Chapitre I

APPROCHE GLOBALE

1 - PROBLEMATIQUE

1.1 Définitions

Le calcul de structures a pour but de déterminer rationnellement les formes et les dimensions optimales des structures, c'est à dire celles qui satisfont le mieux certains impératifs. Le premier impératif pour toute structure est, bien évidemment, d'éviter tout risque de rupture dans les conditions d'utilisation prévues et même au delà pour garantir une certaine marge de sécurité. Ce risque est en fait facile à éviter : il suffit de renforcer la structure en la surdimensionnant. C'est ainsi que certains vestiges de l'Antiquité subsistent encore, mais au prix d'une construction excessivement massive. Un second impératif résulte du fait que toute construction a un coût. Il convient donc de limiter ce coût. D'où a contrario, le risque de sous-dimensionner la structure.

Le calcul de structures a donc pour objet de rechercher en permanence les meilleurs compromis susceptibles de concilier des impératifs souvent opposés tels que ceux de sécurité et d'économie.

1.2 Les paramètres

Le problème du calcul rationnel des structures est en général très complexe car les paramètres à prendre en compte sont extrêmement nombreux. Ils sont, de surcroit, de natures différentes. Ce sont essentiellement :

Les forces extérieures agissant sur la structure, désignées par «e». Certaines sont a priori connues et maîtrisables. Mais d'autres, dites communément réactions, qui sont les conséquences des précédentes, sont a priori inconnues. Leur détermination, si elle est nécessaire, pose donc dans ce cas un problème préliminaire de statique.

Les interactions intérieures, désignées par «i». Ce sont d'une part les interactions entre les différents objets macroscopiques formant la structure, d'autre part les interactions entre les différents éléments microscopiques constitutifs du matériau. Il ne faut pas perdre de vue que si ces interactions s'exercent à l'intérieur de l'ensemble que constitue la structure étudiée, ce sont bien des forces extérieures pour chacun des éléments interagissant. Il n'est d'ailleurs de forces qu'extérieures.

Les déformations, désignées par « $\mathrm{d} »$. Le solide n'existe pas. Toutes les constructions sont réalisées avec des matériaux qui se déforment toujours, et de façons différentes.

Les caractéristiques des matériaux, désignées par « m ». Ce sont les paramètres qui permettent de caractériser, qualitativement et quantitativement, les différents comportements des matériaux.

Les formes de la structure, désignées par «f». Ce sont les paramètres qui définissent la géométrie de la structure.

Un véritable calcul de structure serait la détermination précise de ses formes «f»en fonction de tous les autres paramètres, c'est à dire la recherche de $f=f(e, i, d, m)$ sous un ensemble de restrictions. Les restrictions peuvent porter sur le volume de la structure, sur l'amplitude de son déplacement maximal sous charge, sur les interactions internes maximales, sur des impératifs liés au procédé de fabrication... Le problème est donc extrêmement complexe, et il est aussi largement indéterminé.

On substitue donc souvent à ce problème de calcul des formes un problème plus simple : celui de la vérification d'une structure préalablement réalisée ou projetée. Ce problème consiste à s'assurer que, d'une part les interactions internes et/ou d'autre part les déformations sont acceptables, c'est à dire satisfont certains critères préalablement définis.

Pour cela les formes «f » étant connues, il convient de pouvoir calculer
Les interactions internes $\mathrm{i}=\mathrm{i}(\mathrm{e}, \mathrm{m}, \mathrm{f})$
Les déformations $\mathrm{d}=\mathrm{d}(\mathrm{e}, \mathrm{m}, \mathrm{f})$
Le critère le plus fréquemment rencontré en dimensionnement des structures est un critère de résistance. Pour que la structure supporte et transmette les charges qui lui sont appliquées, les interactions internes doivent rester acceptables selon le cahier des charges. Un autre critère peut être mis en avant : la structure ne doit pas subir de déformation excessive lorsqu'elle est sollicitée, autrement dit la flèche doit rester acceptable selon le cahier des charges. Il s'agit alors d'un critère de rigidité qui est essentiel par exemple pour le dimensionnement d'instruments de visée comme les télescopes. En pratique, il est rare que les deux critères n'interviennent pas simultanément.

