Table des matières

Ch	apitre 1. Electrostatique	17
1/ F	Résumé de cours	17
1.1	Interactions coulombiennes	17
	1.1.1 Charges électriques	17
	1.1.2 <i>Loi de Coulomb</i>	17
	1.1.3 Force électrostatique résultante entre plusieurs charges	19
1.2	Champ et potentiel électrostatiques	19
	1.2.1 Cas d'une charge ponctuelle	19
	1.2.2 Cas d'une distribution de charges	20
1.3	Énergie potentielle électrostatique	22
	1.3.1 Cas d'une charge ponctuelle	22
	1.3.2 Cas d'une distribution de charges	22
1.4	Énergie électrostatique	23
	1.4.1 <i>Expression</i>	23
	1.4.2 Densité d'énergie électrostatique	24
1.5	Circulation du vecteur champ électrostatique	24
	1.5.1 Lignes de champ et surfaces équipotentielles	24
	1.5.2 Flux du champ électrostatique	25
	1.5.3 Circulation et différence de potentielle	25
1.6	Théorème de Gauss	27
	1.6.1 Formes intégrale et locale du théorème de Gauss	27
	1.6.2 Équations de Poisson et de Laplace	27
1.7	Dipôle et quadripôle électrostatiques	28
	1.7.1 Moment dipolaire électrostatique	28
	1.7.2 Champ et potentiel d'un dipôle électrostatique	29
	1.7.3 Potentiel électrique d'une répartition de charges ponctuelles	29
	1.7.4 Distributions unipolaire, dipolaire et quadripolaire	30
1.8	Conducteurs en équilibre électrostatique	32
	1.8.1 Théorème de Coulomb et pression électrostatique	32
	1.8.2 Influence de deux conducteurs chargés, théorème de Faraday	33
	1.8.3 Coefficients de capacité et d'influence de plusieurs conducteurs	
	chargés en équilibre	34
1.9	Condensateurs	
	1.9.1 Capacité d'un condensateur	
	1.9.2 Énergie emmagasinée par un condensateur	36

1.9.3 Association de condensateurs	36
1.10 Théorèmes de transformation intégrale	37
1.10.1 Théorème de Stokes (théorème du rotationnel)	
1.10.2 Théorème de Green-Ostrogradsky (théorème de la divergence)	
2/ Exercices	37
A/ Connaissances essentielles du cours	37
A.1/ QCM (Questions à choix multiples)	37
A.2/ Vrai ou faux	38
A.3/ QRD. (Questions à Réponses Démontrées)	40
3.1. Équation différentielle vérifiée par une surface équipotentielle	40
3.2. Expression de la propriété locale du champ électrostatique	
3.3. Proportionnalité entre flux magnétique et angle solide	40
3.4. Flux électrostatique dû à une charge placée en dehors d'une surface fermée	
3.5. Flux électrostatique dû à une charge placée à l'intérieur d'une surface fermée	
3.6. Champ électrostatique créé par un plan infini chargé, théorème de Gauss	40
3.7. Discontinuité de la composante normale du champ électrostatique	40
3.8. Continuité de la composante tangentielle du vecteur champ électrostatique	41
3.9. Champ électrostatique créé par un fil rectiligne infini uniformément chargé	41
3.10. Champ électrostatique créé par une sphère uniformément chargée	41
3.11. Champ électrostatique créé par coquille sphérique chargée	41
3.12. Énergie potentielle d'un système de charges ponctuelles	41
3.13. Capacité d'un condensateur plan	42
3.14. Force électrostatique agissant sur une armature plane	42
3.15. Pression électrostatique	42
3.16. Capacité d'une sphère conductrice isolée chargée	42
3.17. Coefficients de capacité et d'influence de sphères conductrices	42
3.18. Capacité d'un condensateur contenant une lame de diélectrique	43
3.19. Charge portée par des sphères conductrices chargées par contact	43
3.20. Champ créé par une distribution linéaire de deux charges ponctuelles	43
3.21. Champ créé par une distribution linéaire de trois charges ponctuelles	43
3.22. Travail fourni par un opérateur pour déplacer une charge	44
3.23. Système de charges ponctuelles liées	44
3.24. Charge totale portée par un fil conducteur rectiligne	44
3.25. Champ électrostatique créé par une distribution linéique de charges	44
3.26. Champ électrostatique créé par un fil conducteur rectiligne de charge q	44
3.27. Champ électrostatique créé par une portion de fil circulaire chargé	45
3.28. Champ électrostatique créé par un fil conducteur circulaire chargé	45
3.29. Différence de potentiel entre deux points d'états électriques différents	45

