Raisonnements 1

Exercices axés sur le calcul

Exercice 1 Disjonction des cas (parité)

- 1) Montrer que pour tout entier naturel n, l'entier $n^3 3n$ est pair.
- $-\frac{(-1)^{n^3-1}\cdot(-1)^{3n+2}}{-(-1)^{8n-1}}$ 2) Simplifier l'expression suivante :

Exercice 2 Disjonction des cas (min et max)

Le maximum de deux nombres x et y est noté max(x,y). De même, min(x,y) désigne le minimum des deux nombres x et y.

1) Démontrer que

$$\max(x,y) = \frac{x + y + |x - y|}{2}$$
 et $\min(x,y) = \frac{x + y - |x - y|}{2}$.

2) Trouver une formule similaire pour $\max(x,y,z)$, le maximum des trois nombres x,y et z.

Exercice 3 * Sommes, produits et récurrence

- 1) Soient $a_1, ..., a_n$ des réels positifs. Montrer que $\prod_{i=1}^n (1+a_i) \ge 1 + \sum_{i=1}^n a_i$.
- 2) Soient $a_1, ..., a_n$, des réels supérieurs à 1. Montrer que $\prod_{i=1}^n a_i \ge 1 n + \sum_{i=1}^n a_i$.

Exercice 4 ** Suite de Wallis

On définit la suite $(W_n)_{n\in\mathbb{N}}$ par les conditions

$$W_0 = 0$$
, $W_1 = 1$ et $\forall n \in \mathbb{N}$, $W_{n+2} = \frac{n+1}{n+2}W_n$.

- 1) Donner la valeur de W_{2n} pour tout $p \in \mathbb{N}$.
- λ l'aide d'un raisonnement par récurrence, justifier que pour tout $p \in \mathbb{N}$,

$$W_{2p+1} = \frac{4^p \cdot (p!)^2}{(2p+1)!}$$

路 Exercices axés sur le raisonnement

Exercice 5

En utilisant les quantificateurs ∀ et ∃, traduire par une proposition mathématique chacune des affirmation suivantes:

- 1) aucun réel n'a pour carré −1:
- 2) si le produit de deux réels est strictement négatif, alors l'un des deux est strictement négatif:
- 3) l'ensemble A contient un nombre entier strictement positif pair;
- 4) les carrés des nombres de A sont aussi des carrés de nombres appartenant à l'ensemble B.

Exercice 6 Considérons les quatre énoncés suivants :

- 1) $\exists x \in \mathbb{R}$, $\forall y \in \mathbb{R}$, x + y > 0. 2) $\forall x \in \mathbb{R}$, $\exists y \in \mathbb{R}$, x + y > 0. 3) $\forall x \in \mathbb{R}$, $\forall y \in \mathbb{R}$, x + y > 0. 4) $\exists x \in \mathbb{R}$, $\forall y \in \mathbb{R}$, $y^2 > x$.
- Donner la négation des ces énoncés. Préciser lesquels de ces énoncés sont vrais.

Exercice 7 \star Soient f et g deux fonctions définies sur \mathbb{R} .

On considère les quatre énoncés mathématiques suivants :

- 1) $\forall x \in \mathbb{R}$, f(x) = 0 ou g(x) = 0.
- 2) $(\forall x \in \mathbb{R}, f(x) = 0)$ ou $(\forall x \in \mathbb{R}, g(x) = 0)$.
- 3) $\exists x \in \mathbb{R}$: f(x) = 0 et g(x) = 0.
- 4) $(\exists x \in \mathbb{R} : f(x) = 0)$ et $(\exists x \in \mathbb{R} : g(x) = 0)$.

Montrer que les énoncés 1 et 2 ne sont pas équivalents, puis que les énoncés 3 et 4 ne sont pas équivalents.

