Table des matières

I. Introduction à la modélisation des systèmes biologiques à dynamique non linéaire	15
I.1 De l'analogie au modèle mathématique	
I.1.1 Modèles implicites et explicites	
I.2 Formalisation mathématique des systèmes dynamiques	23
I.3 De Malthus au chaos	26
I.3.1 Croissance exponentielle I.3.2 Exploitation du modèle malthusien dans le plan (n _{t+I} , n _t) I.3.3 Limite à la croissance exponentielle : le modèle de Verhulst I.3.4 Attracteurs simples et étranges dans le modèle logistique	27 30
I.4 Chaos, fractales et rythme cardiaque	33
I.4.1 La constante de Feigenbaum I.4.2 Le chaos cardiaque I.4.3 L'attracteur de Lorenz	34
I.5 Oscillations et multistabilité	38
I.5.1 Observer, connaître, agir	38 41 43
I.6 Solutions des exercices	48
II. Programmation en R : rappels et compléments	
II.1 Bibliothèques spécialisées et aide mémoire	51
II.2 Graphisme : représentations multi-échelles et échelles logarithmiques	58
II.2.1 Représentations multi-échelles II.2.2 Représentations en échelle logarithmique	

Table des matières

II.3 Boites de dialogue et langage tcl / tk	62
	02
II.3.1 Les boîtes standard de messages de type « ok », « yesno » et « yesnocancel »	62
« yesnocancei »	
II.3.3 Création de boîtes de dialogue personnalisées	
II.3.4 Associer une fonction à un bouton	
II.3.5 Champ de saisie dans une boîte de dialogue : la fonction tkentry()	
II.3.6 Organiser et personnaliser l'aspect d'une boîte de dialogue	67
II.4 Solutions des exercices	70
III. Une source moléculaire de non-linéarité : coopérativité et allostérie	73
III.1 Coopérativité et saturation sigmoïdale	74
III.2 L'équation de Hill	
III.3 Le schéma d'Adair	
III.4 Le modèle allostérique de Monod, Wyman et Changeux (MWC)	
III.4.1 Sites de fixation équivalents et indépendants	
III.4.2 Polynôme de fixation X_S du ligand S sur l'enzyme E	81
III.4.3 Polynôme de fixation X_S et fonction de saturation \overline{Y}_s	
III.4.4 Fonction de saturation d'un enzyme allostérique	
III.4.5 Comprendre le modèle allostérique : examen des situations limites.	85
III.4.6 Logique du modèle allostérique	
III.4.7 Formalisation de l'action des effecteurs allostériques (activateurs ou inhibiteurs)	
III.4.8 Comparaison des fonctions de saturation du schéma d'Adair	0 /
et du modèle MWC	90
III.5 Solutions des exercices	
IV. Ajustement des données. Régression linéaire et non linéaire	95
IV.1 Correlation is not causation	95
IV.2 Choix des modèles et des équations	97
IV.2.1 L'équation de Hill et sa transformée linéaire	98
IV.2.2 Equation de la fonction de saturation dans un schéma d'Adair	99
IV.3 Analyse de régression linéaire	99
IV.3.1 Principe	99
IV.3.2 Formulation matricielle	
IV.3.3 Pondération statistique	101 102
IV 1 + ATHINAP OF VOLUME	,,,,

Table des matières	11
--------------------	----

IV.3.5 Régression linéaire en R : la fonction lm()	104
IV.3.6 L'exemple de la transformée linéaire de l'équation de Hill	. 106
IV.3.7 Régression linéaire forcée à l'origine	. 107
IV.4 Analyse de régression non linéaire	. 108
IV.4.1 Principe (méthode de Newton-Raphson)	. 108
IV.4.2 Variances	
IV.4.3 Régression non linéaire en R : la fonction nlm()	
IV.4.4 Analyse des données précédentes (§ IV.3.6) par régression non	
linéaire sur l'équation de Hill et sur l'équation d'Adair	. 113
IV.4.5 Analyse de régression non linéaire sur une fonction implicite	
IV.5 Solution de l'exercice	. 119
V. Stabilitá locale dos états stationnaires e liméarisation, modes normany	
V. Stabilité locale des états stationnaires : linéarisation, modes normaux et bifurcations	. 121
V.1 Systèmes ouverts à une seule variable	. 121
V.1.1 Boucles de régulation et multiplicité des états stationnaires	. 123
V.1.2 Stabilité locale d'un état stationnaire dans un système ouvert à une	
seule variable. Approches graphique et algébrique	. 126
V.2 Systèmes ouverts à deux variables indépendantes	. 129
V.2.1 Un exemple simple	. 129
V.2.2 Plan de phase, isoclines, isoclines nulles, trajectoires, cycles limites et états stationnaires	
V.2.3 Etude algébrique de la stabilité locale d'un état stationnaire dans	. 131
un système à deux variables : la méthode des « modes normaux »	132
•	
V.3 Bifurcations	. 140
V.3.1 Un exemple de bifurcation pitchfork	141
V.3.2 Bifurcations supercritiques et subcritiques	
V.3.3 Un exemple de bifurcation saddlenode (selle-nœud)	
V.3.4 Bifurcations de Hopf	
V.4 Solutions des exercices	
VI. Méthodes numériques et algorithmes	. 151
VI.1 Recherche numérique des racines d'une équation : fonctions uniroot()	
et uniroot.all()	. 151
VI.1.1 Racines uniques et la fonction uniroot()	. 151
VI.1.2 Racines multiples et la fonction uniroot.all()	
VI.1.3 Tracé des isoclines nulles d'un système différentiel à deux	
variables par appel à la fonction uniroot()	. 155

