Sommaire

Des	molécules du vivant				
àla	cellule : organisation fonctionnelle	1			
Chapit	tre 1				
	et les petites molécules organiques	3			
	L'eau: une molécule minérale fondamentale du monde vivant				
	2. Les petites molécules glucidiques: oses et diosides	12			
(3. Les lipides	24			
4	4. Les acides aminés et la liaison peptidique	40			
į	5. Les nucléotides	50			
(6. Transformations chimiques dans les cellules et interconversions				
	entre familles de petites biomolécules	57			
Chapit	tre 2				
Les macromolécules					
	1. Les macromolécules glucidiques: les polyosides	70			
	2. Les acides nucléiques	82			
(3. Les protéines	92			
Chapit	tre 3				
Meml	brane et échanges membranaires	131			
	La membrane est une mosaïque moléculaire fluide				
	2. Les échanges transmembranaires sont divers	138			
(3. Les transferts de particules volumineuses sont couplés aux flux de membranes	15			
4	4. La membrane plasmique permet des interactions mécaniques				
	entre la cellule et son environnement	157			
į	5. Les phénomènes membranaires sont essentiels dans la communication nerveuse	17			
Chapit	tre 4				
Les re	éactions chimiques du vivant	187			
	Thermodynamique des réactions biochimiques	188			
4	2. Les enzymes, catalyseurs spécifiques des réactions biochimiques	193			
Chapit	tre 5				
	nèses des principales biomolécules chez les eucaryotes	221			
	Panorama des biosynthèses cellulaires chez les eucaryotes				
,	O La bisoumthèse des protéines abez les quarretes				

Chapitre 6	0.5.7
Métabolisme et formes d'énergie de la cellule	
L'ATP, principale source d'énergie chimique dans la cellule	258
Du transfert électronique à la production d'ATP	00.4
au sein des membranes transductrices d'énergie	
Origine et diversité des types trophiques	289
Chapitre 7	
Métabolisme et transferts de matière dans la cellule	. 299
Fondements métaboliques de l'hétérotrophie	300
Fondements métaboliques de l'autotrophie	326
Chapitre 8	
Organisation fonctionnelle de la cellule: synthèse	. 353
Les cellules sont des volumes limités par une membrane plasmique	354
2. Toutes les cellules eucaryotes sont compartimentées et possèdent un cytosquelette	355
3. Les cellules eucaryotes et procaryotes sont parcourues par différents flux	364
4. Les cellules eucaryotes et procaryotes sont issues de divisions cellulaires	366
5. Les cellules eucaryotes proviennent de l'endosymbiose de cellules procaryotes	367
L'organisme, un système en interaction avec son environnement	.381
Chapitre 9	
Regards sur l'organisme animal: l'exemple d'un ruminant, la vache	383
L'organisme animal se maintient en vie en échangeant de l'énergie et de la matière	. 000
avec son environnement	384
L'organisme animal est capable de se reproduire	
3. L'organisme animal interagit avec l'environnement: il perçoit des stimuli externes,	
se déplace et se protège	423
4. La communication entre les organes permet le bon fonctionnement de l'organisme animal	
Chapitre 10	
Diversité des plans d'organisation chez les animaux et relations entre fonctions,	
milieux de vie et organismes	. 445
Les organismes animaux réalisent les mêmes fonctions	
2. Les organismes animaux ont des structures fonctionnelles adaptées à leur milieu de vie	
Chapitre 11	
Reproduction des organismes animaux et végétaux	. 521
1. La reproduction sexuée implique le rapprochement des gamètes en lien avec le milieu de vie .	
La reproduction sexuée aboutit à la formation d'un zygote par fécondation	

	3. L	a reproduction sexuée s'inscrit dans un cycle de développement	582
	4. L	a reproduction asexuée est monoparentale et forme des clones	586
Chapi	tre 12		
Acqu	iisitic	on du plan d'organisation d'un organisme animal	
		du développement embryonnaire: le modèle amphibien	. 601
	1. D	le l'ovocyte à la cellule œuf: acquisition des axes de polarité et du plan de symétrie	
	d	e l'embryon	602
	2. L	a segmentation: acquisition de l'état pluricellulaire	61
	3. L	a gastrulation: acquisition de l'état triblastique	616
	4. Ľ	organogenèse: acquisition du plan d'organisation primaire	625
Chapi			
Cont		du développement embryonnaire des organismes animaux	
		induction embryonnaire, un processus de détermination des territoires et des cellules	
		acquisition de l'identité des territoires embryonnaires	
	3. L	a différenciation cellulaire, processus clé de l'organogenèse	669
La b	oiodi	versité et sa dynamique	.687
Chapi			
Gén		ue structurale et fonctionnelle	
		e génome est l'ensemble de l'ADN d'une cellule	
		e passage de l'ADN aux ARN est la première étape de l'expression de l'information génétiqu	
	3. Ľ	expression de l'information génétique est contrôlée	72
Chapi		on de l'information génétique et transmission par mitose	759
Бар.		a duplication de l'information génétique : mécanismes de la réplication de l'ADN	
		a répartition équitable du matériel génétique chez les eucaryotes: la mitose	
Chapi			
La d		fication des génomes	
		es mutations sont à l'origine de la diversification des génomes	
		a reproduction sexuée diversifie les combinaisons alléliques	
	3. L	es transferts horizontaux participent également à la diversification des génomes	823
Fich	es t	echniques	.841
Inde	.		860