Chapitre 1

CORPS DES NOMBRES RÉELS

INTRODUCTION

On suppose construits et connus N, Z (voir exercice 13) et Q (voir exercice 14). Le corps commutatif Q présente certaines lacunes.

1. L'équation $x^2=2$ n'a pas de solution dans ${\bf Q}$. En effet, si il existe un rationnel $x=\frac{p}{q}$ avec p et q deux entiers de pgcd égal à 1, on aurait alors $p^2=2q^2$.

En utilisant l'égalité de Bezout, il existe alors deux entiers u et v tels que pu+qv=1, et donc, $p^2u+pqv=p$; d'où $2q^2u+pqv=p$.

Alors, de q(2qu+pv)=p, on déduit que q divise p. Comme les deux entiers naturels p et q sont premiers entre eux, alors q=1 ou q divise p tout en vérifiant q différent de 1.

q=1 implique $p^2=2$ (impossible dans **N**)

q divise p et $q \neq 1$ (impossible aussi car p et q sont premiers entre eux).

2. D'après ce qui précède, l'application $x \mapsto x^2 - 2$ ne s'annule pas dans \mathbf{Q} . Soit $A = \{x, x \in \mathbf{Q}, x^2 = 2\}$. Montrons que A ne possède pas de borne supérieure dans \mathbf{Q} .

Supposons qu'il existe un rationnel a tel que $a = \sup A$. Alors, a est strictement positif et $a^2 < 2$ ou $a^2 > 2$.

• Supposons $a^2 > 2$ et soit $r = a^2 - 2$.

Quelque soit un rationnel strictement positif h, on a

$$(a-h)^2 = a^2 - 2ah + h^2 > a^2 - 2ah = r + 2 - 2ah.$$

Prenons $h < \min\left(\frac{r}{2a}, a\right)$. On obtient $(a-h)^2 > 2$. Nous avons donc trouvé un rationnel a-h majorant de A et plus petit strictement que la borne supérieure de A (impossible).

• Supposons $a^2 < 2$ et soit $r = 2 - a^2$.

Quelque soit un rationnel h strictement compris entre 0 et 1, on a

$$(a+h)^2 = a^2 + 2ah + h^2 < a^2 + 2ah + h \le 2 + 2ah + h - r \le 2 + (2a+1)h - r.$$

Prenons $h<\min\left(\frac{r}{2a+1},1\right)$. On obtient $(a+h)^2<2$. Nous avons donc trouvé un rationnel a+h de A qui est strictement supérieur à la borne supé-

rieure de A (impossible). Donc l'ensemble non vide majoré A n'admet pas de borne supérieure dans \mathbf{Q} .

3. Il existe des suites croissantes majorées de rationnels qui ne converge pas dans Q (voir 1.1.3).

Nous allons construire un ensemble qui puisse nous permettre de résoudre ces problèmes; nous verrons d'ailleurs que ces trois types de difficultés rencontrées sont de nature équivalente.

1.1 Suite de Cauchy

1.1.1 Définitions

Définition 1: $(\mathbf{K}, +, \times)$ est un corps commutatif totalement ordonné si :

- i) $(\mathbf{K}, +, \times)$ est un corps commutatif
- ii) \mathbf{K} est muni d'une relation d'ordre total, notée \leq compatible avec l'addition et la multiplication; c'est-à-dire que :

$$\forall x, y, z \in \mathbf{K}$$
 $x \le y \Rightarrow x + z \le y + z$
 $\forall z > 0, \quad x < y \Rightarrow x.z < y.z$

Remarques:

 $Soit(\mathbf{K}, +, \times)$ un corps commutatif totalement ordonné.

- 1) On pose $\forall x \in \mathbf{K} \ |x| = \max\{x, -x\}$. On peut vérifier que $x \to |x|$ possède les propriétés usuelles des valeur absolues.
- 2) Dans la suite \mathbf{K} est un corps commutatif totalement ordonné, dont l'élément neutre de la multiplication est noté 1.