Indication. On pourra utiliser les fonctions f_1 , f_2 , f_3 et f_4 définies sur \mathbb{R} par

$$f_1(x) = x + |x|$$
, $f_2(x) = x$, $f_3(x) = x - |x|$ et $f_4(x) = x + 1$.

Exercice 8 \star Soit $f : \mathbb{R} \to \mathbb{R}$. On définit deux nouvelles fonctions p et i par

$$\forall x \in \mathbb{R}, \quad p(x) = \frac{f(x) + f(-x)}{2} \quad \text{et} \quad i(x) = \frac{f(x) - f(-x)}{2}.$$

- 1) Justifier que p et i sont respectivement paire et impaire.
- 2) En déduire que toute fonction se décompose comme somme d'une fonction paire et d'une fonction impaire.
- 3) Est-ce que cette décomposition est unique?

Exercice 9 ** Soient $f : \mathbb{R} \to \mathbb{R}$ et u la suite définie par

$$u_0 = 0$$
 et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n).$

Montrer que si la fonction $f : \mathbb{R} \to \mathbb{R}$ est croissante, alors la suite u est monotone. Indication. On pourra faire une disjonction des cas : $f(0) \le 0$ ou f(0) > 0.

Exercice 10 ** Raisonnement par l'absurde et limite

Soit u une suite de réels telle que $\forall n \in \mathbb{N}, u_n^2 = u_n^n + 3u_n - 2$. On suppose que la suite converge. Montrer que $u_n \xrightarrow[n \to +\infty]{} 1$.

Exercice 11 ** Analyse-synthèse pour une équation fonctionnelle

L'objectif est ici de déterminer toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$ telles que

$$\forall (x,y) \in \mathbb{R}^2, \qquad f(x-f(y)) = 2 - x - y.$$

- 1) On suppose que $f : \mathbb{R} \to \mathbb{R}$ vérifie cette propriété.
 - a) Prouver que f(0) = 1.
 - b) En déduire que $\forall x \in \mathbb{R}$, f(x-1) = 2 x.
 - c) En déduire une expression de f(x) pour tout réel x.
- 2) Conclure.

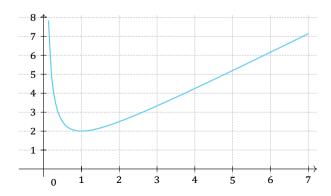
Exercice 12 **

- 1) a) Justifier que pour tout $x \in \mathbb{R}$, $x(1-x) \le 1/4$.
 - b) Soient a, b et c trois réels dans [0,1]. Prouver que l'un au moins des nombres suivants est inférieur à 1/4:

$$a(1-b)$$
, $b(1-c)$ et $c(1-a)$.

2) Soient a, b et c trois réels strictement positifs. En adaptant le raisonnement précédent, justifier que, parmi les trois nombres a + 1/b, b + 1/c et c + 1/a, il existe au moins un nombre supérieur à 2.

Exercice 13 ** On pose pour tout $x \in \mathbb{R}_+^*$, f(x) = x + 1/x. Voici le graphe de f.



- 1) Discuter, en fonction de la valeur de $k \in \mathbb{Z}$, du nombre de solutions de l'équation f(x) = k d'inconnue $x \in \mathbb{R}_+^*$.
- 2) Soit $\alpha \in \mathbb{R}_+^*$ tel que $f(\alpha) \in \mathbb{Z}$.
 - a) Vérifier que pour tout $n \in \mathbb{N}$, $f(\alpha)f(\alpha^{n+1}) = f(\alpha^n) + f(\alpha^{n+2})$.
 - b) En déduire que pour tout $n \in \mathbb{N}$, $f(\alpha^n) \in \mathbb{Z}$.
 - c) Que dire si $n \in \mathbb{Z}$?

Exercices avec questions ouvertes

Exercice 14 Soient A =]0,1[et B =]0,2[.

Parmi les énoncés suivants, lesquels sont vrais?