Quand on connaît toutes les données (géométrie, matériau, charges, conditions aux limites), et que le calcul a pour but de contrôler que les critères sont satisfaits, le problème de dimensionnement est dit direct: on connaît toutes les entrées et on cherche l'unique sortie. Ce type de problème est rarement posé en bureau d'études.

On doit généralement résoudre des problèmes inverses qui se formulent de la façon suivante : sous un système donné d'efforts, les critères étant connus, quelles formes, quelles dimensions et quel matériau donner à la pièce ? Ces problèmes inverses sont plus fréquents que les problèmes directs, ils sont plus difficiles à résoudre mais autrement plus riches. C'est le domaine de l'optimisation mathématique des structures, non abordé ici.

1.3 Les moyens

Les moyens théoriques à mettre en œuvre pour effectuer un calcul de structure sont les lois générales liant les paramètres évoqués. On se limitera ici au cas des constructions au repos. On dispose donc tout d'abord des lois de la statique qui établissent des relations entre les forces. Il conviendra ensuite, pour introduire les déformations et les particularités de chaque matériau, de définir leurs lois de comportement.

2 - STATIQUE

2.1 Le principe fondamental

Les solides ou assemblages de solides sont soumis à des forces. Certaines d'entre elles sont connues, elles constituent des données pour le problème : ce sont des forces que l'on peut qualifier de maîtrisées. Les autres ne sont pas connues, elles constituent des inconnues du problème : ce sont les forces que l'environnement induit sur la structure au niveau des conditions aux limites et qui sont appelées réactions ou forces de liaison. Ce sont des conséquences des premières auxquelles elles sont reliées par des relations d'équilibre. On verra dans la seconde partie de cet ouvrage consacrée à l'analyse matricielle des structures comment se traduit cette distinction.

La statique est l'étude de l'équilibre des systèmes matériels. Un système matériel est dit en équilibre par rapport à un repère de référence lorsque tous les éléments du système sont immobiles et le demeurent par rapport à ce repère. Pour résoudre un problème de statique, il faut déterminer les forces inconnues. Pour cela, on dispose d'un outil théorique : le principe fondamental de la statique. Il ne fait intervenir que les actions extérieures. C'est donc une question d'observateur et de choix puisqu'en isolant une structure, on définit ses frontières et donc le système d'efforts extérieurs appliqués. L'ensemble des forces appliquées sur un système E par tout ce qui est extérieur à E , noté $\overline{\mathrm{E}}$, constitue un torseur. Ce torseur est caractérisé par une somme (ou résultante \vec{R}) et un moment (moment résultant \vec{M}) appelés éléments de réduction. Ils sont équivalents à l'ensemble des forces exercées. Si la structure est en équilibre, le principe fondamental de la statique énonce que le torseur des actions extérieures est nul, ce que l'on peut écrire sous la forme

$$
[\overline{\mathrm{E}} \rightarrow \mathrm{E}]=[0]
$$

Si on le définit en un point M quelconque par ses éléments de réduction, cela se traduit par deux relations vectorielles:

$$
\left\{\begin{array}{c}
\vec{R}=\overrightarrow{0} \\
\vec{M}_{M}=\overrightarrow{0}
\end{array}\right.
$$

Dans un système de coordonnées cartésiennes, écrire que le torseur est nul donne dans le cas général les six équations scalaires classiques :

$$
\left\{\begin{array} { l }
{ \Sigma F _ { x } = 0 } \\
{ \Sigma F _ { y } = 0 } \\
{ \Sigma F _ { z } = 0 }
\end{array} \quad \left\{\begin{array}{l}
\Sigma M_{x}=0 \\
\Sigma M_{y}=0 \\
\Sigma M_{z}=0
\end{array}\right.\right.
$$

