I.
- f est croissante sur J si et seulement si f' est positive sur J.

f est strictement croissante sur J si et seulement si f' est strictement positive sur J.

, . . . ! 5 .
f est décroissante sur J si et seulement si f est négative sur J.

- f est strictement décroissante sur J si et seulement si f’ est strictement négative sur J.

f est constante sur J si et seulement si f' est nulle sur J.

Remarques :

- Ce résultat établit un lien entre une fonction et sa dérivée. Le seul lien qui existe entre
une fonction et sa dérivée est entre les variations de la premiére et le signe de la
seconde. Il n’y a aucun lien entre les variations d’une fonction et les variations
de sa dérivée. Il n’y a aucun lien entre le signe d’une fonction et le signe de sa
dérivée.

- Lorsque 'on demandera d’étudier les variations d’une fonction dont ’expression est explici-
tement donnée, il faudra toujours penser & étudier le signe de sa dérivée.

Meéme si la démonstration formelle de cette propriété dépasse le cadre du lycée, on peut aisément
se convaincre de ce résultat. En effet, nous avons expliqué en début de chapitre que le nombre dérivé
(et par extension la dérivée) correspond a la pente locale de la courbe. Si la dérivée est positive,
cela signifie que la pente locale de la courbe est positive, et on sait qu'une pente positive correspond
& une fonction croissante. De méme, si la dérivée est négative, cela signifie que la pente locale de
la courbe est négative, et on sait qu’une pente négative correspond & une fonction décroissante.
Enfin, si la dérivée est nulle, alors la pente locale de la courbe est nulle, ce qui correspond a une
droite horizontale, ou autrement dit & une fonction constante.

5. Tangente d’une fonction en un point

Soient f une fonction définie et dérivable sur un intervalle I et a € I. On note Cy la courbe
représentative de f. On appelle tangente a la courbe C; au point d’abscisse a la droite

passant par le point de coordonnées (a; f(a)) et de coefficient directeur f'(a).

Remarque : La tangente correspond a la droite qui permet d’approximer le mieux la courbe
d’une fonction et dont nous parlions (sans la nommer) au début de ce chapitre.
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Soit f une fonction définie et dérivable sur un intervalle I et a € I. On note C; la courbe
représentative de f. La tangente & C; au point d’abscisse a a pour équation :

y = ['(a)(x=a) + f(a)

DEMONSTRATION

Soit f une fonction définie et dérivable sur un intervalle I et a € I. On note C; la courbe représen-
tative de f. Considérons la droite d’équation y = f'(a)(z — a) + f(a).

D’une part, le point (a; f(a)) appartient bien a cette droite car f'(a)(a — a) + f(a) = f(a).
D’autre part, on a :

y=f(a)(z-a)+ fla) = y=f(a)x- fla)a+ f(a)

Ainsi, le coefficient directeur de la droite est bien f'(a).
Finalement, la droite considérée est bien la tangente & C; au point d’abscisse a telle qu’elle a été
définie précédemment.

6. Convexité et concavité

Définition

- Une fonction est convexe sur un intervalle I si et seulement si sa courbe représentative
est située au-dessus de chacune de ses tangentes sur cet intervalle (& gauche sur la figure
ci-dessous).

- Une fonction est concave sur un intervalle I si et seulement si sa courbe représentative
est située en dessous de chacune de ses tangentes sur cet intervalle (a droite sur la figure
ci-dessous).

-2 -1 1 2 3 4
3
-4 1

IS

-2 -1

o
~
w
IS

-1
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Soit f une fonction définie et dérivable sur un intervalle I. Si f' est elle-méme dérivable sur
I, alors on dit que f est deux fois dérivable et on a :

Voel, f'(z) = (f'(2))

Remarques :
n .
- f(x) selit « f seconde de x » .
- On peut de la méme maniére définir la dérivée troisiéme, la dérivée quatriéme, ..., la dérivée

n-éme d'une fonction (avec n € N*), qui sont respectivement notées f(g), f(4), f(”).