3) L'ensemble $\{x \in \mathbf{K}, x \geq 0\}$ se note \mathbf{K}_+ . L'ensemble $\{x \in \mathbf{K}, x > 0\}$ se note \mathbf{K}_+^* .

Définition 2 : Soit (u_n) une suite d'éléments de K, on dit que (u_n) est une suite de Cauchy dans K, si

$$\forall \varepsilon \in \mathbf{K}_{+}^{*} \quad \exists n_0 \in \mathbf{N}, \ \forall n, p \in \mathbf{N}, \ n > p > n_0 \ \Rightarrow |u_n - u_p| < \varepsilon$$

Exemple: Toute suite constante est une suite de Cauchy.

1.1.2 Propriétés

Proposition 1 : Toute suite de cauchy est bornée.

Démonstration : Soit (u_n) une suite de Cauchy dans K.

Prenons $\varepsilon = 1$, alors $\exists n_0 \in \mathbf{N}$ tel que $n > p > n_0 \implies |u_n - u_p| < 1$.

Fixons p. Alors, $\forall n > p \quad ||u_n| - |u_p|| \le |u_n - u_p| < 1$.

D'où, $\forall n > p \quad |u_n| \le 1 + |u_p|$.

Soit M défini par $M = \max\{|u_0|, |u_1|, ..., |u_p|, 1 + |u_p|\},\$

alors $\forall n \in \mathbf{N} |u_n| < M$.

Proposition 2 : L'ensemble, noté C(K), des suites de Cauchy dans K est un anneau et un K espace vectoriel.

Démonstration:

On rappelle que $C(\mathbf{K})$ est une partie non vide de l'ensemble noté $F(\mathbf{K})$ des suites sur \mathbf{K} , que $F(\mathbf{K})$ est un anneau et un \mathbf{K} espace vectoriel, et que :

$$\forall (u_n), (v_n) \in \mathcal{C}(\mathbf{K}), (u_n) + (v_n) = (u_n + v_n)$$

$$\forall (u_n), (v_n) \in \mathcal{C}(\mathbf{K}), (u_n) \times (v_n) = (u_n \times v_n)$$

$$\forall (u_n) \in \mathcal{C}(\mathbf{K}), \forall \alpha \in \mathbf{K}, \quad \alpha.(u_n) = (\alpha.u_n)$$

Soit (u_n) et (v_n) deux suites de Cauchy dans **K**.

•
$$\forall \varepsilon \in \mathbf{R}_{+}^{*}$$
, $\exists n_{0} \in \mathbf{N}, \ \forall n, p \in \mathbf{N}, \ n > p > n_{0} \Rightarrow |u_{n} - u_{p}| < \frac{\varepsilon}{2}$

$$\forall \varepsilon \in \mathbf{R}_{+}^{*}, \quad \exists n_{0}' \in \mathbf{N}, \ \forall n, p \in \mathbf{N}, \ n > p > n_{0}' \ \Rightarrow |v_{n} - v_{p}| < \frac{\varepsilon}{2}$$

donc,
$$\forall n > p > \max\{n_0, n'_0\}$$

$$|u_n + v_n - (u_p + v_p)| \le |u_n - u_p| + |v_n - v_p| \le \varepsilon.$$

Donc $(u_n + v_n)$ est une suite de Cauchy.

$$\bullet |u_n.v_n - (u_p.v_p)| = |(u_n - u_p).v_n| + |(v_n - v_p).u_p| \text{ et } \\ |(u_n - u_p).v_n| + |(v_n - v_p).u_p| \le |u_n - u_p|.|v_n| + |v_n - v_p|.|u_p|.$$

Les suites (u_n) et (v_n) sont bornées en tant que suites de Cauchy.

Donc,
$$\exists M \in \mathbf{K}_+, \quad \forall n \in \mathbf{N} \ |u_n| \le M \ \text{et} \ |v_n| \le M \ \text{d'où},$$

$$|u_n.v_n - (u_p.v_p)| \le M(|u_n - u_p| + |v_n - v_p|).$$

Or (u_n) et (v_n) sont deux suites de Cauchy dans K, donc, à partir d'un certain rang on a

$$|u_n - u_p| \le \frac{\varepsilon}{2M}$$
 et $|v_n - v_p| \le \frac{\varepsilon}{2M}$.

