Table des matières

1	Exe	emples introductifs	15
	1.1	Un processus absorbant discret : la licence	15
	1.2	Un processus absorbant continu : la double décroissance	20
	1.3	Un processus régulier discret : la succession for estière	22
2	Evo	olution temporelle d'un processus de Markov	2 5
	2.1	Evolution moyenne	25
	2.2	Résultats pour les exemples introductifs	26
	2.3	Problèmes liés au pas de temps	30
		2.3.1 Choix du pas de temps	31
		2.3.2 Choix du nombre de pas	31
	2.4	Méthodes rapides de calcul de l'évolution temporelle	33
	2.5	Evolution aléatoire (Monte-Carlo)	34
		2.5.1 Tirage de la transition	34
		2.5.2 Tirage du temps de séjour	36
	2.6	Limites du calcul de l'évolution temporelle	38
3	Tax	conomie des chaînes de Markov	39
	3.1	Les états	36
		3.1.1 Taxonomie générale	39
		3.1.2 Les états périodiques	40
		3.1.3 Taxonomie à partir des matrices \mathbf{M} et \mathbf{M}^{∞}	42
		3.1.4 Accessibilité entre états	42
	3.2	Les classes	43
		3.2.1 Définition	43
		3.2.2 Accessibilité entre classes	43
	3.3	Les chaînes	45
		3.3.1 Taxonomie générale	45
		3.3.2 Réduction d'une chaîne	46
		3.3.3 Chaînes absorbantes	47
		3.3.4 Chaînes non-absorbantes	48

		3.3.5 3.3.6	Chaînes régulières	49 50		
	3.4	Diction	nnaire	51		
4	Les chaînes de Markov absorbantes					
	4.1	La ma	trice de transition \mathbf{M}	54		
		4.1.1	Forme canonique	54		
		4.1.2	La matrice limite \mathbf{M}^{∞}	55		
	4.2	Caract	céristiques globales	57		
		4.2.1	La matrice fondamentale F	57		
		4.2.2	La matrice temps T	58		
		4.2.3	Le vecteur temps d'absorption t	59		
		4.2.4	La matrice dispersion des temps σ	60		
		4.2.5	La matrice d'absorption A	63		
		4.2.6	La matrice accession E	65		
		4.2.7	La matrice récurrence ${}^{l}\mathbf{E}$	65		
		4.2.8	Le vecteur nombre d'états visités v	68		
		4.2.9	Le vecteur temps de premier retour \mathbf{r}	69		
		4.2.10	La matrice temps de premier passage D	70		
			La matrice dispersion des temps de premier passage $\sigma_{\rm D}$	71		
			Le vecteur quantité pondérée q	71		
			Des caractéristiques globales aux caractéristiques parti-			
			culières	74		
	4.3	Caract	réristiques effectives	76		
		4.3.1	Le vecteur population transitoire initiale ν	76		
		4.3.2	Le vecteur temps effectif $oldsymbol{ heta}(oldsymbol{ u})$	76		
		4.3.3	Le temps d'absorption effective $\theta(\nu)$	77		
		4.3.4	La matrice dispersion des temps effectifs $\sigma(\nu)$	77		
		4.3.5	Le vecteur d'absorption effective $\alpha(\nu)$	78		
		4.3.6	Le vecteur accession effective $\boldsymbol{\varepsilon}(\boldsymbol{\nu})$	79		
		4.3.7	Le vecteur récurrence effective ${}^{l}\varepsilon(\nu)$	79		
		4.3.8	La quantité pondérée effective $\kappa(\nu)$	79		
	4.4	Caract	réristiques conditionnelles	81		
		4.4.1	Le vecteur population conditionnelle $_k \mathbf{n}(t)$	82		
		4.4.2	La matrice de transition conditionnelle ${}_k\mathbf{M}$	84		
		4.4.3	La matrice fondamentale conditionnelle ${}_k{\bf F}$	86		
		4.4.4	La matrice temps conditionnels ${}_k\mathbf{T}$	87		
		4.4.5	Le vecteur temps d'absorption conditionnel $_k\mathbf{t}$	88		
		4.4.6	La matrice dispersion des temps conditionnels ${}_k \boldsymbol{\sigma}$	89		
		4.4.7	La matrice d'absorption conditionnelle ${}_{k}\mathbf{A}$	90		
		4 4 8	La matrice accession conditionnelle , E	90		