Soit f une fonction définie et deux fois dérivable sur un intervalle I. On a les équivalences
suivantes :
f est convexe sur [ < Yz eI, f ()20
<0

f est concave sur I < Yz €I, f' ()

Soit f une fonction définie sur un intervalle I. On dit que le point d’abscisse a € I est un

point d’inflexion de f si la convexité de f change en ce point, c’est-a-dire qu’elle passe de

concave a convexe ou de convexe & concave.
5
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Propriété

Soient f une fonction définie et deux fois dérivable sur un intervalle I et a € I. Si le point
d’abscisse a est un point d’inflexion de f, alors f"(a) = 0.

Remarque : J’aimerais attirer votre attention sur le fait que ce résultat est une implication et
non pas une équivalence. En effet, étant donnés une fonction définie et deux fois dérivable sur un
intervalle I et a € I, il ne suffit pas de dire que f"(a) = 0 pour montrer que la fonction f admet
un point d’inflexion en a. En effet, d’aprés la définition d’un point d’inflexion, la convexité de f
doit changer en ce point. Par conséquent, il faut que la dérivée seconde de f change de signe en ce
point, et montrer que f"(a) = 0 n’est donc pas suffisant. En revanche, si f" change de signe en a,
alors on a nécessairement f"(a) = 0 (d’ou I'implication précédente). Dés lors, on pourra chercher les
éventuels points d’inflexion d’une fonction parmi les points en lesquels sa dérivée seconde s’annule.
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Exercices

Exercices

Exercice 1
Déterminer les dérivées des fonctions suivantes, aprés avoir justifié qu’elles sont bien dérivables
sur 'intervalle de travail.

Cfi(z)=2"+32, I=R

—_

2. fo(z) = % I=R"

3. fs(z)=2Vx+a2, I =R}

4. f4(z) =sinx +cosz, I =R

5. fs5(x) =x7+516—3x3+8x2—7$+10,I=R
Exercice 2

Apres avoir précisé l'intervalle sur lequel elle est dérivable, déterminer la dérivée de chacune
des fonctions suivantes :

1 fi(2) = 1 5. fs(x) = 2(2° + 2)VT
‘/52 6. fo(z) = (22 +3)°
2. fo(x) = (2 — 3z) cosx
3 n * 7 f (l‘) = L
3. fg(x)=(32x—1),aveanN SRS v
4 f($)=:c + 3z -1
S 22+ 22+ 1

Exercice 3

Apres avoir précisé l'intervalle sur lequel elle est dérivable, déterminer la dérivée de chacune
des fonctions suivantes :

1. fi(z) = cos(3z — 1) 3z

9 fy(x) = sin(v/z) 5. fslx) =\ 75

3. fa(z) =V3z2+2z 6. fo(x) = cos((z - 1)vx)
4. fu(x) = sin(5z"), avec n € N*

Exercice 4

Dans chacun des cas, déterminer ’équation de la tangente & la courbe de f au point d’abscisse

1 fi(z)= (2" -3z+1)° a=2 3. fa(z)=vVor+3,a=1
- 1
2. f2(=’5)=2a;—_*_13,a=0 4. f4($)=m,a=l
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Exercice 5

Déterminer le sens de variations des fonctions suivantes, aprés avoir préciser leurs domaines de
définition respectifs :

1.

2.

3.

filz) = %fvg - g:f + 62 —3
falz) = ﬁ
fala) = o2

Exercice 6

On s’intéresse a une fonction f donc la courbe est représentée sur le graphe ci-dessous :

/1\..

AN /

[ L]

%Eﬁ-

/ _1 N

/

I * \ I
Les tangentes & la courbe C; aux points d’abscisses —1, 1 et 3 ont été représentées sur la figure
précédente.
1. Déterminer graphiquement f'(—1), f'(1) et f'(3).
2. En déduire les équations des tangentes a la courbe Cy aux points d’abscisse —1, 1 et 3.
3. Etablir le tableau de signe de f'. On notera oy et o les réels vérifiant f'(ay) = f'(as) = 0
et a1 < as.
4. La fonction f admet-elle un point d’inflexion ?