Dans le cas bidimensionnel, qui est un cas particulier important, cela se réduit à :

$$
\Sigma F_{x}=0 \quad \Sigma F_{y}=0 \quad \Sigma M_{z}=0
$$

2.2 Lois complémentaires

La détermination des forces inconnues peut constituer en soi un véritable problème, car le principe fondamental de la statique ne permet de déterminer les efforts extérieurs que
dans les cas favorables. Dans un certain nombre de cas, ce principe fondamental est insuffisant pour calculer toutes les forces inconnues. Quand le frottement (qui existe dans toutes les liaisons physiques) n'est pas négligeable, on dispose de lois complémentaires dont la connaissance relève de l'expérimentation. Il existe des relations de dépendance entre certaines des inconnues. On distingue alors les inconnues principales directement liées à la suppression de mouvement, et les inconnues secondaires qui en dépendent, dues au frottement, à la résistance au roulement et à la résistance au pivotement.

Dans le cas d'un appui plan par exemple, la réaction normale au plan est l'inconnue principale, et il existe une réaction tangentielle, inconnue secondaire, qui peut être indispensable pour obtenir un équilibre. La loi de Coulomb pour le frottement pose néanmoins un problème : le lien entre l'inconnue principale et l'inconnue secondaire ne devient une égalité que lorsque que le glissement se produit, c'est à dire lorsque la structure est en mouvement. Ce n'est plus de la statique. Tant que la structure est immobile, le coefficient de frottement f, l'effort normal d'intensité N et l'effort tangentiel d'intensité T sont reliés par une inégalité : ni la direction ni l'intensité de l'inconnue secondaire ne peuvent être calculées, elles sont indéterminées :

$$
\|\vec{T}\| \leq f\|\vec{N}\|
$$

Indépendamment de cet aspect, que les liaisons soient supposées parfaites (c'est à dire sans frottement) ou non, il se peut qu'il y ait trop d'inconnues par rapport au nombre d'équations fournies par le principe fondamental. Ces inconnues surabondantes ne sont pas physiquement indéterminées: elles ont une valeur mais on ne sait pas la déterminer directement par application du seul principe fondamental. Fort heureusement, les vrais solides n'existent pas car rien n'est indéformable. Pour déterminer les forces inconnues, on relie les forces aux déplacements qu'elles engendrent. Mais ce n'est pas immédiat car les forces sont des grandeurs mécaniques et les déplacements sont des grandeurs géométriques. On utilise pour cela la loi de comportement du matériau qui constitue la structure laquelle repose sur des données expérimentales. On peut imaginer des lois et formuler des théories, mais ces lois ne sont intéressantes que si elles sont corrélées par l'expérience. La démarche la plus rationnelle est donc expérimentale : les lois sont issues de l'observation et il en existe de nombreuses car il existe de nombreuses classes de matériaux.

Les efforts surfaciques $d \vec{f}$ ont une densité surfacique $d \vec{f} / d S$ (exprimée en $\mathrm{N} / \mathrm{m}^{2}$). Ce sont par exemple des efforts de contact entre deux solides mais aussi les efforts exercés par un fluide sur la structure (vent, neige, charge hydrostatique dans une cuve ...). Si la surface $d S$ sur laquelle s'exerce l'effort est suffisamment petite devant la surface S de l'enveloppe du corps, on admet que la force est ponctuelle. Physiquement, une charge ponctuelle n'existe pas, c'est un modèle mathématique.

Les efforts volumiques $d \vec{f}$ définis par une densité volumique $d \vec{f} / d V$, sont des actions à distance exprimées en $\mathrm{N} / \mathrm{m}^{3}$, réparties dans le volume de la structure. Il n'y a pas d'agent extérieur qui transmet ces efforts, comme dans le cas précédent. Le poids en est un exemple.

Une structure n'est soumise qu'à des forces, de diverses natures et formes. Un moment (ou couple) est la traduction mathématique de l'effet produit en un point par un ensemble de forces. «Appliquer un couple» est un abus de langage.