- 1) $\forall x \in A$, $\exists y \in B : y < x$.
- 2) $\exists y \in B : \forall x \in A, y < x$.
- 3) $\exists y \in B : \forall x \in A, x < y.$

Exercice 15 \star Trouver la meilleure valeur de a pour laquelle le raisonnement par récurrence suivant soit correct. Justifiez votre réponse :

Affirmation. Pour tout $x \ge a$, et tout entier $n \ge 2$, $(1+x)^n \ge 1+nx$. *Preuve.* Soit $x \ge a$. Pour tout entier $n \ge 2$, on pose $\mathcal{P}(n): (1+x)^n \ge 1+nx$.

- Initialisation. $(1+x)^2 = 1 + 2x + x^2 \ge 1 + 2x$. Donc $\mathcal{P}(2)$ est vérifiée.
- Hérédité. Soit n un entier supérieur ou égal à 2. Supposons $\mathcal{P}(n)$ vraie. Alors

$$(1+x)^{n+1} = (1+x)^n (1+x)$$

$$\ge (1+nx)(1+x)$$

$$\ge 1+(n+1)x+nx^2$$

$$\ge 1+(n+1)x$$

Ainsi, si $\mathcal{P}(n)$ est vraie, alors $\mathcal{P}(n+1)$ est vraie.

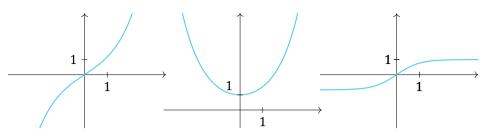
• **Conclusion.** Pour tout entier $n \ge 2$.

$$(1+x)^n \geqslant 1 + nx.$$

Exercice 16 \star On définit trois fonctions $c, s, t : \mathbb{R} \to \mathbb{R}$ par

$$\forall x \in \mathbb{R}, \quad c(x) = \frac{e^x + e^{-x}}{2}, \quad s(x) = \frac{e^x - e^{-x}}{2} \quad \text{et} \quad t(x) = \frac{s(x)}{c(x)}.$$

Voici le graphe de ces trois fonctions :



- 1) Associer à chaque graphe une expression.
- 2) Préciser si les énoncés suivants sont vrais ou faux.

a)
$$\forall x \in \mathbb{R}$$
, $c(x) = c(-x)$.

b)
$$\exists x \in \mathbb{R}$$
: $t(x) = t(-x)$.

c)
$$\forall A \in \mathbb{R}$$
, $\exists x \in \mathbb{R}$: $t(x) \geqslant A$. h) $\exists \alpha \in \mathbb{R}$, $\forall x \in [\alpha, +\infty[$,

d)
$$\forall (x,x') \in \mathbb{R}^2$$
,
 $(c(x) = c(x') \Rightarrow x = x')$.

e)
$$\forall (x,x') \in \mathbb{R}^2$$
, $(x \ge \alpha \Rightarrow | t \le x')$. $(x \ge \alpha \Rightarrow | t \le x')$.

f)
$$\forall y \in \mathbb{R}, \exists x \in \mathbb{R} : c(x) = y.$$

b)
$$\exists x \in \mathbb{R}$$
: $t(x) = t(-x)$. g) $\forall y \in \mathbb{R}$, $\exists ! x \in \mathbb{R}$: $s(x) = y$.

h)
$$\exists \alpha \in \mathbb{R}, \quad \forall x \in [\alpha, +\infty[, 1/2 \le t(x) \le 1.]$$

$$\begin{cases}
c(x) = c(x') \Rightarrow x = x' \\
c(x) \in \mathbb{R}^*, \exists \alpha \in \mathbb{R}, \forall x \in \mathbb{R}, \\
(x \geqslant \alpha \Rightarrow |t(x) - 1| \leqslant \varepsilon
\end{cases}$$

j)
$$\forall x \in \mathbb{R}, \quad t'(x) > 0.$$

Exercice 17 * Que dire d'une suite $(u_n)_{n\in\mathbb{N}}$ telle que $u_0=u_1=0$ et

$$\forall n \in \mathbb{N}^*, \quad 2u_{n+1} - 3u_n + 4u_{n-1} = 0$$
?