Exercice 7

Démontrer que la fonction carrée et la fonction inverse admettent une unique tangente commune
*
sur R".
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Exercices

Exercice 8

Déterminer si les fonctions suivantes sont convexes ou concaves sur 'intervalle de travail :

1 fi(z)=2",1=R
2. foz) =V, I =R}
3. fy(z) = % I=R!

4 filz)= 2, I=R"
5 fo(z)=a, =R

Exercice 9
Montrer que :

" 1
Vm€R+,x+522

Exercice 10
On considére la fonction f suivante :

f + R* - R

1. Etudier les variations de f.

2. Déterminer les abscisses des points en lesquels C; admet une tangente horizontale.

3. En quels points la courbe C; admet-elle des tangentes dont le coefficient directeur vaut 17
4. Déterminer une équation de la tangente a la courbe C; au point d’abscisse 3.

. * *
5. La fonction f est-elle convexe sur R” 7 sur R, ?

Exercice 11
On s’intéresse a la fonction f définie par :

f @ R*
x

—
-

HI»—A%

On admet que la fonction f est dérivable une infinité de fois sur R*. Montrer que :

(-1)"n!

xn+1

VneN,Vz e R*7f(n)(m) =
On rappelle que f(n) désigne la dérivée n-éme de f, c’est-a-dire la fonction obtenue en dérivant
successivement n fois la fonction f. On a f(o) = f. Enfin, n! désigne la factorielle de n et :
nl=1x2x..xX(n—-1)xn

Exercice 12
On s’intéresse & la production de meubles dont le cotit total de production est donné, pour
x € [0,20] par :

1
c(x) = ng —22° + 302 + 110

ol ¢ est exprimé en milliers d’euros et x désigne le nombre de milliers de meubles fabriqués. La
courbe représentative de C, est donnée ci-dessous :
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5]

0 2 3 4 10 1 2 13 14 15 6 17 18 19 20

1. Déterminer les cotits fixes liés & cette production, c’est-a-dire les cotits pour produire 0
meuble.

2. Chaque meuble est vendu au prix de 65€.

a. Sur lafigure précédente, tracer la courbe de la fonction r égale aux recettes de ’entreprise
en milliers d’euros.
b. En déduire graphiquement le nombre minimal et le nombre maximal de meubles &
produire pour que I'entreprise soit rentable.
3. On introduit la fonction b égale aux bénéfices de 'entreprise en milliers d’euros.
a. Exprimer b en fonction de ¢ et r. En déduire une expression de b en fonction de x.
b. Etudier les variations de b sur [0,20].

c. Pour quel nombre de meubles la production est-elle la plus rentable ? Quel est alors le
bénéfice atteint ?
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Corrigés

w
‘o
o0
e
.
o
O

Exercice 1

1. La fonction f; est dérivable sur R comme somme de fonctions dérivables sur R et :

Vo eR, fi(z) =2z +3

[\]

. La fonction fy est dérivable sur R* car la fonction inverse est dérivable sur R* et :

Vz € R*,fé(x) =-—
x

w

. PRy * . L. *
. La fonction f3 est dérivable sur R, comme somme de fonctions dérivables sur R et :

4. La fonction f; est dérivable sur R comme somme de fonctions dérivables sur R et :

Yz €R, fi(z) = cosz — sinz

(@]

. La fonction f5 est dérivable sur R comme somme de fonctions dérivables sur R et :
! 6 5 2
Vz eR, f5(x) =Tz +30x° — 92" + 162 — 7

Exercice 2

. L. * . . P s
1. La fonction f; est dérivable sur R, comme inverse d’une fonction dérivable et ne s’annulant
*
pas sur R;. f; est de la forme % avec u(x) = y/z. On a donc :

—u'(z)  Tis 1
Vz € RY, fi(x) = =22 o

u(z)? z 2x\[T

2. La fonction fy est dérivable sur R comme produit de fonctions dérivables sur R. f, est de la
forme u X v avec u(z) = z° - 3z et v(x) = cosz. On a donc :

Yz €R, fo(z) = u'(2)v(z) + u(z)v'(z) = (22 — 3) cosz — (m2 —3z)sinzx

3. La fonction f3 est dérivable sur R comme puissance entiére d’une fonction dérivable sur R.
f5 est de la forme u™ avec u(z) = 3z° — 1. On a donc :

Yz € R, f3(z) = nu'(2)u(z)”" = 9na”(32° - 1)

VeeR 2z’ +22+1=(z+1)
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Par conséquent, la fonction x 2> +22+1 s'annule en —1. Ainsi, la fonction f; est dérivable
sur R\{-1} comme quotient de fonctions dérivables sur R\{—1}, le dénominateur de n’annu-
lant pas sur cet intervalle. f; est de la forme % avec u(x) = 2®+3z-letv(z) =2° +2z+1.