2.3 Interactions

Soient I et $I I$ deux parties distinctes d'un ensemble E. Les forces extérieures à I sont d'une part les forces extérieures à E dont les points d'application sont dans I formant le torseur [ext à $\mathrm{E} \rightarrow I$] et d'autre part celles exercées par II forment le torseur $[I I \rightarrow I]$. En appliquant le principe fondamental, on écrit :
l'équilibre de I: l'équilibre de II : l'équilibre de E :

$$
\begin{aligned}
& {[\text { ext à } \mathrm{E} \rightarrow I]+[I I \rightarrow I]=0} \\
& {[\text { ext à } \mathrm{E} \rightarrow I I]+[I \rightarrow I I]=0} \\
& {[\text { ext à } \mathrm{E} \rightarrow I]+[\text { ext à } \mathrm{E} \rightarrow I I]=0}
\end{aligned}
$$

D'où en ajoutant les 2 premières relations et en comparant à la dernière :

$$
[I I \rightarrow I]=-[I \rightarrow I I]
$$

C'est le théorème fondamental de l'action-réaction. Cette relation est en particulier utile pour étudier les actions mécaniques s'exerçant entre les différentes parties d'une structure que d'aucuns appellent «forces intérieures» par abus de langage. Pour déterminer ce qui se produit dans la structure sous l'action des forces extérieures, on est amené à imaginer des coupures virtuelles au sein de la structure considérée, et à prendre en compte les actions mutuelles de ces deux parties au travers de la section effectuée. On peut démontrer le théorème des actions mutuelles (ou de l'action-réaction) : les torseurs des actions mécaniques réciproques entre deux systèmes matériels quelconques sont opposés.

$$
[I I \rightarrow I]=-[I \rightarrow I I]
$$

En considérant isolément l'une des deux parties, ce qui définit un système qui n'est pas le système initial, on a bien les forces extérieures qui représentent l'action de la partie II supprimée sur la partie I choisie : il est possible d'appliquer au système constitué de la partie I le principe fondamental de la statique.

3 - CONDITIONS AUX LIMITES ET LIAISONS

3.1 Distinction entre conditions aux limites et liaisons

L'objectif final de cet ouvrage étant d'introduire le dimensionnement des structures par les techniques matricielles, point de départ des méthodes éléments finis, il est important de souligner une différence de fond entre la démarche analytique que l'on trouve généralement dans les cours et ouvrages consacrés à la résistance des matériaux, et la démarche informatique visée ici. Dans le cas d'une résolution analytique, on n'hésite pas à décomposer une structure en plusieurs parties et à choisir pour chacune un repère tel que les expressions à traiter soient les plus simples possibles algébriquement. Le découpage est arbitraire, non systématique, dépend de celui qui mène les calculs et de son habileté algébrique. Dans le cas d'une résolution informatique, la démarche et la méthode doivent être systématiques. On considère le problème dans sa globalité. Les calculs sont menés
dans un seul repère fixe, appelé repère structural. L'utilisateur n'a pas à se préoccuper de l'optimalité du repère au regard de la simplicité des expressions, le fait qu'elles soient plus ou moins complexes algébriquement ne le concerne pas car c'est le programme qui réalise tous les calculs.

Le mouvement élémentaire d'un solide peut être décomposé, en considérant trois axes fixes qui forment le repère de référence, comme étant une combinaison des translations selon les trois axes et des rotations autour de ces trois axes. On les appelle également mouvements d'ensemble, ou mouvements de corps rigide (rigid body modes). Le solide est relié en un ou plusieurs points à une fondation immobile par rapport au repère de référence, appelée bâti. C'est également un solide mais il joue un rôle particulier : il est extérieur à la structure étudiée et il est supposé indéformable. En chacun des points de la structure dont le mouvement est complètement ou partiellement bloqué par le bâti, on dit qu'il existe une condition à la limite. Il lui correspond une action de liaison appelée réaction. Cette réaction représente l'effort ou le moment que le bâti applique en un point pour bloquer son mouvement, elle est associée à une condition à la limite. A chaque type de liaison correspondent des suppressions de mouvement, d'où leur diversité, et donc des actions de liaison spécifiques. Par exemple, un appui dans le plan empêche un solide de se déplacer dans la direction y, mais laisse libres la translation dans la direction x et la rotation autour de l'axe z. Il existe donc nécessairement une force extérieure agissant dans la direction de l'axe y, appliquée par l'appui sur la structure et s'opposant à son mouvement dans la direction de l'axe y.

