Méthodes
1
Outils de raisonnement

Méthode 1.1 : Utilisation de la contraposée

L'utilisation de la contraposée (ou contraposition) vient souvent en application d'un résultat précédemment montré.
Sinon elle peut être employée pour ne pas affronter une question de manière directe.
Elle consiste en :

$$
\text { montrer }(P \Longrightarrow Q) \text { revient à montrer que }((\text { non } Q) \Longrightarrow(\text { non } P))
$$

\checkmark Soit $a, b \in \mathbb{R}$. Montrer que : $\operatorname{si} \forall \varepsilon>0, a<b+\varepsilon$ alors $a \leq b$
Raisonnons par contraposée et montrons plutôt que:

$$
a>b \Longrightarrow \exists \varepsilon>0, a \geq b+\varepsilon
$$

Avec l'hypothèse $a>b$, on a donc $a-b>0$ et, ainsi, on peut trouver un $\alpha>0$ tel que $a-b=\alpha$.
En choisissant alors $\varepsilon=\frac{\alpha}{2}$, on a bien $a \geq b+\varepsilon$.

Méthode 1.2 : Raisonnement par l'absurde

Là encore, on veut montrer que $P \Longrightarrow Q$ et contourner le raisonnement direct; on suppose alors que l'on a P et aussi non Q pour finalement arriver à une contradiction.
$\checkmark \quad \begin{array}{ll}\text { Soit } A \in \mathcal{M}_{n}(\mathbb{R}) \text { telle que } A \neq 2 I \text { et } A^{2}=2 A . \\ \text { Montrer que } A \text { n'est pas inversible. }\end{array}$

Raisonnons par l'absurde et supposons que A soit inversible.
On multiplie alors la relation $A^{2}=2 A$ par A^{-1} (à gauche ou à droite) et cela nous donne : $A=2 I$.
Ceci étant en contradiction avec l'hypothèse de départ, on vient de montrer que A n'est pas inversible.

Méthode 1.3 : Démontrer une implication

On veut démontrer l'implication $P \Longrightarrow Q$ où P et Q sont deux propositions.
Pour cela on va:
\star supposer que P est vraie

* en dégager le maximum de renseignements (par des définitions, propriétés induites ou des caractérisztions)
\star en déduire que Q est vraie
P est appelée la condition suffisante et Q est la condition nécessaire.

Soit la suite $\left(u_{n}\right)_{n}$ définie par : $\forall n \in \mathbb{N}, u_{n+1}=u_{n}-u_{n}^{3}$ et $u_{0}=\frac{1}{2}$. En supposant que la suite $\left(u_{n}\right)_{n}$ est décroissante et positive, montrer que la suite converge et que sa limite est nécessairement nulle.

Supposons que la suite décroît et qu'elle est positive, alors, par le théorème de la limite monotone, on peut en déduire que la suite $\left(u_{n}\right)_{n}$ converge.
Notons l sa limite; grâce à la relation $u_{n+1}=u_{n}-u_{n}^{3}$, on en déduit par passage à la limite que : $l=l-l^{3}$.
Ainsi, on a $l^{3}=0$ soit $l=0$.

Méthode 1.4 : Démontrer une équivalence

On a globalement deux méthodes pour montrer une équivalence :

* garder toutes les équivalences au fil de la démonstration (mais c'est risqué...).
* procéder par double implication (il y a très fréquemment une implication plus simple que l'autre).

Soit $A, D, P \in \mathcal{M}_{n}(\mathbb{R})$ telles que $A=P D P^{-1}$.
Soit les ensembles : $C_{A}=\left\{M \in \mathcal{M}_{n}(\mathbb{R}), A M=M A\right\}$
et $C_{D}=\left\{M \in \mathcal{M}_{n}(\mathbb{R}), D M=M D\right\}$.
En notant $N=P^{-1} M P$, montrer que :

$$
M \in C_{A} \Longleftrightarrow N \in C_{D}
$$

Procédons par équivalences (en justifiant bien chacun d'entre elles) :

$$
\begin{aligned}
M \in C_{A} & \Longleftrightarrow A M=M A \text { par définition } \\
& \Longleftrightarrow P D P^{-1} P N P^{-1}=P N P^{-1} P D P^{-1} \\
& \left(\operatorname{car} N=P^{-1} M P \Longleftrightarrow P N P^{-1}=M\right) \\
& \Longleftrightarrow P D N P^{-1}=P N D P^{-1} \quad \text { car } P^{-1} P=I \\
& \Longleftrightarrow D N=N D \text { en multipliant à gauche par } P^{-1} \text { et } \\
& \Longleftrightarrow \text { à droite par } P
\end{aligned}
$$

Méthode 1.5 : Montrer l'existence et l'unicité

Notez bien le «et» entre les deux mots, donc il y a bien 2 choses à montrer et on va procéder en 2 temps.

Pour prouver l'existence d'un élément, on peut envisager :

- l'explicitation d'un tel élément par une illumination spontanée ou inspiration inespérée!
- la construction

Pour prouver l'unicité d'un élément, il est classique de supposer qu'il en existe deux et d'arriver à une contradiction.

Notez qu'il y a des théorèmes donnant directement l'existence et l'unicité (comme le théorème de la bijection).