		4.4.9	La matrice récurrence conditionnelle ${}_{k}^{l}\mathbf{E}$	91		
		4.4.10	Le vecteur quantité pondérée conditionnelle $_k {f q}$	92		
	4.5	Caract	téristiques conditionnelles effectives	93		
		4.5.1	Le vecteur population initiale conditionnelle $_k oldsymbol{ u}$	93		
		4.5.2	Le vecteur temps d'absorption conditionnel effectif $_k \boldsymbol{\theta}(\boldsymbol{\nu})$	94		
		4.5.3	Le temps d'absorption conditionnel effectif $_k\theta(\pmb{\nu})$	94		
		4.5.4	Le vecteur dispersion des temps conditionnels effectifs			
			$_{k}oldsymbol{\sigma}(oldsymbol{ u})$	96		
		4.5.5	Le vecteur d'absorption conditionnelle effective ${}_k \pmb{lpha}(\pmb{ u})$.	96		
		4.5.6	Le vecteur accession conditionnelle effective ${}_k \boldsymbol{\varepsilon}(\boldsymbol{\nu})$	97		
		4.5.7	Le vecteur récurrence conditionnelle effective ${}^l_k \hat{m{arepsilon}}(m{ u})$	97		
		4.5.8	La quantité pondérée conditionnelle effective ${}_k\kappa(\pmb{\nu})$	97		
	4.6	Caract	téristiques passées	99		
		4.6.1	La matrice temps de première arrivée $\tilde{\mathbf{P}}(\nu)$	99		
		4.6.2	La matrice temps antérieurs $\tilde{\mathbf{T}}(\boldsymbol{\nu})$	101		
		4.6.3	Le vecteur temps de première arrivée $\tilde{\mathbf{p}}(\boldsymbol{\nu})$	104		
		4.6.4	Le vecteur temps antérieurs $\tilde{\mathbf{t}}(\boldsymbol{\nu})$	105		
		4.6.5	La matrice accession antérieure $\tilde{\mathbf{E}}(\mathbf{\nu})$	105		
		4.6.6	La matrice récurrence antérieure ${}^{l} ilde{\mathbf{E}}(oldsymbol{ u})$	106		
	4.7	Alimer	ntation en continu de la chaîne	107		
		4.7.1	Introduction	107		
		4.7.2	Le vecteur population à l'équilibre $\mathbf{n}_{\mathrm{eq}}(\boldsymbol{\nu})$	108		
		4.7.3	Le vecteur d'absorption à l'équilibre $\mathbf{a}_{eq}(\boldsymbol{\nu})$	108		
		4.7.4	L'ancienneté à l'équilibre $\tilde{t}_{\rm eq}(oldsymbol{ u})$	110		
5	Applications des chaînes absorbantes 111					
0	5.1		imulation de métaux lourds dans la chaîne alimentaire			
	5.2		nulation de l'iode dans la thyroïde			
	5.3		tombées de Fukushima, ensembles ouverts			
6				127		
	6.1		0	127		
	6.2		tribution stationnaire π			
			Définition			
		6.2.2	9	130		
		6.2.3		132		
	6.3		1 1	133		
	6.4					
	6.5	La matrice des dispersions en temps de premier passage σ_{D} 13				
	6.6		teur de pondération \mathbf{w}			
	6.7	Les ch	aînes réversibles	136		