Table des matières	11
3.30. Champ électrostatique en un point de l'espace à trois dimensions	45
3.31. Potentiel électrostatique créé par un fil cylindrique infini chargé	
3.32. Potentiel électrostatique créé par deux plaques infinies chargées	
3.33. Énergies emmagasinées par des condensateurs connectés en équilibre	
B/ Applications du cours	47
B.1/ Force électrostatique entre trois charges ponctuelles	
B.2/ Champ et potentiel électrostatiques créés par deux charges ponctuelles	
B.3/ Champ et potentiel créés par quatre charges ponctuelles	
B.4/ Champ et potentiel d'un dipôle électrostatique	
B.5/ Champ et potentiel d'un quadripôle électrostatique linéaire	
B.6/ Couple de forces exercé sur un dipôle électrostatique	
B.7/ Champ et potentiel créés par un fil rectiligne chargé infiniment long	52
B.8/ Champ et potentiel crée par un fil circulaire chargé	
B.9/ Champ et potentiel créés par un disque chargé	53
B.10/ Champ et potentiel créés par un plan infini chargé	54
B.11/ Champ et potentiel créés par une sphère chargée	54
B.12/ Champ et potentiel créés par une sphère creuse chargée	56
B.13/ Champ et potentiel créés par deux cylindres coaxiaux chargés	57
B.14/ Coefficients de capacité et d'influence de deux sphères chargées	57
B.15/ Capacité d'un condensateur plan contenant une lame métallique	58
B.16/ Capacité d'un condensateur cylindrique	59
B.17/Énergie électrostatique d'une sphère uniformément chargée	60
C/ Test de connaissances	61
C.1/ Étude d'un condensateur sphérique	61
C.2/ Interaction entre deux dipôles électrostatiques	62
C.3/Étude d'une distribution non uniforme de charges réparties en volume	63
3/ Solutions des exercices	65
A/ Connaissances essentielles du cours	65
B/ Applications du cours	
C/ Test de connaissances	132
Chapitre 2. Magnétostatique	. 145
1/ Résumé de cours.	
1.1. Champ et force magnétiques	
1.1.1 Aimant, aiguille aimantée	. 145
1.1.2 Interaction aimant-aiguille aimantée : champ magnétique	
1.1.3 Caractéristiques du champ magnétique	
1.1.4 Spectre magnétique, champ magnétique uniforme	. 147

1.1.5 Force magnétique : force de Lorentz, force de Laplace	147
1.1.6 Densité de courant et équation de continuité	
1.1.7 Loi de Biot et Savart	
1.2. Champs magnétiques créés par des courants	151
1.2.1 Champ magnétique créé par un courant filiforme rectiligne	151
1.2.2 Champ magnétique créé par un courant filiforme circulaire	152
1.2.3 Champ magnétique créé par un solénoïde long	153
1.2.4 Principe de Curie	
1.3. Propriétés locales du champ magnétique	
1.3.1 Divergence et flux du champ magnétique	
1.3.2 Circulation du champ magnétique: théorème d'Ampère	
1.3.3 Rotationnel du champ magnétique	
1.4. Potentiel vecteur.	
1.4.1. <i>Définition</i>	
1.4.2. Jauge de Coulomb	
1.4.3. Circulation du potentiel vecteur.	
1.4.4. Équation locale du potentiel vecteur	
1.4.6. Analogie potentiel vecteur-potentiel scalaire	
1.5. Énergie électromagnétique	
1.5.1. Énergie magnétique	
1.5.2. Densité d'énergie électromagnétique	
2/ Exercices	
A/ Connaissances essentielles du cours	160
A.1/ QCM (Questions à Choix Multiples)	. 160
A.2/ Vrai ou faux	161
A.3/ QRD (Questions à Réponses Démontrées)	162
3.1. Définition légale de l'ampère	162
3.2. Flux du champ magnétique à travers une surface fermée	162
3.3. Formulation locale du théorème d'Ampère	162
3.4. Champ magnétique créé par un fil rectiligne infini, théorème d'Ampère	162
3.5. Champ magnétique créé par un fil rectiligne de longueur finie	163
3.6. Potentiel vecteur dû à un solénoïde de longueur infinie	163
3.7. Circulation du potentiel vecteur le long d'un contour fermé	163
3.8. Équation locale du potentiel vecteur	163
3.9. <i>Principe de Curie</i>	164
3.10. Force de Lorentz agissant sur une particule α	164
3.11. Équations horaires dans un champ électromagnétique	
3.12. Séparation d'isotopes dans un déviateur magnétique	165
3.13. Nombre de tour de particules chargées dans un cyclotron	165