Table des matières

VI.2 Calcul numérique d'une dérivée : la fonction gradient()	157
VI.3 Calcul numérique d'une matrice jacobienne : de la fonction gradient() à la fonction jacobian.full()	158
VI.3.1 Coordonnées (u_stat, v_stat) de l'état stationnaire du système VI.3.2 Calcul algébrique des dérivées partielles, éléments de la	
jacobienne	159
VI.4 Intégration numérique des équations différentielles d'ordre 1	161
VI.4.1 Principe : l'exemple de la méthode d'Euler VI.4.2 Utilisation de la fonction ode() de R	
VI.5 Solutions des exercices	173
VII. Etats stationnaires multiples	175
VII.1 L'exemple de l'opéron lactose	176
VII.1.1 Conception standard de la structure et du fonctionnement de l'opéron lactose	176
VII.1.2 Existence d'une concentration de « maintien » : l'expérience de Cohn et Horibata	177
VII.1.3 Construction d'un modèle dynamique de fonctionnement de l'opéron lactose	178
VII.1.4 Etude statique des équations de vitesse du modèle	
VII.1.5 Etude dynamique du modèle	
VII.1.6 Etablissement de la courbe d'hystérèse	
VII.1.7 Parcours de la courbe d'hystérèse : étude in silico	
VII.1.8 Signification et interprétation de la courbe d'hystérèse	188
VII.2 Dynamique de déclenchement et de propagation des maladies à prions	191
VII.3 Facteurs de transcription et héritabilité épigénétique	197
VII.3.1. Autorégulation de la biosynthèse des facteurs de transcription	197
VII.3.2. Dynamique cellulaire des facteurs de transcription	
VII.3.3. Héritabilité des caractères épigénétiques	
VII.4 Solutions des exercices	215
VIII. Instabilités et oscillations	223
VIII.1 Systèmes proies-prédateurs : le modèle de Lotka-Volterra	223
VIII.1.1 Etablissement des modèles élémentaires	
VIII.1.2 Etats stationnaires et analyse de stabilité	
VIII.1.3 Un modèle proies-prédateurs plus réaliste	
VIII 2 Oscillations glycolytiques	232

VIII.2.1 Observations expérimentales	232
VIII.2.2 La phosphofructokinase, enzyme allostérique autorégulé	
VIII.2.3 Modélisation de la régulation de la phosphofructokinase en	
milieu ouvert	236
VIII.3 Propriété d'excitabilité : calcium et paramécie	243
VIII.3.1 Modélisation des flux corticaux de calcium chez la paramécie	246
VIII.3.2 Simulation d'une vague de calcium cytosolique	
VIII.3.3 Propriété d'excitabilité, seuil et période réfractaire	
VIII.3.4 Le phénomène de relais	
VIII.3.5 De l'excitabilité aux oscillations	
VIII.4 Motifs de Turing : les bases de la morphogenèse	
VIII.5 Rythmes circadiens	274
VIII.5.1 Des rythmes autonomes d'une période proche de 24 heures	274
VIII.5.2 Modèle à 3 variables	
VIII.5.3 Réduction du modèle : de 3 à 2 variables	
VIII.5.4 Système à 2 variables : état stationnaire et isoclines nulles	
VIII.5.5 Evolution temporelle comparée des modèles à 2 et 3 variables	
VIII.5.6 Rythme autonome et synchronisation sur un rythme externe VIII.5.7 Rythme ancestral : oscillations et bistabilité	
VIII.6 Solutions des exercices	
IX. Approche stochastique : la méthode de Gillespie	303
IX.1 La méthode de Gillespie	
IX.1.1 Temps de réaction probabiliste	
IX.1.1 Temps de reaction probabiliste	
IX.1.3 Compétition entre réactions : choix entre réactions concurrentes	
IX.2 Exemple d'un équilibre de dimérisation	315
IX.3 Système ouvert : traitement stochastique du modèle de Lotka-Volterra	
IX.4 Traitement stochastique du schéma d'Adair	321
IX.5 Stochasticité dans un modèle de rythmes circadiens	326
IX.6 Traitement stochastique du schéma de Michaélis	332
IX.7 Méthode globale sans décomposition	336
IX.8 Solutions des exercices	339
Bibliographie	347
Indov	355