Donc $(u_n.v_n)$ est une suite de Cauchy.

• $\forall \alpha \in \mathbf{K}$, $\alpha.(u_n) = (\alpha.u_n)$ et $(u_n.v_n)$ est une suite de Cauchy, (en particulier si $\forall n \in \mathbf{N} \ v_n = \alpha$), on obtient que $(\alpha.u_n)$ est une suite de Cauchy.

De plus, si $\alpha = -1$, alors $-1.(u_n) = -(u_n)$ est une suite de Cauchy et (1) est une suite de Cauchy, et donc, $\mathcal{C}(\mathbf{K})$ est un sous-anneau et un sous-espace vectoriel de $\mathcal{F}(\mathbf{K})$.

Proposition 3: Toute suite convergente dans **K** est une suite de Cauchy.

Démonstration:

Soit (u_n) une suite convergente dans K. Alors, il existe $l \in K$ tel que

$$\forall \varepsilon \in \mathbf{K}_{+}^{*} \quad \exists n_0 \in \mathbf{N} \ \forall n \in \mathbf{N} \ n > n_0 \Rightarrow |u_n - l| < \frac{\varepsilon}{2},$$

$$\forall \varepsilon \in \mathbf{K}_{+}^{*} \quad \exists n_0 \in \mathbf{N} \ \forall m \in \mathbf{N} \ m > n_0 \Rightarrow |u_m - l| < \frac{\varepsilon}{2}.$$

Or
$$|u_m - u_n| = |u_m - l + l - u_n| \le |u_m - l| + |u_n - l|$$
 et donc,

$$\forall \varepsilon \in \mathbf{K}_{+}^{*} \quad \exists n_{0} \in \mathbf{N} \ \forall n, m \in \mathbf{N} \ n > m > n_{0} \ \Rightarrow |u_{n} - u_{m}| < \varepsilon.$$

Définition 3 : Un corps commutatif totalement ordonné K est dit complet, si toute suite de Cauchy converge.

1.1.3 Non complétude de Q

Théorème 1 : Q est un corps commutatif totalement ordonné non complet.

Démonstration :

De la construction de **Q** à partir de **Z** (voir exercice 14), on déduit que **Q** est un corps commutatif totalement ordonné.

Soit (x_n) et (y_n) les deux suites dans \mathbf{Q} définies par :

$$x_n = \sum_{k=0}^n \frac{1}{k!}$$
 et $y_n = x_n + \frac{1}{n!}$.

On peut vérifier que (x_n) est strictement croissante et que (y_n) est strictement décroissante.

Donc $\forall m > p > n$ on a $x_n < x_p < x_m < y_m < y_p < y_n$

De plus $|x_n - x_p| < |x_n - y_n| \le \frac{1}{n!}$, d'où (x_n) est une suite de Cauchy dans Q.

Supposons que (x_n) soit une suite convergente dans \mathbf{Q} et soit a sa limite.

En faisant tendre m vers l'infini dans $x_n < x_p < x_m < y_m < y_p < y_n$, on obtient : $\forall n \in \mathbf{N} ~~ x_n < x_p \leq a \leq y_p < y_n \text{, c'est-à-dire}: \\ \forall n \in \mathbf{N} ~~ x_n < a < y_n.$

$$\forall n \in \mathbf{N} \quad x_n < a < y_n.$$

Si a existe dans \mathbf{Q} , a peut s'écrire sous la forme $a = \frac{p}{a}$ avec $p \in \mathbf{Z}^*$ et $q \in \mathbf{N}^*$.

Alors
$$x_q < \frac{p}{q} < y_q$$
, ou encore $x_q < \frac{p}{q} < x_q + \frac{1}{q!}$.

et donc $x_q.q! < (q-1)!.p < x_q.q! + 1$ (inégalité impossible dans N).