Exercice 18 *** Un exemple de récurrence dite « forte »

Soient c un réel et $(u_n)_{n\in\mathbb{N}}$ la suite définie par

$$u_0 = c$$
 et $\forall n \in \mathbb{N}$, $u_{n+1} = \frac{1}{n+1} \sum_{k=0}^n u_k u_{n-k}$.

Calculer u_1 et u_2 . Quelle conjecture simple en déduit-on sur la valeur de u_n ? La prouver.

Corrections

Exercices axés sur le calcul

Exercice 1 Disjonction des cas (parité)

- 1) On remarque que $n^3 3n = n(n^2 3)$.
 - Si n = 2p est pair, alors $n^3 3n = 2p(n^2 3)$ est pair.
 - Si n = 2p + 1 est impair, alors $n^2 = 4p^2 + 4p + 1 = 2(2p^2 + 2p) + 1$ est impair. Donc $n^2 3$ est pair. Donc $n^3 3n$ est pair aussi dans ce cas.

En conclusion, pour tout entier naturel n, l'entier $n^3 - n$ est pair.

2) Comme $n^3 - 3n$ est pair.

$$-\frac{(-1)^{n^3-1}\cdot(-1)^{3n+2}}{-(-1)^{8n-1}} = (-1)^{n^3-1}(-1)^{3n+2}(-1)^{-8n+1} = (-1)^{n^3-3n}(-1)^{-2n+2} = \boxed{1}.$$

Exercice 2 Disjonction des cas (min et max)

- 1) Soient x et y deux réels. Procédons par disjonction des cas.
 - Si $x \le y$ alors $\max(x,y) = y$ et |x-y| = -(x-y). D'où

$$\frac{x+y+|x-y|}{2} = \frac{x+y-(x-y)}{2} = y.$$

On a bien

$$\max(x,y) = \frac{x+y+|x-y|}{2}$$

• On procède de même pour vérifier l'égalité dans le cas $y \le x$. Dans tous les cas, la première relation est vérifiée.

On peut procéder de la même manière pour le minimum, ou utiliser le résultat précédent en écrivant

$$\min(x,y) = -\max(-x,-y) = -\frac{-x-y+|-x+y|}{2} = \frac{x+y-|x-y|}{2}.$$

2) Soient *x*, *y* et *z* trois réels.

$$\max(x,y,z) = \max(x, \max(y,z))$$

$$= \frac{x + \max(y,z) + |x - \max(y,z)|}{2}$$

$$= \frac{x + \frac{y+z+|y-z|}{2} + |x - \frac{y+z+|y-z|}{2}|}{2}.$$
question précédente
$$\det \text{de nouveau, la question}$$
précédente

Après simplifications, $\max(x,y,z) = \frac{2x + y + z + |y-z| + \left|2x - y - z - |y-z|\right|}{4}.$

Exercice 3 Sommes, produits et récurrence

1) Procédons par récurrence sur $n \in \mathbb{N}$ avec la proposition

$$\mathcal{P}(n): \quad \forall (a_1,...,a_n) \in (\mathbb{R}^+)^n, \quad \prod_{i=1}^n (1+a_i) \ge 1 + \sum_{i=1}^n a_i.$$

- Initialisation. Par convention, un produit et une somme sur l'ensemble vide valent respectivement 1 et 0. Ainsi, puisque $1 \ge 1 + 0$, la proposition $\mathcal{P}(0)$ est vraie.
- Hérédité. Soit $n \in \mathbb{N}$. Supposons $\mathcal{P}(n)$ vraie et démontrons $\mathcal{P}(n+1)$. Soient $a_1, a_2, ..., a_{n+1}$ des réels positifs. Alors

$$\prod_{i=1}^{n+1} (1+a_i) = (1+a_{n+1}) \prod_{i=1}^{n} (1+a_i) = \prod_{i=1}^{n} (1+a_i) + a_{n+1} \prod_{i=1}^{n} (1+a_i).$$

