Fiche 1

Atomistique

1. Structure de l'atome

□ Chaque atome est composé d'un *noyau* contenant *Z protons* $(q = + e = 1,6.10^{-19} \text{ C}; m_{proton} = 1 \text{ u.m.a.})$ et *N neutrons* $(q = 0; m_{neutron} = 1 \text{ u.m.a.})$, entouré *d'électrons* $(q = -e = -1,6.10^{-19} \text{ C}; m_{électron} << m_{proton} \text{ ou } m_{neutron})$.

 \square Un nucléide A_ZX est défini par son numéro atomique, Z et un nombre de masse, A avec A = Z + N. Les nucléides A_ZX et A_ZX avec $A \neq A$ ' sont appelés isotopes.

N.B. 1unité de masse atomique, u.m.a. = $\frac{1}{12}$ de la masse de l'atome ${}_{6}^{12}C \approx 1,66\cdot 10^{-27}$ kg.

 \square 1 mole = nombre d'atomes dans 12 g de ${}^{12}_{6}C = \mathcal{N}_{A} = 6,02.10^{23} \, \text{mol}^{-1}$

 \square La masse atomique moyenne d'un élément est $M = \sum_{i} \frac{\tau_i M_i}{\sum_{i} \tau_i}$; où $\tau_1, \tau_2, ...$

sont les pourcentages (abondance) des différents isotopes de l'élément et M_1, M_2, \dots leurs masses atomiques respectives.

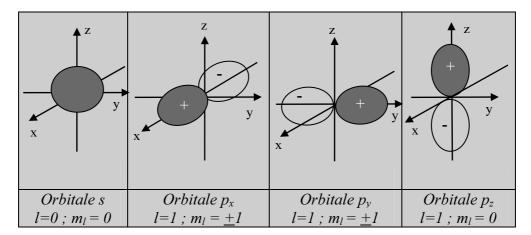
2. Nombres quantiques et quantification de l'énergie

- \square Il existe quatre nombres quantiques :
- 1- Nombre quantique principal, n, avec n = 1,2,3...: Il définit le niveau d'énergie ou la couche électronique : K, L, M...
- 2- Nombre quantique secondaire ou azimutal, l: Il définit la sous-couche électronique et indique la forme de l'orbitale atomique (O.A.).
- 3- Nombre quantique magnétique, m_l : il définit l'orientation spatiale d'une orbitale.
- 4- Nombre quantique de spin $s: m_s = +1/2 \ (\uparrow)$ et $m_s = -1/2 \ (\downarrow)$.

\square Valeurs possibles de n, l et m_l (nombres entiers relatifs) tels qu									
	n	Couche		l tel que	Sous- coud				
	1	K		$0 \le l \le n-1$	électroniq				
	2	L		0	S				
	3	M		1	р				
	4	N		2	d				

l tel que	Sous- couche
$0 \le l \le n-1$	électronique
0	S
1	р
2	d
3	f

l	$-l \leq m_l \leq +l$					
0			0			
1		-1	0	+1		
2	-2	-1	0	+1	+2	


 \square Pour l'hydrogène et les hydrogénoïdes (atomes à un seul électron et $Z \neq$ 1), l'énergie de l'électron dans un niveau n est donnée par : $E_n(eV) = -13.6 \cdot \frac{Z^2}{n^2}$ L'énergie E ne dépend que de n. A l'état fondamental, n=1 pour l'atome H.

 \square Lorsque l'électron passe d'un niveau d'énergie supérieur n_i à un niveau inférieur n_f , il y a émission d'un photon (quantum) d'énergie $\left| \Delta E \right| = h \, v = \left| E_f - E_i \right|$

N.B. Dans les atomes polyélectroniques, l'énergie des OA dépend des nombres quantiques n et l.

3. Description des orbitales "s" et "p"

Les *orbitales s (1=0)* ont une symétrie sphérique alors que les *orbitales p* sont à symétrie axiale avec des plans nodaux (plans où la densité électronique est nulle).

