

Colles de **mathématiques**

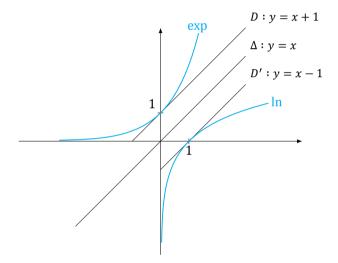
Philippe Agnès Rémi Coutens

310 EXERCICES CORRIGÉS

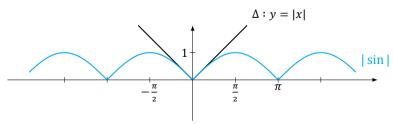
- ► Exercices de calcul
- ► Exercices de raisonnement
- ► Exercices avec questions ouvertes

Fonctions d'une variable

1



Deux inégalités à connaître : $e^x \ge 1 + x$ et $\ln(x) \le x - 1$ (ou encore $\ln(1+t) \le t$).



Autre inégalité utile $|\sin(x)| \le |x|$.

Exercices axés sur le calcul

Exercice 1 Étude de fonction

Pour tout $x \in \mathbb{R} \setminus \{0\}$, on pose :

$$\psi(x) = \arctan(x) + \arctan\left(\frac{1}{x}\right).$$

- 1) Montrer que ψ est constante sur $]0, +\infty[$ et préciser $\psi(x)$ pour x > 0.
- 2) Que devient ce résultat pour x < 0?

D'après Banque PT

Exercice 2 Calcul trigonométrique

Soit t un réel appartenant à $[0, \pi/2]$.

- 1) Exprimer cos(t) en fonction de cos(t/2).
- 2) Comparer $\frac{1}{1+\tan^2(t/2)}$ et $\cos^2(t/2)$.
- 3) On pose $u = \tan(t/2)$. Exprimer $\cos(t)$ en fonction de u.
- 4) Calculer $\int_0^{\pi/2} \frac{1}{2 + \cos(t)} dt$ en posant $u = \tan(t/2)$.

D'après Banque PT

Exercice 3 Étude d'une fonction

Soit f définie sur $\mathbb{R} \setminus \{0\}$ par $f(t) = \frac{1 - e^{-t}}{t}$.

- 1) Montrer que f est prolongeable en une fonction continue sur \mathbb{R} (notée encore f).
- 2) Étudier la monotonie de f sur \mathbb{R} .
- 3) Montrer que la courbe représentative de *f* admet une tangente en son point d'abscisse 0 et préciser une équation cartésienne de cette tangente.
- 4) Tracer l'allure de cette courbe.

D'après Oral 2

Exercice 4 Utilisation de développements limités

Soit M la fonction définie sur \mathbb{R} par $M(t) = \begin{pmatrix} \cos^3(t) \\ \sin^3(t) \end{pmatrix}$.

- 1) Justifier que M est de classe C^{∞} sur \mathbb{R} et calculer M'(t) pour tout $t \in \mathbb{R}$.
- 2) Déterminer le développement limité à l'ordre 3 en 0 de *M*.
- 3) En déduire les vecteurs dérivés M'(0), M''(0) et $M^{(3)}(0)$.

Exercice 5 Dérivées successives

Dans cet exercice, *n* désigne un entier naturel non nul.

- 1) Résoudre dans \mathbb{R} l'équation $x^2 x 1 = 0$. On désignera par λ_1 et λ_2 ses racines avec $\lambda_1 < \lambda_2$.
- 2) Montrer que la fonction $g: x \mapsto \frac{1}{x^2-x-1}$ est de classe \mathcal{C}^{∞} sur $\mathbb{R} \setminus \{\lambda_1, \lambda_2\}$.
- 3) Déterminer deux réels α et β (que l'on exprimera en fonction de λ_1 et λ_2) tels que :

$$\forall x \in \mathbb{R} \setminus \{\lambda_1, \lambda_2\}, \qquad \frac{1}{x^2 - x - 1} = \frac{\alpha}{x - \lambda_1} + \frac{\beta}{x - \lambda_2}.$$

- 4) Soit λ un réel. Préciser la dérivée n-ième de la fonction $h: x \mapsto \frac{1}{x-\lambda}$.
- 5) En déduire la dérivée *n*-ième de la fonction *g*.

路 Exercices axés sur le raisonnement

Exercice 6 Dérivées successives

Dans cet exercice, n désigne un entier naturel non nul.