On a donc :
(2)o(z) - u(z)v'(x)
v(z)?
(22 +3) (2> + 22 + 1) — (2% + 32 - 1)(22 + 2)
(22 + 22 + 1)?

Vo € R\{-1}, fi(z) = —

_ —2" +4z+5
(z+1)*
5. La fonction f5 est dérivable sur R} comme produit de fonctions dérivables sur R}. f5 est de
la forme u X v avec u(z) = 2(2* + z) et v(z) = /z. On a donc :
* 1
Yz € RY, fi(z) = u'(2)v(z) + u(z)v'(2) = (4o + 2)VT + 2(2° + x)ﬁ
]

4z +2)z+2° + 2
NG
_51:2+3a:
_T
= 5z + 3Vz

6. La fonction fg est dérivable sur R comme puissance entiére d’une fonction dérivable sur R.
fe est de la forme u" avec u(z) = 22 + 3 et n = 5. On a donc :

Vz € R, f5(z) = nu/(z)u(z)” " = 10(2z + 3)*

7. Le discriminant du polynéme 307 +3z+1est A = 3°—4x3x1 = -3 < 0. Ainsi, le polynome ne
s’annule pas. Par conséquent, la fonction f; est dérivable sur R} comme quotient de fonctions
dérivables sur R}, le dénominateur de n’annulant pas. f; est de la forme * avec u(z) = 3z

et v(z) = 32° + 3z + 1. On a donc :
"(2)o(z) = u(z)'(z) %(SxQ + 3z + 1) — 3y/z(6z + 3)
v(x)? (322 + 3z + 1)
3(32” + 3z + 1) - 62(6x + 3)
2Jz(322 + 3z + 1)
~272° — 9z + 3
2Vx (322 + 3z + 1)?

Vo e R, fi(x) = =

Exercice 3
1. La fonction cos est dérivable sur R. La fonction x +— 3x — 1 est dérivable sur R et & valeurs
dans R. Ainsi, la fonction f; est dérivable sur R. f; est de la forme u o v avec u(x) = cosx

et v(z) = 3z — 1. On a donc :

Vz €R, fi(z) = v'(z)u'(v(z)) = —3sin(3z - 1)
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. La fonction z

. . s . . . ~ PRy * N
. La fonction sin est dérivable sur R. La fonction racine carrée est dérivable sur R et & valeurs

dans R. La fonction f, est donc dérivable sur R}. fs est de la forme u o v avec u(z) = sinx
et v(z) = y/x. On a donc :

Vo € RS, fi(z) = o'(2)u (v(x) = %cos(ﬁ)

. . , , . L. * . 2
. La fonction racine carrée est définie sur R, et dérivable sur R’ . La fonction x — 3x” + x est

définie sur R et :
Vo eR,32°+2=2(3z +1)

On en déduit le tableau de signe de la fonction x - 32+

1
x —00 -3 0 +00
signe de
+ - +
327 + 1z v 0

Il s’en suit que la fonction f3 est dérivable sur ]—oo, —%[ uJ0, +o0o[. f5 est de la forme u o v

avec u(z) = yZ et v(z) = 3z + 2. On a donc :

1 _ 6z +1
V322 + 2 2V322 +

Va € }—oo,—é[ 010, +0o[, f4(x) = o' () (u(a)) = (62 + 1)

. La fonction sin est dérivable sur R. La fonction z +~ 5z" est dérivable sur R et & valeurs

dans R. Ainsi, la fonction f, est dérivable sur R. f; est de la forme u o v avec u(x) = sinzx et
v(x) = 52". On a donc :