4. Répartition des électrons ou configuration électronique

- ☐ La configuration électronique à l'état fondamental découle des principes suivants :
- 1. Principe d'exclusion de Pauli : Deux électrons d'un même atome ne peuvent être caractérisés par quatre nombres quantiques identiques.
- 2. Principe de stabilité : Les électrons occupent en premier le niveau le plus stable (n = 1; l = 0) = de plus basse « énergie ».
- 3. Règle de Klechkowski ou la règle du (n + l) minimal: Les électrons se placent dans les orbitales atomiques par ordre d'énergie croissante, ce qui revient à remplir les OA par valeurs de (n+l) croissantes.
- 4. *Règle de Hund (règle du spin maximal) :* Lorsque des orbitales atomiques ont la même énergie, les électrons s'y répartissent d'abord avec un nombre maximum de spins parallèles.

Exemples:

$$_{15}P: 1s^2, 2s^2, 2p^6 / 3s^2, 3p^3$$

 $_{26}Fe: 1s^2, 2s^2, 2p^6, 3s^2, 3p^6 / 3d^6, 4s^2$

(On écrit $3d^6$, $4s^2$ au lieu de $4s^2$, $3d^6$ car les électrons 4s sont plus facilement éjectés que les électrons d (assez général pour la quatrième période).

Ainsi
$${}_{26}Fe^{2^+}$$
: $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6/3d^6$ (et non pas $4s^2$, $3d$,)

N.B. Exceptions à la règle de Klechkowski et
$$(n+l)$$
 minimal: ${}_{24}\text{Cr}: 1s^2, 2s^2, 2p^6, 3s^2, 3p^6 / 3d^5, 4s^1$ et non pas: $3d^4, 4s^2$

Dans cette configuration « **spécifique** », l'atome de Cr se trouve dans un état énergétiquement plus stable (Maximum de spins parallèles)

N.B: La proximité des niveaux d'énergie relatifs à ns et (n-1)d rend leur inversion possible.

5. Classification périodique

Life est basee sur le classement des elements par numero atomique, Z,
croissant, c'est-à-dire sur la structure électronique des atomes.
□ Elle est constituée de 7 lignes appelées "périodes" et de 18 colonnes
appelées "familles".
☐ Les éléments appartenant à une même colonne ont une couche de valence
de même configuration électronique.
□ Les éléments appartenant à une même ligne ou période ont la même
valeur de <i>n</i> pour la <i>couche de valence</i> .

6. Caractéristiques atomiques

□ Energie de ionisation ($EI_1 > 0$)	première	$A_{(g)} \xrightarrow{EI_1} A_{(g)}^+ + 1e^-$
□ Energie de n ^{ième} ion	isation	$A_{(g)}^{(n-1)+} \xrightarrow{EI_n} A_{(g)}^{n+} + 1 e^-$
□ Affinité électronique	(AE)	$A_{(g)} + e^{-} \xrightarrow{E_{fix.}} A_{(g)}^{-}$ avec $AE = -E_{fix.}$ avec E_{fix} : Energie de fixation d'un électron
□ Electronégativité « EN »	Selon Pauling (Echelle relative)	$\begin{aligned} \left EN_{(B)} - EN_{(A)} \right &= 0.102 \sqrt{E_{AB}} - \sqrt{E_{AA}.E_{BB}} \\ E_{AB}, E_{AA} \ et \ E_{BB} : Energies \ de \ dissociation \\ des \ liaisons \ AB, \ AA \ et \ BB \ exprimées \ en \\ kJ.mol^{-1}. \ EN \ (selon \ Pauling) \ est \ exprimée \\ en \ eV^{1/2}. \ (1 \ eV = 96,5 \ kJ.mol^{-1}) \end{aligned}$
	Selon Mulliken	$EN = \frac{(EI_1 + AE)}{2} \qquad (en eV)$

■ Evolution de l'énergie d'ionisation et de l'électronégativité

- \square Dans une même colonne, en allant de bas en haut, EI_1 et EN augmentent.
- \square Dans une même période, en allant de gauche à droite, EI_1 et EN augmentent.