- 1) Résoudre dans \mathbb{R} l'équation $x^2 + x 1 = 0$. On désignera par λ_1 et λ_2 ses racines avec $\lambda_1 < \lambda_2$.
- 2) Montrer que la fonction $f: x \mapsto \frac{1}{x^2+x-1}$ est de classe C^{∞} sur $\mathbb{R} \setminus \{\lambda_1, \lambda_2\}$.
- 3) Rappeler la formule de Leibniz donnant la dérivée n-ième du produit de deux fonctions u et v de classe \mathcal{C}^n .
- 4) Dans cette question, on suppose $n \ge 2$. En utilisant la relation $(x^2 + x - 1)f(x) = 1$, montrer que, pour tout $x \in \mathbb{R} \setminus \{\lambda_1, \lambda_2\}$:

$$(x^2 + x - 1)f^{(n)}(x) + n(2x + 1)f^{(n-1)}(x) + n(n-1)f^{(n-2)}(x) = 0.$$

- 5) On pose, pour tout entier naturel p, $u_p = \frac{f^{(p)}(0)}{p!}$.
 - a) Calculer directement u_0 et u_1 .
 - b) Pour tout $p \ge 2$, montrer que $u_p = u_{p-1} + u_{p-2}$.
 - c) En utilisant la formule de Taylor-Young et la question précédente, exprimer le développement limité de *f* à l'ordre 4 en 0.
 - d) Pour tout entier naturel p, exprimer u_p en fonction de p, de λ_1 et de λ_2 .

D'après Banque PT

Exercice 7 Classique

Soit $f : \mathbb{R} \to \mathbb{R}$ définie par $f(x) = e^{-1/x^2}$ si $x \neq 0$ et f(0) = 0.

- 1) Montrer que f est continue sur \mathbb{R} . Est-elle dérivable sur \mathbb{R} ?
- 2) Montrer que f est de classe C^{∞} sur \mathbb{R} . On pourra montrer par récurrence que pour tout $x \neq 0$, $f^{(n)}(x)$ existe et est de la forme $P_n(1/x)e^{-1/x^2}$, où P_n est un polynôme.

D'après Oral 1

Exercice 8

Pour tout $n \in \mathbb{N}^*$, on note :

$$u_n = \sum_{k=1}^n \sin\left(\frac{k\pi}{n}\right) \times \frac{k\pi}{n^2}$$
 et $v_n = \sum_{k=1}^n \sin\left(\frac{k\pi}{n}\right) \sin\left(\frac{k\pi}{n^2}\right)$.

- 1) Montrer qu'il existe $\alpha > 0$ tel que pour tout $x \in [0, \alpha]$, on ait $|\sin(x) x| \le x^3$.
- 2) Justifier l'existence et préciser la valeur de $\lim_{n \to +\infty} u_n$.
- 3) Montrer que la suite de terme général $|u_n v_n|$ converge.
- 4) En déduire $\lim_{n\to+\infty} v_n$.

D'après Oral 2

Exercice 9 Suites d'intégrales

Pour $n \in \mathbb{N}^*$, on définit $u_n = \int_1^e (\ln(x))^n dx$.

- 1) Calculer u_1 .
- 2) Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ est monotone et convergente.
- 3) Montrer que:

$$\forall x \in [1, e], \qquad 0 \leqslant \ln(x) \leqslant \frac{x}{e}.$$

En déduire la limite de $(u_n)_{n\in\mathbb{N}^*}$

4) Montrer qu'il existe deux suites $(a_n)_{n\in\mathbb{N}^*}$ et $(b_n)_{n\in\mathbb{N}^*}$ de nombres entiers telles que :

$$\forall n \in \mathbb{N}^*, \qquad u_n = a_n + b_n e.$$

D'après Oral 2

Exercice 10 Suite récurrente et étude de séries

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0\in \]0,1[$ et, pour tout $n\in\mathbb{N},$ $u_{n+1}=u_n-u_n^2$.

- 1) Étudier la convergence de la suite $(u_n)_{n\in\mathbb{N}}$. Trouver sa limite.
- 2) Étudier la convergence de la série $\sum_{n\geqslant 0}u_n^2$.
- 3) Montrer que les séries $\sum_{n\geqslant 0}\ln\left(\frac{u_{n+1}}{u_n}\right)$ et $\sum_{n\geqslant 0}u_n$ sont de même nature.
- 4) En déduire la nature de $\sum_{n>0}^{\infty} u_n$.

D'après Oral 2

Exercice 11 Suite implicite

Pour $n \in \mathbb{N}$, on pose $f_n : x \mapsto x^n - \cos(x)$.

- 1) Soit $n \in \mathbb{N}$. Montrer que f_n admet un unique zéro sur [0,1] noté a_n .
- 2) Étudier les variations de la suite $(a_n)_{n\in\mathbb{N}}$.
- 3) Étudier la convergence de $(a_n)_{n\in\mathbb{N}}$ et calculer sa limite.
- 4) Déterminer un équivalent de $1 a_n$ lorsque n tend vers l'infini.

D'après Oral 2

Exercice 12 ** Suite récurrente

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0>0$ et, pour $n\in\mathbb{N}$, $u_{n+1}=u_n^2+u_n$.

