Table des matières

Liminaire i
I. Intégrale de Riemann 1
I.1. Introduction 1
I.2. Construction de l'intégrale de Riemann 2
I.2.1. Introduction 2
I.2.2. Fonctions en escalier 4
I.2.3. Sommes de Darboux 5
I.2.4. Construction 6
I.2.5. Exemples 8
I.2.6. Sommes de Riemann 10
I.3. Propriétés de l'intégrale de Riemann 12
I.3.1. Linéarité 12
I.3.2. Positivité 13
I.3.3. Produit 14
I.3.4. Théorème fondamental du Calcul Intégral 15
I.3.5. Convergence pour les suites de fonctions 18
I.3.6. Intégrales dépendant d'un paramètre 19
I.3.7. Intégration par parties et changement de variable 21
I.3.8. Formules de la moyenne 23
I.3.9. Annexe 27
I.4. Intégrales généralisées 28
I.4.1. Introduction 28
I.4.2. Fonctions positives 31
I.4.3. Fonctions qui ne sont pas positives 34
I.4.4. Intégrales généralisées de suites de fonctions 38
I.5. Exercices 42
II. Tribus et mesures 47
II.1. Introduction 47
II.2. Tribus de parties 48
II.2.1. Dénombrabilité 48
II.2.2. Tribus 49
II.3. Applications mesurables 55
II.3.1. Définitions 55
II.3.2. Critères de mesurabilité 55
II.3.3. Sous-espaces 58
II.3.4. Mesurabilité des applications à valeurs réelles 59
II.3.5. Opérations sur les applications mesurables 63
II.3.6. Fonctions étagées 67
II.4. Mesures positives 70
II.4.1. Définition - Exemples 70
II.4.2. Construction de mesures positives 73
II.4.3. Propriétés des mesures positives 74
II.4.4. Quelques propriétés de la mesure de Lebesgue 78
II.5. Annexe sur la dénombrabilité 81
II.6. Exercices 85
II.6.1. Dénombrabilité 85
II.6.2. Ensembles et applications mesurables 86
II.6.3. Mesures positives 88
III. Construction de l'intégrale de Lebesgue 93
III.1. Intégration des fonctions étagées positives 93
III.2. Intégration des fonctions mesurables positives 100
III.2.1. Définition et premières propriétés 100
III.2.2. Le Théorème de convergence monotone 103
III.2.3. Cas de la mesure de comptage 105
III.2.4. Le Lemme de Fatou 108
III.3. Fonctions intégrables réelles ou complexes 109
III.3.1. Fonctions réelles 109
III.3.2. Fonctions à valeurs complexes 113
III.4. Comparaison avec l'intégrale de Riemann 115
III.4.1. Cas d'un intervalle compact 115
III.4.2. Cas des intégrales généralisées 117
III.5. Exemples d'intégrabilité 119
III.5.1. Mesure de Dirac 119
III.5.2. Mesure de comptage sur \mathbb{N}^{*} 119
III.5.3. Mesure-image 119
III.5.4. Mesures à densité 121
III.5.5. Intégration sur une partie mesurable 123
III.6. Exercices 124
IV. Théorème de convergence dominée et ses conséquences 127
IV.1. La notion de presque partout 127
IV.1.1. Ensembles négligeables 127
IV.1.2. Propriétés vraies presque partout 129
IV.1.3. Complément 135
IV.2. Le Théorème de convergence dominée 135
IV.2.1. Théorème de convergence dominée de Lebesgue 135
IV.2.2. Quelques exemples d'utilisation 141
IV.3. Intégrales dépendant d'un paramètre 145
IV.3.1. Position du problème 145
IV.3.2. Continuité 146
IV.3.3. Limites 147
IV.3.4. Dérivabilité 148
IV.4. Exercices 154
IV.4.1. Théorème de convergence dominée 155
IV.4.2. Intégrales dépendant d'un paramètre 160
V. Intégration sur un espace produit 165
V.1. Produit d'espaces mesurables 165
V.1.1. Tribu engendrée par une famille d'applications 165
V.1.2. Produit d'espaces mesurables 166