		6.7.1 Introdu	action	136
		6.7.2 La chaî	ìne renversée $ ilde{\mathbf{M}}$	137
		6.7.3 Les cha	ûnes réversibles	140
	6.8	la matrice Goo	ogle	141
7	Déte	rmination ex	apérimentale des probabilités de transition	147
	7.1	Les décroissand	ces exponentielles	147
		7.1.1 L'activi	ité d'un état	149
		7.1.2 Déterm	nination de la période	149
		7.1.3 Déterm	ination des probabilités de latence $M_{i i}$	151
		7.1.4 Déterm	ination des probabilités de transition $M_{i j}$	151
	7.2	Détermination	de λ et N_0 à partir des données expérimentales .	152
		7.2.1 Mesure	e complète de la décroissance	152
		7.2.2 Mesure	partielle de la décroissance	154
		7.2.3 Déterm	nination à partir des temps d'émission	157
Ar	nexe	A Les bases	s de l'algèbre matricielle	161
	A.1	Notations		161
	A.2	Factorisation		161
	A.3	Addition		162
	A.4	Produit		162
	A.5	Produit de Hac	damard	162
	A.6	La matrice nul	lle $oldsymbol{0}$	163
			entité ${f I}$	163
	A.8	L'inverse d'une	e matrice \mathbf{X}^{-1}	163
	A.9	La transposée	d'une matrice \mathbf{X}^t	164
	A.10	Diagonalisation	n d'une matrice	164
	A.11	Notations		165
Ar	nexe	B Démonst	rations	167
	B.1		sformer un système d'équations linéaires	
		du premier ord	dre en système matriciel	167
	B.2	Vie moyenne T	T et demi-vie $T_{\frac{1}{2}}$	168
	B.3	Méthode rapid	le pour calculer l'évolution temporelle	169
	B.4	Temps moyen o	dans un état, la période T	170
	B.5	Tirage aléatoir	re du temps de séjour	172
	B.6	La matrice fon	ndamentale	173
	B.7	Ecarts-types as	ssociés à la matrice temps	174
	B.8	Ecart-type asso	ocié au vecteur temps d'absorption	176
	B.9	La matrice acc	cession	177
	B.10	La matrice réc	currence	177

B.11	Vecteur premier retour et matrice premier passage	178
B.12	Ecarts-types du vecteur quantités pondérées	180
B.13	Ecarts-types associés au vecteur temps effectifs	181
B.14	Ecart-type associé au temps d'absorption effectif	182
B.15	La matrice des transitions conditionnelles	182
B.16	Les matrices conditionnelles	183
B.17	Ecart-type associé aux quantités pondérées totales	183
B.18	La matrice temps de première arrivée	183
B.19	La matrice temps antérieurs	185
	B.19.1 La matrice accession antérieure	186
B.20	Convergence à la distribution stationnaire	
	B.20.1 Existence de la distribution stationnaire	186
	B.20.2 Unicité de la distribution stationnaire	186
	B.20.3 Convergence du vecteur population vers π	
	B.20.4 Expression de la matrice \mathbf{M}^{∞}	188
B.21	La matrice temps de premier passage ${\bf D}$ et le vecteur temps de	
	premier retour r	
B.22	La matrice $\dot{\mathbf{M}}$ est une matrice de transition	190
	Distribution stationnaire du processus inverse	
	Constance de la période	
B.25	Détermination du taux de transition	
	B.25.1 Somme de taux	
	B.25.2 Détermination à l'aide de la pente initiale	
	$B.25.3$ Détermination à l'aide du maximum de vraisemblance $% \left(1,,1\right) =0$.	
	B.25.4 Incertitudes	195
Annexe	e C Codes Matlab	197
C.1	Evolution de la population à l'aide de la matrice de transition .	197
C.2	Evolution obtenue par la première méthode rapide	
C.3	Evolution obtenue par la seconde méthode rapide	199
C.4	Evolution de la population par la technique de Monte-Carlo	200
C.5	Evolution obtenue par tirages des temps dans les états	201
C.6	Formalisme matriciel, chaînes absorbantes	202
C.7	Formalisme matriciel, chaînes régulières	205
C.8	Détermination des paramètres d'une décroissance exponentielle	
	à partir de $N^{\mathrm{dat}}(t)$	206
C.9	Determination des paramètres d'une décroissance exponentielle	
	à partir des t_k	208
Bibliog	graphie	211
Index		213
LIIUUA		-10