Fiche 2

Liaisons chimiques

1. Liaison covalente

☐ Elle résulte de la mise en commun de deux électrons provenant chacun
des deux atomes impliqués dans la liaison.
□ Règle de l'octet : La stabilité maximale d'une molécule est obtenue
lorsque chaque atome, « en particulier de la deuxième ou troisième
période », se retrouve entouré par huit électrons (somme des doublets libres
ou liants).
☐ Les atomes de la première période (H et He) ne cherchent à s'entourer
que d'une seule paire d'électron.
Extension de la règle de l'octet et hypervalence: A partir de la 3ème
période de la classification, l'existence des orbitales atomiques d permet aux
atomes correspondants d'atteindre un nombre d'électrons de valence
sunérieur à huit (hyporyalonco)

■ Liaison dative:

La liaison *dative* résulte de la mise en commun d'un doublet d'électrons appartenant initialement à l'un des deux atomes, l'autre possédant une lacune électronique. La liaison dative fait apparaître des *charges formelles* :

2. Liaison ionique

- \square La *liaison ionique* ou à *caractère ionique* résulte du transfert complet d'un électron d'un atome vers l'autre; elle implique donc des ions en interaction électrostatique.
- ☐ La différence d'electronégativité entre les atomes impliqués dans une liaison ionique est généralement supérieure à deux.

3. Schéma de Lewis

\Box Le so	chéma d	de Lewis	représente	l'ensemble	des	liaisons	(doublets	liants)
et des de	oublets	d'électron	ns libres au	sein d'une	mol	écule.		

☐ Le schéma de Lewis ne donne aucune indication sur la géométrie spatiale de la molécule.

- ☐ Les structures de Lewis les plus probables (les plus stables) sont :
- celles qui attribuent la charge négative à l'atome le plus électronégatif.
- celles pour lesquelles la somme des valeurs absolues des charges formelles est minimale.

4. Pourcentage de caractère ionique (% i) d'une liaison

- \square Dans une liaison A-B, l'existence de deux charges +q et -q séparées par une distance d, induit un *moment dipolaire* $\vec{\mu}$.
- \square Pour une liaison purement ionique : $\parallel \vec{\mu} \parallel = /e/. d$ (C.m)
- \square Pour une liaison covalente *polaire* ($\Delta EN < 2$; q < e): $|| \vec{\mu} || = | \delta e |$. d (C.m)

Le moment dipolaire est le plus souvent exprimé en Debye (1 Debye = $\frac{1}{3}$. 10^{-29} C.m).

Le pourcentage de caractère ionique (%i) peut être calculé à partir de la mesure du moment dipolaire ($\mu_{r\acute{e}el}$) et de la distance d_{AB} .

$$\%i = \frac{\mu_{r\acute{e}el}}{\mu_i}.100 = \frac{\mu_{r\acute{e}el}}{ed_{AB}}.100 \text{ ou } \%i = \frac{\mu_{r\acute{e}el}(D)}{4.8.d_{AB}(\mathring{A})}.100$$

où μ_i : moment calculé pour une liaison supposée ionique entre A et B de même longueur d_{AB} .

5. Les liaisons faibles

■ Interactions de Van der Waals

- \square Les forces de *Van der Waals* sont des interactions attractives dipôle/dipôle. Leur énergie est de l'ordre de 0 à 20 $kJ.mol^{-1}$.
- ☐ Elles ont pour origine trois types d'interaction :
- Keesom : entre dipôles permanents ;
- Debye : entre un dipôle permanent et un dipôle induit ;
- London : entre un dipôle instantané et un dipôle induit.

■ Liaison Hydrogène

1. Elle fait intervenir un atome d'hydrogène lié de façon covalente à un atome plus électronégatif et un doublet non liant appartenant à un autre atome électronégatif dans la même molécule (*intra*) ou non (*inter*).

$$\delta^ \delta^+$$
 Liaison hydrogène $\delta^ \delta^-$

2. Cette interaction est relativement faible $(15 - 40 \text{ kJ.mol}^{-1})$ mais peut affecter les propriétés physico-chimiques d'une molécule.

Exemple : augmentation de la viscosité, de la température d'ébullition.

6. Géométrie spatiale : Méthode VSEPR

□ *Enoncé*: Au sein d'un édifice moléculaire, autour de chaque atome, les doublets d'électrons (libres ou liants) s'éloignent le plus possible les uns des autres de façon à minimiser leur répulsion.

 \square *Principe*: Soit un atome A lié à m atomes X (ou groupes d'atomes) et entouré par n doublets non liants notés E. En formalisme VSEPR, l'atome est décrit par AX_mE_n ; il est ainsi entouré de n+m doublets.