Donc (x_n) est une suite de Cauchy dans \mathbf{Q} non convergente.

1.2 Structure de R

1.2.1 Construction et définition de R

On rappelle que $C(\mathbf{Q})$ est l'ensemble des suites de Cauchy de \mathbf{Q} .

Théorème 2 : L'ensemble \mathcal{I} des suites de rationnels qui convergent vers 0 est un idéal de l'anneau $\mathcal{C}(\mathbf{Q})$. L'anneau quotient $\frac{\mathcal{C}(\mathbf{Q})}{\mathcal{T}}$ est un corps commutatif, appelé corps des nombres réels et est noté R.

Démonstration:

Soit $\mathcal{C}'(\mathbf{Q})$ l'ensemble des suites convergentes de \mathbf{Q} . On a $\mathcal{C}'(\mathbf{Q}) \subset \mathcal{C}(\mathbf{Q})$.

i) Soit f l'application de $\mathcal{C}'(\mathbf{Q})$ qui à chaque suite (x_n) associe sa limite $\lim x_n$ dans \mathbf{Q} .

Alors, f est un morphisme d'anneaux et de Q espace vectoriel de $\mathcal{C}'(\mathbf{Q})$ dans Q. On a $\mathcal{I} = \text{Ker f. En tant que noyau de morphisme}, \mathcal{I} \text{ est un sous-anneau de } \mathcal{C}'(\mathbf{Q}),$ donc de $\mathcal{C}(\mathbf{Q})$.

Soit $(x_n) \in \mathcal{I}$ et $(y_n) \in \mathcal{C}(\mathbf{Q})$, (y_n) est bornée et comme (x_n) converge vers 0, alors (x_n, y_n) converge vers 0.

Donc $(x_n.y_n) \in \mathcal{I}$, et \mathcal{I} est un idéal de $\mathcal{C}(\mathbf{Q})$.

En conséquence $\frac{\mathcal{C}(\mathbf{Q})}{\mathcal{I}}$ est un anneau commutatif.

Montrons que $\frac{\mathcal{C}(\mathbf{Q})}{\mathcal{T}}$ est un corps commutatif.

ii) Soit
$$X \in \frac{\mathcal{C}(\mathbf{Q})}{\mathcal{I}}$$
 et $(x_n) \in X$.

Lemme: Soit (x_n) une suite de Cauchy de \mathbf{Q} qui ne converge pas vers 0, alors $\exists (a, N) \in \mathbf{Q}_+^* \times \mathbf{N} \quad \forall n \geq N \ x_n \geq a \text{ ou } \forall n \geq N \ x_n \leq -a.$

Démonstration du lemme :

Supposons que $\forall (a, N) \in \mathbf{Q}_+^* \times \mathbf{N} / \exists n \geq N \ x_n < a \ \text{et} \ \exists p \geq N \ x_p > -a.$

$$\forall \varepsilon \in \mathbf{Q}_{+}^{*}, \exists n_{0} \in \mathbf{N}, \ \forall n, p \in \mathbf{N}, \ n > p > n_{0} \Rightarrow |x_{n} - x_{p}| < \frac{\varepsilon}{3}.$$

Prenons
$$a = \frac{\varepsilon}{3}$$
 et $N = n_0$

$$\exists n_0' \ge N, \ x_{n_0'} < \frac{\varepsilon}{3} \text{ et } \exists p_0' \ge N, x_{p_0'} > -\frac{\varepsilon}{3}.$$

$$\begin{array}{l} \text{Or} \ -\frac{\varepsilon}{3} \ < \ x_{n_0'} - x_{p_0'} \ < \ \frac{\varepsilon}{3} \ \text{d'où} \ -2\frac{\varepsilon}{3} \ < \ x_{n_0'} \ < \ \frac{\varepsilon}{3} \ \text{et donc} \ |x_{n_0'}| \ < \ \frac{\varepsilon}{3}. \end{array} \text{De plus} \\ \forall n > N \quad ||x_n| - |x_{n_0'}|| \le |x_n - x_{n_0'}| < \frac{\varepsilon}{3}. \end{array}$$

On en déduit donc que $\forall n > N \quad |x_n| \le |x_{n_0'}| + \frac{\varepsilon}{3} < \varepsilon$, ce qui entraine que la limite de (x_n) serait 0, ce qui est impossible par hypothèse.