Vo € RE, £i(z) = o' (2)u'(v(z)) = 5nz” " cos(52™)

— est définie et dérivable sur R\{1} comme quotient de fonctions déri-
vables sur R\{1}, le dénominateur ne s’annulant pas sur cet intervalle. De plus, on a :

T —00 0 1 +00
signe 5
- +
de 3z O
signe de _ 0 +
z-1 g
signe 2
3z + 0 - +
de o1 |
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Comme la fonction x + /z est dérivable sur R}, il s’en suit que la fonction f5 est dérivable
sur | — 00, 0[U]l, +0o[. f5 est de la forme u o v avec u(z) = /7 et v(x) = . On a donc :

(r—-1)-3z 1
(@=1)* o /3
-3 z-1

2(x - 1)2 3z

-3
2(x = 1)/3z(x - 1)

Yz €] — 00,0[U]1, +0o[, f5(z) = v'(2)u'(v(z)) =

6. La fonction cos est dérivable sur R. La fonction z + (x — 1)y/z est & valeurs dans R et
dérivable sur R} comme produit de fonctions dérivables sur R}. Ainsi, la fonction fg est
dérivable sur R}. fs est de la forme u o v avec u(z) = cosz et v(z) = (2 — 1)y/z. On a donc :

1-3x
2z

Vo € R, fi(x) = (JE+ (a - 1) )sin((x SV = T (e - 1))

1
2V

Exercice 4

1. La fonction f; est dérivable sur R comme puissance entiére d’une fonction dérivable sur R
et :
Vz €R, fi(z) = 3(22 — 3)(2” — 3z + 1)°

L’équation de la tangente & la courbe de f; au point d’abscisse 2 est donc :
yi= 2z =-2)+ fi(2) =3(x-2)-1=3c-7

2. Lafonction f5 est dérivable sur R\ { } comme quotient de fonctions dérivables sur R\ { },
le dénominateur ne s’annulant pas sur cet intervalle et :
20 +3-2(x—-1) _ 5
(2 + 3)2 "~ (22 + 3)2

VsceR\{ } folx) =

[’équation de la tangente a la courbe de fy au point d’abscisse 0 est donc :

yo = f2(0)(z = 0) + f»(0) =

1
v

Ol ot

3. La fonction racine carrée étant dérivable sur R}, il s’en suit que la fonction f; est dérivable
sur ]—§,+oo[ et :
3 1 5
Vz € ]——,+oo[,f3(:1c) = —
5 2v5r + 3

[’équation de la tangente a la courbe de f3 au point d’abscisse 1 est donc :

(7]

i 5 11 ~g)°
y3=f3(1)($—1)+f3(1)=ﬁ(w—l) \/g‘Fm—F \/5—4\/_ o =
o

O
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ne s’annulant pas sur cet intervalle, et :

-3(x - 2 -
Vz e R\{?)},f!;(x) = (3:[(7 _ 3)36) - (z —33)4

w
‘o
o0
=
.
o
O

L’équation de la tangente & la courbe de f; au point d’abscisse 1 est donc :

3 1 3 1

y= @ -0+ (1) = —fela-1) -3 = —{67+ 15

Exercice 5

4. La fonction f; est dérivable sur R\{3} comme inverse d’une fonction dérivable sur R\{3} et

1. La fonction f; est définie et dérivable sur R et :
Vi eR, fi(z)=2" -5z +6=(z—-2)(z-3)

On en déduit le signe de la dérivée, et les variations de f; :

fi(=)

T -0 2 3 + 00
signe de _ O +
T — 2 :
signe de _ 0 +
-3 :
signe de

ol |-

variations \
de fl /

(Ao

/

2. Lafonction f, est dérivable sur R\{3} comme inverse d’une fonction dérivable et ne s’annulant

pas sur R\{3} et : )
Ve R\{3}, fo(z) = _?;_1;;?6) = (z :33)4

La dérivée de fy est clairement négative sur son domaine de définition et on obtient le tableau

suivant :

x —00 3 + 00

signe de

fo()

variations
de f2
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