■ Les différentes formes géométriques								
n+m	AX_mE_n	Géométrie de base « atomes et doublets libres »	Forme géométrique « on ne voit que les atomes »	Exemple				
2	AX_2	Linéaire	Linéaire	CO_2				
3	AX_3	Triangulaire	Trigonale plane	BCl ₃				
3	AX_2E		Angulaire	SnCl ₂				
4	AX_4	Tétraédrique	Tétraédrique	SiF ₄				
4	AX_3E		Pyramide trigonale	PCl ₃				
4	AX_2E_2	***************************************	Angulaire	H ₂ O				
5	AX_5	Bipyramide trigonale	Bipyramide trigonale	PCl ₅				
5	$AX_4E^{(*)}$	ax	En bascule	SF ₄				
5	$AX_3E_2^{(*)}$	égeq	Plane en T	ClF ₃				
5	$AX_2E_3^{(*)}$	éq	Linéaire	XeF ₂				
6	AX_6	Octaédrique ax	Octaédrique	SF ₆				
6	$\begin{array}{c c} AX_6 \\ AX_5 E^{(\S)} \end{array}$	éq IIIIIIII éq	Pyramide à base carrée	XeOF ₄				
6	$AX_4E_2^{(\S)}$	éq éq ax	Plan carré	XeF ₄				

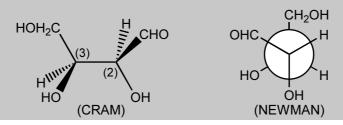
- (*) : Les doublets libres sont dans le plan équatorial. (plan perpendiculaire à la feuille)
- (§) : Les doublets libres sont en position axiale. (verticale dans le plan de la feuille)
- \square Les angles de valence XAX sont influencés par le nombre n de paires libres et la différence d'électronégativité entre l'atome central A et les atomes liés X:
- Plus la valeur de *n* est élevée et plus les angles (*XAX*) sont faibles.
- Plus l'atome central est électronégatif et plus le doublet liant associé à X est répulsif vis-à-vis des autres doublets (lianst, non liants).

7. Théorie des orbitales moléculaires : molécule H₂

- ☐ Une orbitale moléculaire est obtenue par combinaison linéaire des orbitales atomiques.
 ☐ Les orbitales atomiques combinées doivent avoir des énergies proches et surtout des symétries compatibles (recouvrement non nul).
- \square Le nombre d'orbitales moléculaires obtenu est égal au nombre d'orbitales atomiques combinées. La combinaison des orbitales 1s dans H_2 :

$$\sigma = 1s_{H(a)} + 1s_{H(b)}$$
 et $\sigma *= 1s_{H(a)} - 1s_{H(b)}$

L'orbitale moléculaire σ décrit un état avec liaison chimique stable où la densité électronique entre les deux noyaux a et b est maximale. On l'appelle orbitale liante. L'orbitale moléculaire σ^* (orbitale antiliante) conduit à une interaction plus répulsive entre les deux noyaux.

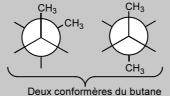

A l'état fondamental, la configuration électronique de la molécule H_2 s'écrit : $(\sigma_{I_2})^2$

8. Notions de stéréochimie

■ Représentations planes des structures spatiales

- □ Représentation de *Cram*: Représentation en perspective de molécule (Trait normal : liaison dans le plan ; trait allongé plein : liaison avec un atome en avant du plan ; trait allongé hachuré : liaison avec un atome en arrière du plan).
- □ Représentation en projection de Newman : La molécule est regardée dans l'axe de la liaison entre deux atomes de carbone voisins. Les liaisons issues des deux atomes sont projetées sur un plan perpendiculaire à l'axe de la liaison étudiée.

Exemple:



■ Stéréoisomères

- □ Les *stéréoisomères* sont des molécules de même formule brute qui diffèrent par la disposition des atomes dans l'espace.
- \square Une molécule possédant n atomes de carbone asymétrique comporte 2^n stéréoisomères. Des symétries peuvent diminuer ce nombre : $n_{stéréo} \le 2^n$.

Stéréoisomèrie de *conformation* : Deux stéréoisomères de conformation (conformères) ne diffèrent que par rotation(s) autour de liaison(s) σ .

N.B. L'énergie potentielle d'un conformère varie en fonction de l'angle de rotation ou torsion. La conformation obtenue peut être « éclipsée » ou « décalée ». En général, la conformation la plus stable est la « décalée anti » où l'encombrement stérique est minimal. Cependant, l'existence éventuelle