Montrons maintenant que dans R tout élément non nul admet un inverse.

Soit (x_n) une suite de Cauchy de rationnels qui ne converge pas vers 0. Il existe alors $(a, N) \in \mathbf{Q}_+^* \times \mathbf{N}$ tel que $\forall n \geq N \mid |x_n| \geq a$.

Soit (x'_n) la suite de rationnels définie par

$$\left\{ \begin{array}{ll} x_n' = & a & \text{pour } n < N \\ x_n' = & x_n & \text{pour } n \ge N \end{array} \right.$$

 $\forall n \in \mathbb{N}, x'_n \in \mathbb{Q} \text{ et } (x_n) - (x'_n) \in \mathcal{I}, \text{ donc } (x'_n) \in \mathcal{X}, \text{ si on appelle } \mathcal{X} \text{ la classe de } (x_n).$

$$\forall n \in \mathbf{N} \quad x_n' \neq 0.$$

Soit (y_n) la suite d'éléments de \mathbf{Q} définies par $y_n = \frac{1}{x'_n}$.

$$y_n - y_p = \frac{x_p' - x_n'}{x_n'.x_p'}$$
 et donc $|y_n - y_p| \le \frac{|x_n' - x_p'|}{a^2}$,

 (y_n) est donc une suite de Cauchy.

Soit \mathcal{Y} la classe de (y_n) dans $\frac{\mathcal{C}(\mathbf{Q})}{\mathcal{I}}$, alors $\mathcal{X}.\mathcal{Y}=1$ (1 étant par notation la classe dans \mathbf{R} du nombre rationnel 1).

Remarque: On rappelle que si \mathcal{I} est un idéal d'un anneau commutatif A, alors $\frac{A}{\mathcal{I}}$ est un corps si et seulement si \mathcal{I} est un idéal maximal de A. En fait, on vient de démontrer que \mathcal{I} est un idéal maximal de $\mathcal{C}(\mathbf{Q})$.

Notation:

On notera p la surjection $C(\mathbf{Q}) \mapsto \mathbf{R}$.

1.2.2 Corps totalement ordonné R

Définition 4: On appelle réel positif tout élément de l'ensemble, noté \mathbf{R}_+ , défini par $\mathbf{R}_+ = p(\mathcal{C}_+)$ où \mathcal{C}_+ est l'ensemble des suites (x_n) de $\mathcal{C}(\mathbf{Q})$, vérifiant une des deux conditions suivantes :

1)
$$(x_n) \in I$$
.

2)
$$\exists n_0 \in \mathbf{N} \quad \forall n \in \mathbf{N}, \ n > n_0 \Rightarrow x_n > 0.$$

Interprétation: L'ensemble \mathbf{R}_+ est constitué par(0), noté 0 et les classes des suites de Cauchy de $\mathcal{C}(\mathbf{Q})$ dont le terme général est strictement positif à partir d'un certain rang.

Proposition 4: La relation, notée \leq , définie par $X \leq Y$ si $Y - X \in \mathbf{R}_+$ est une relation d'ordre total compatible avec les opérations de \mathbf{R} , et donc $(\mathbf{R}, +, \times, \leq)$ est un corps commutatif totalement ordonné.

Démonstration:

Soit
$$X = p((x_n))$$
 et $Y = p((y_n))$.
 $Y - X \in \mathbf{R}_+ = p(\mathcal{C}_+)$ et $Y - X = p((y_n - x_n))$.