Méthode 1.6: Raisonnement par récurrence

On veut démontrer :
$\forall n \geq n_{0}, \mathcal{P}(n)$ où \mathcal{P} est une propriété dépendant de l'entier naturel n.
La démonstration par récurrence (simple) consiste à :

* vérifier que la propriété est vraie pour la valeur n_{0} : c'est l'initialisation de la récurrence
* puis vérifier que si la propriété est vraie pour un certain rang n (fixé quelconque), alors la propriété est vraie au rang suivant $n+1$.
Autrement dit, $\mathcal{P}(n) \Longrightarrow \mathcal{P}(n+1)$ pour n entier fixé quelconque (la propriété est dite héréditaire).
Alors, on peut conclure que pour tout $n \geq n_{0}$, la propriété $\mathcal{P}(n)$ est vraie.
\checkmark
Soit $A, P, D \in \mathcal{M}_{3}(\mathbb{R})$ des matrices tellse que $A=P D P^{-1}$. Montrer que : $\forall n \in \mathbb{N}, A^{n}=P D^{n} P^{-1}$.

Pour $n=0$, on a d'une part $A^{0}=I$ et d'autre part on obtient $P D^{0} P^{-1}=P I P^{-1}=P P^{-1}=I$; ainsi, on a bien l'égalité.
Supposons la formule vraie à l'ordre n fixé (c'est-à-dire $A^{n}=P D^{n} P^{-1}$).
On a alors :

$$
A^{n+1}=A^{n} A=P D^{n} P^{-1} P D P^{-1}=P D^{n} D P^{-1}=P D^{n+1} P^{-1}
$$

D'où l'ordre $n+1$ et ainsi la récurrence est établie.

Les erreurs à ne plus commettre!

- L'étape d'initialisation est souvent bâclée : soit la validation n'est pas vraiment prouvée soit le $1^{\text {er }}$ terme n'est pas le bon (voir si l'on travaille sur $\mathbb{N}, \mathbb{N}^{*}, \ldots$).
- Si vous voulez définir la proposition à démontrer, ne mettez pas le $\forall n$ à l'intérieur de sa définition c'est-à-dire que l'on n'écrit pas : $\mathcal{P}(n): « \forall n \in \mathbb{N}, \ldots »$.
- Lors de l'étape de l'hérédité, ne supposez pas la propriété vraie «pour tout n » mais plutôt «à l'ordre n fixé».

Méthodes

Ensembles

2.1. Comment montrer que $x \in E$?

Pour montrer que $x \in E$, il faut utiliser la caractérisation (ou la condition) définissant l'ensemble E et vérifier que l'élément x satisfait celle-ci.

Soit l'ensemble $E=\left\{\left(u_{n}\right)_{n}, \forall n \in \mathbb{N}, u_{n+2}=2 u_{n+1}-u_{n}\right\}$.
On considère la suite $\left(u_{n}\right)_{n}$ définie, pour tout n, par $u_{n}=2 n+1$.
Vérifier que $\left(u_{n}\right)_{n} \in E$.

Pour qu'une suite $\left(u_{n}\right)_{n}$ appartienne à l'ensemble E, il faut qu'elle vérifie la relation $u_{n+2}=2 u_{n+1}-u_{n}$.
On a $u_{n}=2 n+1$ donc $u_{n+1}=2(n+1)+1=2 n+3$ et aussi $u_{n+2}=2(n+2)+1=2 n+5$.
On a : $2 u_{n+1}-u_{n}=2(2 n+3)-(2 n+1)=2 n+5$ et ainsi on retrouve bien u_{n+2}; la relation est bien satisfaite et ainsi $\left(u_{n}\right)_{n} \in E$.
2.2. Comment montrer que $E \subset F$?

Pour montrer que $E \subset F$, on montrera l'implication :

$$
x \in E \Longrightarrow x \in F
$$

Soit les ensembles :

$$
\begin{aligned}
& E_{1}(A)=\left\{M \in \mathcal{M}_{3}(\mathbb{R}), A M=M\right\} \\
& E_{2}(A)=\left\{M \in \mathcal{M}_{3}(\mathbb{R}), A^{2} M=A M\right\}
\end{aligned}
$$

où $A \in \mathcal{M}_{3}(\mathbb{R})$.
Établir que : $E_{1}(A) \subset E_{2}(A)$.

Soit $M \in E_{1}(A)$, on a alors : $A M=M$.
En multipliant cette relation par A à gauche, on obtient $A^{2} M=A M$ et ainsi $M \in E_{2}(A)$.
On a donc prouvé que $E_{1}(A) \subset E_{2}(A)$.

2.3. Comment montrer que $E=F$?

On a l'équivalence :

$$
E=F \Longleftrightarrow(E \subset F \text { et } F \subset E)
$$

On en revient alors à la méthode précédente.
On dit que l'on procède par double inclusion.
Reprendre les notations de l'exercice précédent en ajoutant que A est inversible.
Montrer alors que : $E_{1}(A)=E_{2}(A)$.

Procédons par double inclusion.
On a déjà montré l'inclusion $E_{1}(A) \subset E_{2}(A)$.
Montrons à présent l'inclusion réciproque $E_{2}(A) \subset E_{1}(A)$.
Soit $M \in E_{2}(A)$, on a alors : $A^{2} M=A M$.
Comme A est inversible, A^{-1} existe.
Multiplions la relation précédente par A^{-1} à gauche :

$$
A^{-1} A^{2} M=A^{-1} A M
$$

ce qui donne $A M=M$.
Ainsi, $M \in E_{1}(A)$ et donc on a $E_{2}(A) \subset E_{1}(A)$.
Par double inclusion, on en déduit l'égalité : $E_{1}(A)=E_{2}(A)$.