V.1.3. Cas des tribus boréliennes 167
V.1.4. Applications mesurables 168
V.2. Mesure-produit 170
V.2.1. Unicité des mesures 170
V.2.2. Définition de la mesure-produit 174
V.3. Théorèmes de Fubini 180
V.3.1. Cas des fonctions positives 180
V.3.2. Fonctions à valeurs réelles ou complexes 185
V.3.3. Quelques exemples d'application 188
V.4. Exercices 196
VI. Les espaces L^{p} 203
VI.1. Espaces \mathscr{L}^{1} et L^{1} 203
VI.2. Espaces \mathscr{L}^{p} et L^{p} pour $1<p<\infty$ 206
VI.2.1. Définition 206
VI.2.2. Complétude 208
VI.2.3. Inégalité de Hölder 209
VI.3. Sous-espaces denses 213
VI.3.1. Fonctions étagées 213
VI.3.2. Propriétés de régularité des mesures 215
VI.3.3. Fonctions continues à support compact 219
VI.4. Exercices 222
VII. Changement de variable sur un ouvert de \mathbb{R}^{N} 231
VII.1. Propriétés de la mesure de Lebesgue 231
VII.2. Théorème général de changement de variable 235
VII.2.1. Exemple important : coordonnées polaires dans le plan 236
VII.3. Preuve du Théorème de changement de variables 238
VII.4. Exercices 242
VIII. Séries de Fourier 247
VIII.1. Séries de Fourier des fonctions continues 247
VIII.2. Séries de Fourier des fonctions intégrables 253
VIII.2.1. Séries de Fourier des fonctions de \mathscr{L}^{1} 253
VIII.2.2. Séries de Fourier des fonctions de \mathscr{L}^{2} 254
VIII.3. Annexe : Rappel sur les espaces de Hilbert 256
VIII.3.1. Généralités 256
VIII.3.2. Orthogonalité 257
VIII.3.3. Bases orthonormées 259
VIII.4. Exercices 262
IX. Introduction aux Probabilités 269
IX.1. Généralités 269
IX.1.1. Espace de probabilité 269
IX.1.2. Variables aléatoires 270
IX.1.3. Loi d'une variable aléatoire 271
IX.1.4. Exemples de lois usuelles 273
IX.2. Indépendance 278
IX.2.1. Événements indépendants 278
IX.2.2. Variables aléatoires indépendantes 279
IX.2.3. Propriétés des v.a.r. indépendantes 281
IX.2.4. Somme de v.a.r. indépendantes 283
IX.2.5. Loi des grands nombres 286
IX.3. Complément : de l'intérêt de la notion de tribu 288
IX.3.1. Tribus indépendantes 288
IX.3.2. Tribu asymptotique 290
IX.3.3. Loi du 0-1 de Kolmogorov 291
IX.4. Exercices 294
X. Annexe 305
X.1. Construction de la mesure de Lebesgue 305
X.1.1. Mesure positive engendrée par une mesure extérieure 305
X.1.2. Théorème de prolongement 311
X.1.3. La mesure de Lebesgue sur \mathbb{R} 314
X.1.4. Propriétés de la mesure de Lebesgue sur \mathbb{R} 319
X.1.5. Mesure de Lebesgue sur \mathbb{R}^{d} 322
X.2. Théorème de représentation de Riesz 322
X.2.1. Préliminaires topologiques 322
X.2.2. Énoncé du Théorème de représentation 325
X.2.3. Preuve de l'existence 326
X.2.4. Annexe : Preuve du Théorème d'Urysohn 333
XI. Corrigés des exercices 335
XI.1. Exercices du Chapitre I 335
XI.2. Exercices du Chapitre II 345
XI.2.1. Dénombrabilité 345
XI.2.2. Ensembles, applications mesurables 347
XI.2.3. Mesures positives 352
XI.3. Exercices du Chapitre III 360
XI.4. Exercices du Chapitre IV 367
XI.4.1. Théorème de convergence dominée 371
XI.4.2. Intégrales dépendant d'un paramètre 385
XI.5. Exercices du Chapitre V 399
XI.6. Exercices du Chapitre VI 417
XI.7. Exercices du Chapitre VII 440
XI.8. Exercices du Chapitre VIII 454
XI.9. Exercices du Chapitre IX 471
Liste des notations 509
Index terminologique 511