Or par hypothèse de récurrence,

$$\prod_{i=1}^{n} (1 + a_i) \ge 1 + \sum_{i=1}^{n} a_i \ge 1.$$

Par hypothèse $a_{n+1} \geqslant 0$, donc

$$a_{n+1} \prod_{i=1}^{n} (1+a_i) \geqslant a_{n+1}.$$

Alors, il vient
$$\prod_{i=1}^{n+1} (1+a_i) \geqslant \left(1+\sum_{i=1}^n a_i\right) + a_{n+1} = 1+\sum_{i=1}^{n+1} a_{i+1}.$$

Donc si $\mathcal{P}(n)$ est vraie, alors $\mathcal{P}(n+1)$ est vraie.

- Conclusion. Pour tout entier naturel n, $\mathcal{P}(n)$ est vraie.
- 2) On applique l'inégalité précédente aux réels positifs $a_1 1$, $a_2 1$, ..., $a_n 1$.

Exercice 4 Suite de Wallis

- 1) Par récurrence, pour tout $p \in \mathbb{N}$, $W_{2p} = 0$.
- 2) Démontrons par récurrence que la proposition $\mathcal{P}(p):W_{2p+1}=\frac{4^p(p!)^2}{(2p+1)!}$ est vraie pour tout entier positif p.
 - Initialisation. Par convention, 0! = 1. Donc $\frac{4^0(0!)^2}{(2 \times 0 + 1)!} = 1 = W_0$ et $\mathcal{P}(0)$ est vraie.

• Hérédité. Soit $p \in \mathbb{N}$, supposons $\mathcal{P}(p)$ vraie.

$$W_{2(p+1)+1} = W_{(2p+1)+2}$$

$$= \frac{(2p+1)+1}{(2p+1)+2} W_{2p+1}$$

$$= \frac{2(p+1)}{2p+3} \cdot \frac{4^{p}(p!)^{2}}{(2p+1)!}$$

$$= \frac{2(p+1)}{2p+3} \cdot \frac{2(p+1)}{2p+2} \cdot \frac{4^{p}(p!)^{2}}{(2p+1)!}$$

$$= \frac{4 \cdot 4^{p}((p+1) \cdot p!)^{2}}{(2p+3)(2p+2) \cdot (2p+1)!}$$
par hypothèse de récurrence
$$\times \frac{2(p+1)}{2p+2} = 1$$

Par conséquent

$$W_{2(p+1)+1} = \frac{4^{p+1} ((p+1)!)^2}{(2(p+1)+1)!}$$

et la proposition $\mathcal{P}(p+1)$ est prouvée.

• Conclusion. La proposition $\mathcal{P}(p)$ est vraie pour tout $p \in \mathbb{N}$.

路 Exercices axés sur le raisonnement

Exercice 5

On commence par reformuler en utilisant « tout » et « il existe ».

1) Tout réel a un carré différent de -1. D'où la formule mathématique

$$\forall x \in \mathbb{R}, \quad x^2 \neq -1.$$

2) Pour tout couple (x,y) de réels, si le produit est strictement négatif, alors x est strictement négatif ou y est strictement négatif. C'est-à-dire

$$\forall (x,y) \in \mathbb{R}^2, (xy < 0) \Rightarrow (x < 0 \text{ ou } y < 0).$$

3) Il existe un élément n de A tel que n/2 soit un entier strictement positif.

$$\exists n \in A : n/2 \in \mathbb{N}^*.$$

4) Si x est un élément de A, alors son carré est le carré d'un élément de B, c'est-à-dire qu'il existe y dans B tel que $x^2 = y^2$:

$$\forall x \in A, \exists y \in B, x^2 = y^2.$$