1) Si $x_n \sim y_n$, a-t-on toujours $e^{x_n} \sim e^{y_n}$? Montrer que si $(x_n)_{n\in\mathbb{N}}$ et $(y_n)_{n\in\mathbb{N}}$ sont deux suites réelles, alors :

$$e^{x_n} \underset{n \to \infty}{\sim} e^{y_n} \iff \lim_{n \to \infty} x_n - y_n = 0$$

- 2) Montrer que $(u_n)_{n\in\mathbb{N}}$ est croissante et à valeurs positives.
- 3) Montrer que $(u_n)_{n\in\mathbb{N}}$ diverge. On pose $v_n = 2^{-n} \ln(u_n)$.
- 4) Étudier la nature de la série $\sum_{n\geqslant 1} (v_{n+1}-v_n)$. En déduire la convergence de $(v_n)_{n\in\mathbb{N}}$.
- 5) Donner un équivalent de u_n en fonction de la limite ℓ de v_n .

D'après Oral 1

Exercices avec questions ouvertes

Exercice 13

Soit P un polynôme non nul. L'équation $P(x) = e^x$ peut-elle admettre exactement deg(P)solutions? Un nombre infini de solutions?

D'après Oral 2

Corrections

Exercices axés sur le calcul

Exercice 1

1) Par addition et composition, la fonction ψ est dérivable sur l'intervalle $]0, +\infty[$.

Pour
$$x \in]0, +\infty[, \psi'(x) = \frac{1}{1+x^2} - \frac{1}{x^2} \cdot \frac{1}{1+\frac{1}{x^2}} = \frac{1}{1+x^2} - \frac{1}{x^2+1} = 0.$$

La dérivée est nulle sur l'intervalle $]0, +\infty[$, donc ψ est constante sur $]0, +\infty[$.

Remarque Il est important que $]0, +\infty[$ soit un intervalle pour ce point. D'ailleurs, la dérivée de ψ est nulle sur $\mathbb{R} \setminus \{0\}$ et la fin de l'exercice montre que ψ n'est pas constante sur $\mathbb{R} \setminus \{0\}$.

Or,
$$\psi(1) = \arctan(1) + \arctan\left(\frac{1}{1}\right) = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}$$
. On a donc:

$$\forall x > 0$$
, $\arctan(x) + \arctan\left(\frac{1}{x}\right) = \frac{\pi}{2}$.

2) La fonction arctan étant impaire, ψ l'est aussi, donc on obtient :

$$\forall x < 0$$
, $\arctan(x) + \arctan\left(\frac{1}{x}\right) = -\frac{\pi}{2}$.

Exercice 2

1) On a, d'après les formules de duplication :

$$cos(t) = cos(2(t/2)) = 2 cos^2(t/2) - 1.$$

2) Par définition, tan = sin/cos donc :

$$\frac{1}{1+\tan^2(t/2)} = \frac{1}{1+\frac{\sin^2(t/2)}{\cos^2(t/2)}}$$

$$= \frac{\cos^2(t/2)}{\cos^2(t/2)+\sin^2(t/2)}$$

$$= \cos^2(t/2).$$

$$\cos^2 + \sin^2 = 1$$

3) Avec $u = \tan(t/2)$, on a en combinant les 2 résultats précédents :

$$\cos(t) = 2\frac{1}{1+u^2} - 1 = \frac{1-u^2}{1+u^2}.$$

4) Remarquons que pour tout $t \in [0, \pi/2]$, $2 + \cos(t) > 0$, donc la fonction $t \mapsto \frac{1}{2 + \cos(t)}$ est continue sur le segment $[0,\pi/2]$. En particulier, l'intégrale $I=\int_0^{\pi/2}\frac{1}{2+\cos(t)}\,\mathrm{d}t$ existe. En utilisant le changement $u = \tan(t/2)$, on a $u \in [0, 1]$ (car $\tan(0) = 0$ et $\tan(\pi/4) = 1$). Avec le résultat du 2), $2 + \cos(t) = 2 + \frac{1-u^2}{1+u^2} = \frac{3+u^2}{1+u^2}$. Comme $t/2 \in]-\pi/2, \pi/2[$, $u = \tan(t/2)$ entraı̂ne $t/2 = \arctan(u)$. D'où d $t = 2\frac{1}{1+u^2}$ du. Après simplification, on obtient $I = \int_0^1 \frac{2}{3+u^2} du$.