- La relation \leq est réflexive car si les suites (x_n) et (y_n) sont dans X, alors $(x_n y_n) \in I$, donc à \mathbf{R}_+ .
- La relation ≤ est antisymétrique car

$$X \leq Y \Rightarrow Y - X \in \mathbf{R}_+ \text{ et } Y \leq X \Rightarrow X - Y \in \mathbf{R}_+ \text{ nous donne } (x_n - y_n) \in \mathcal{C}_+ \text{ et } (y_n - x_n) \in \mathcal{C}_+, \text{ et donc } :$$

Si (premier cas)

 $\exists n_0 \in \mathbf{N}, \quad \forall n \in \mathbf{N}, \ n > n_0 \Rightarrow y_n - x_n > 0 \text{ et }$

$$\exists n_0' \in \mathbf{N}, \quad \forall n \in \mathbf{N}, \ n > n_0 \Rightarrow x_n - y_n > 0,$$

alors $\forall n > \max\{n_0, n'_0\}, \ x_n - y_n > 0 \text{ et } x_n - y_n < 0 \text{ (impossible)}.$

Si (deuxième cas) $x_n - y_n \in I$ alors X = Y.

Donc $X \leq Y$ et $Y \leq X$ implique que X = Y

- La relation \leq est transitive car $X \leq Y$ et $Y \leq Z$ implique que $X \leq Z$ (on regarde les 4 possibilités), donc \leq est une relation d'ordre
- La relation \leq est une relation d'ordre total, car si $Y-X=p((y_n-x_n))$ et $X-Y=p((x_n-y_n))$,
- 1) soit $(x_n y_n) \in I$ et alors X = Y.
- 2) soit $(x_n y_n) \notin I$ et d'après le lemme du théorème 1, il existe $a \in \mathbf{Q}$ tel que à partir d'un certain rang, on ait :

Soit
$$x_n - y_n > a > 0$$
 où $x_n - y_n < -a < 0$ et donc, $X \le Y$ où $Y \le X$.

• La relation \leq est compatible avec l'addition et la multiplication de \mathbf{R} , en revenant à la définition de \mathbf{R}_+ , on vérifie facilement que \mathbf{R}_+ est compatible pour l'addition et que $\forall Z \in \mathbf{R}_+, \ X \leq Y \Rightarrow \ X.Z \leq Y.Z$

1.2.3 Immersion de Q dans R

Soit Ψ l'application de \mathbf{Q} dans $\mathcal{C}(\mathbf{Q})$ qui à tout rationnel r associe la suite (r_n) définie par $\forall n \in \mathbf{N}, \ r_n = r$.

L'application Ψ est un morphisme de l'anneau \mathbb{Q} dans l'anneau $\mathcal{C}(\mathbb{Q})$.

Notons $\Theta = p \circ \Psi$. Alors Θ est un morphisme du corps \mathbf{Q} dans le corps \mathbf{R} .

Soit r et r' deux éléments de \mathbf{Q} . Alors $\Theta(r) = \Theta(r')$ implique que la classe de (r_n) est égale à la classe de (r'_n) , et donc que la suite $(r_n - r'_n)$ converge vers 0, et en tant que suite constante, on déduit r = r'.

Donc Θ est un morphisme injectif de corps, d'où on peut identifier le corps commutatif \mathbf{Q} au corps $\Theta(\mathbf{Q})$.

Mais Θ est-il un morphisme de corps ordonné?

$$\Psi(\mathbf{Q}_+) \subset \mathcal{C}_+$$
, donc $p(\Psi(\mathbf{Q}_+)) \subset p(\mathcal{C}_+)$, c'est-à-dire, $\Theta(\mathbf{Q}_+) \subset \mathbf{R}_+$.

De plus $x - y \in \mathbf{Q}_+ \Rightarrow \Theta(x) - \Theta(y) = \Theta(x - y) \in \mathbf{R}_+$, donc Θ est un morphisme de corps ordonné.

Interprétation: En tant que corps commutatif totalement ordonné, on peut donc identifier \mathbf{Q} et $\Theta(\mathbf{Q})$. Si r et r' sont deux éléments de \mathbf{Q} , alors

$$r + r'$$
 est associé bijectivement à $\Theta(r + r') = \Theta(r) + \Theta(r')$,