Table des matières	13
3.14. Moment de force magnétique	165
3.15. Moment magnétique d'un disque chargé en surface	
B/ Applications du cours	
B.1/ Déduction de la force de Laplace à partir de la force de Lorentz	166
B.2/ Équilibre d'un conducteur métallique	
B.3/ Étude de la continuité des composantes champ magnétique	
B.4/ Vérification de l'invariance de jauge du champ magnétique	
B.5/ Champ magnétique créé par un fil infini parcouru par un courant	
B.6/ Potentiel vecteur créé par un fil infini parcouru par un courant	
B.7/ Champ magnétique créé par une spire circulaire	
B.8/ Champ magnétique créé par une spire elliptique	
B.9/ Champ magnétique créé par un solénoïde infini	
B.10/ Champ magnétique créé par un solénoïde fini	
B.11/ Mesure du champ magnétique à l'intérieur d'un solénoïde	
B.12/ Uniformité du champ magnétique à l'intérieur d'un solénoïde long	
B.13/ Effet Hall	
B.15/ Effet cyclotron	
B.16/ Découverte des isotopes	
B.17/ Champ magnétique tournant	
B.18/ Oscillation d'une tige conducteur dans un champ magnétique	
C/ Test de connaissances	186
C.1/ Spectrographie de masse : séparation des isotopes ²³⁵ U et ²³⁸ U	186
C.2/ Analogie dipôle magnétique – dipôle électrique	187
3/ Solutions des exercices	190
A/ Connaissances essentielles du cours	
B/ Applications du cours	
C/ Test de connaissances	
Chapitre 3. Induction électromagnétique	
1/ Résumé de cours	247
1.1. Phénomène d'induction électromagnétique	
1.1.1 Mise en évidence expérimentale, définition	
1.1.2 Flux du champ magnétique	
1.1.3 Règle du flux maximale	
1.1.4 Notion de force électromotrice induite, loi de Faraday	
1.1.5 Notion de courant induit, loi de Lenz	
1.2. Auto-induction	
1.2.1 Mise en évidence expérimentale, définition	
1.2.2 Notion de flux propre, inductance	
1.1. 1. Ottor de france propre, mandemice	252

1.2.3 Force électromotrice d'auto-induction, loi de Lenz – Faraday	253
1.2.4 Inductance mutuelle, théorème de Neumann	253
1.2.5 Force électromotrice d'induction mutuelle	
1.2.6 Tension aux bornes d'une bobine, énergie magnétique	. 255
2/ Exercices	256
A/ Connaissances essentielles du cours	256
A.1/ QCM (Questions à Choix Multiples)	256
A.2/ Vrai ou faux	257
A.3/ QRD (Questions à Réponses Démontrées)	
3.1. Puissance dissipée par effet joule sur des rails de Laplace	
3.2. Force électromotrice induite dans une bobine en rotation	
3.3. Force électromotrice induite dans un disque en rotation	259
3.4. Inductance d'un solénoïde infiniment long	259
3.5. Inductance d'un câble coaxial	260
3.6. Inductance d'un cadre rectangulaire	260
3.7. Inductance mutuelle de deux spires circulaires concentriques	261
3.8. Inductance mutuelle de deux bobines coaxiales	261
3.9. Vitesse limite d'un cadre en chute dans un champ magnétique	262
3.10. Inductance mutuelle de deux spires circulaires coaxiales	262
3.11. Champ magnétique à l'intérieur d'une bobine toroïdale, théorème d'Ampère	263
3.12. Inductance d'une bobine toroïdale	264
3.13. Inductance mutuelle entre une bobine toroïdale et un fil infini	264
3.14. Force électromotrice induite dans un circuit fixe, induction de Neumann	
3.15. Force électromotrice induite dans un circuit mobile, induction de Lorentz	265
3.16. Énergie magnétique emmagasinée, inductance d'un câble coaxial	
B/ Applications du cours	266
B.1/ Loi de Lenz	
B.2/ Tige homogène en mouvement sur des rails parallèles	
B.3/ Principe de l'alternateur	
B.4/ Induction dans une bobine placée à l'intérieur d'un solénoïde	
B.5/ Vérification de la loi de Lenz – Faraday	269
B.6/ Mouvement d'un cadre dans un champ magnétique uniforme	
B.7/ Phénomène d'auto-induction	
B.8/ Circuit fixe dans un champ magnétique variable : loi de Faraday	
B.9/ Rails de Laplace	
B.10/ Champ magnétique créé par les bobines de Helmholtz	
B.11/ Roue de Barlow	
C/ Test de connaissances	
Test n°1	
C.1/ Mouvement d'une tige conducteur dans un champ magnétique	276

Table des matières	15
C.2/ Quantité d'électricité induite dans un solénoïde	278 .278 278
3/ Solutions des exercices A/ Connaissances essentielles du cours B/ Applications du cours C/ Test de connaissances	280 294
Annexes	323
A.1/ Formulaire de mathématique	323
A.2/ Vecteurs dans les systèmes de coordonnées A.2.1. Systèmes de coordonnées cartésiennes A.2.2. Systèmes de coordonnées cylindriques A.2.3. Systèmes de coordonnées sphériques A.2.4. Règles d'orientation dans l'espace A.2.5. Angle solide A.2.6. Produit scalaire de deux vecteurs A.2.7. Produit vectoriel de deux vecteurs A.2.8. Circulation d'un champ de vecteur A.2.9. Flux d'un champ de vecteur	325 326 328 330 331 333 333 334
A.3/ Opérateurs vectoriels A.3.1. Opérateur gradient A.3.2. Opérateur divergence A.3.3. Opérateur rotationnel A.3.4. Opérateur Laplacien A.3.6. Relations en algèbre vectorielle	335 336 337 338
A.4/ Théorèmes de transformations intégrales A.4.1. Théorème de Stokes A.4.2. Théorème de Green-Ostrogradsky	340
A.5/ Coin biographie	
Bibliographie sommaire	351