Remarque

En pratique, on peut éviter le recours à arctan : De $u = \tan(t/2)$, on a $du = \frac{1}{2}(1 + \tan^2(t/2)) dt$. Comme $1 + \tan^2(t/2) = 1 + u^2$, on

On pose ensuite $u = \sqrt{3}x$:

$$I = \int_0^{1/\sqrt{3}} \frac{2}{3+3x^2} \sqrt{3} \, dx$$

$$= \frac{2\sqrt{3}}{3} \int_0^{1/\sqrt{3}} \frac{1}{1+x^2} \, dx$$

$$= \frac{2\sqrt{3}}{3} \left[\arctan(x) \right]_0^{1/\sqrt{3}}$$

$$= \frac{2\sqrt{3}}{3} \arctan(1/\sqrt{3}).$$
linéarité de l'intégrale
arctan(0) = 0

Enfin, $\pi/6 \in]-\pi/2$, $\pi/2[$ et $\tan(\pi/6) = \frac{1/2}{\sqrt{3}/2} = \frac{1}{\sqrt{3}}$, donc $\arctan(1/\sqrt{3}) = \pi/6$.

Finalement, $\int_0^{\pi/2} \frac{1}{2 + \cos(t)} dt = \frac{2\sqrt{3}}{3} \cdot \frac{\pi}{6} = \frac{\pi\sqrt{3}}{9}$.

Exercice 3

1) Comme quotient de fonctions continues dont le dénominateur ne s'annule pas, f est continue sur $\mathbb{R} \setminus \{0\}$.

On sait que $e^x = 1 + x + o(x)$, d'où l'on déduit $e^{-t} = 1 - t + o(t)$.

Par conséquent, $1 - e^{-t} = t + o(t)$. Donc $1 - e^{-t} \underset{t \to 0}{\sim} t$, puis $f(t) \underset{t \to 0}{\sim} \frac{t}{t} = 1$.

Ce résultat signifie que $f(t) \xrightarrow[t\to 0]{} 1$.

En posant f(0) = 1, on prolonge f en une fonction continue sur \mathbb{R} .

2) Comme quotient, f est dérivable sur $\mathbb{R} \setminus \{0\}$ et on a :

$$f'(t) = \frac{e^{-t}t - (1 - e^{-t})}{t^2} = \frac{(t+1)e^{-t} - 1}{t^2}.$$

• Première méthode (en utilisant $e^t \ge 1 + t$)

Pour $t \in \mathbb{R} \setminus \{0\}$, on a :

$$f'(t) > 0 \iff (t+1)e^{-t} - 1 > 0$$

$$\iff (t+1)e^{-t} > 1$$

$$\iff (t+1) > e^{t}.$$
 on multiplie par $e^{t} > 0$

Or, $e^t \ge 1 + t$, donc $f'(t) \le 0$ pour tout $t \ne 0$.

• Deuxième méthode (par étude de fonction) Le signe de f'(t) est celui de $\varphi(t) = (t+1)e^{-t} - 1$. Comme $\varphi'(t) = e^{-t} - (t+1)e^{-t} + 0 = -te^{-t}$, on a le tableau de variations suivant pour φ :

t	$-\infty$		0		+∞
$\varphi'(t)$		+	0	_	
$\varphi(t)$	-∞	7	0	7	-1

Comme f est continue sur \mathbb{R} et de dérivée négative sur $\mathbb{R} \setminus \{0\}$, elle est décroissante sur \mathbb{R} .

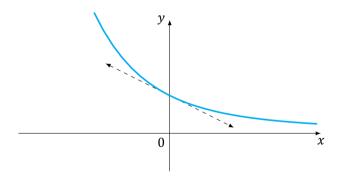
3) Il s'agit de montrer que f est dérivable en 0. Le plus rapide est de reprendre le calcul de la question 1) en utilisant un terme de plus dans le développement limité de l'exponentielle. En utilisant $e^{-t} = 1 - t + t^2/2 + o(t^2)$, on a :

$$f(t) = \frac{1 - e^{-t}}{t} = \frac{t - t^2/2 + o(t)}{t} = 1 - t/2 + o(t).$$

L'existence d'un développement limité à l'ordre 1 en 0 prouve la dérivabilité de f en 0 et on a f'(0) = -1/2.

L'équation de la tangente en 0 est $y = f'(0)(x - 0) + f(0) = -\frac{1}{2}x + 1$.

4) Ci-dessous l'allure de la courbe représensative de *f* .



Exercice 4

1) Les deux fonctions \cos^3 et \sin^3 étant de classe \mathcal{C}^∞ sur \mathbb{R} (comme produit), la fonction M est de classe \mathcal{C}^∞ sur \mathbb{R} . On obtient en dérivant chacune des composantes :

$$\forall t \in \mathbb{R}, \quad M'(t) = \begin{pmatrix} -3\sin(t)\cos^2(t) \\ 3\cos(t)\sin^2(t) \end{pmatrix}.$$

2) On connaît le développement limité de cos à l'ordre 3 en 0. En outre, on sait que l'on obtient un développement limité d'un produit à l'ordre 3 en 0 en ne conservant que les termes d'ordre inférieurs à 3.