Une liaison est dite parfaite lorsque le jeu entre pièces est nul, les frottements sont négligeables, les pièces constituant la liaison sont indéformables. Il s'agit d'un modèle théorique qui ne prend pas en compte les inconnues secondaires.

Solide

Si une liaison est réalisée entre deux solides S_{1} et S_{2} faisant partie de la structure étudiée, ce ne sont pas un ou plusieurs mouvements d'ensemble qui sont éliminés par la liaison mais un ou plusieurs mouvements relatifs d'un solide par rapport à l'autre. On parle alors de liaison interne pour bien faire la différence avec les conditions aux limites qui traduisent des «liaisons externes». Le point de liaison a a priori un déplacement non nul dans le repère fixe lié au bâti. Cette distinction est très importante lors de l'utilisation d'outils de simulation numérique : dans un fichier de données, une condition à la limite et une liaison ne se traduisent pas par les mêmes commandes et les mêmes syntaxes; lors de l'utilisation d'un menu déroulant, ce ne sont pas dans les mêmes branches de l'arborescence que l'on trouve une condition à la limite et une liaison.

Une rotule est un mécanisme qui relie en translation deux structures ou parties de structures mais laisse leurs rotations indépendantes et ceci dans n'importe quelle direction de l'espace. Quand l'une des deux structures liées par la rotule est le bâti, la rotule est une condition à la limite. Pour un problème plan, une rotule, une charnière dont l'axe est orthogonal au plan, un appui sont en pratique des conditions aux limites identiques. Cette remarque est très importante lors de l'utilisation d'outils de simulation numérique car on y
raisonne en termes de mouvements et non de type de liaison. On n'y trouve donc pas nécessairement les mots ou symboles appris en d'autres occasions.

Sur l'exemple ci-dessus, les trois configurations sont équivalentes. Les translations dans le plan des points A et B sont impossibles du fait des conditions aux limites existant en ces points, il existe donc des efforts de liaison non nuls. La rotation dans le plan autour des points A et B est possible, il n'y a donc pas de moment exercé sur la structure par le bâti pour les contacts en A et B.

Dans l'exemple bidimensionnel ci-dessous, deux poutres sont reliées par une rotule dans la section C. Ses déplacements et ses rotations ne sont pas nuls, dans le cas général. N'étant soumise à aucune condition à la limite, il n'existe pas de réaction en C . Contrairement à ce que l'on observe en B , la pente en C n'est pas la même de part et d'autre de la rotule interne. C'est justement la fonction de ce type de liaison.

Dans le jargon éléments finis, une liaison est une propriété associée aux extrémités des éléments alors que les conditions aux limites sont associées aux nœuds d'assemblage. On devrait dire «l'extrémité de la poutre AC ne reprend pas les rotations, l'origine de la poutre CB ne reprend pas les rotations, les points A et B ont leurs déplacements fixés».

3.2 Principaux types

Pour chaque type de liaison ou de condition à la limite, il existe un symbole normalisé, qui n'est pas nécessairement repris dans le tableau ci-dessous. On y donne quelques caractéristiques des liaisons les plus fréquemment utilisées pour les problèmes plans, les mouvements ne se produisant que dans le plan $x O y$. Les restrictions de déplacement (translations T_{x} et T_{y}, rotation ϕ_{z}) et les réactions (forces R_{x} et R_{y}, moment M_{z}) sont exprimées dans le repère de référence du plan, qui est fixe.

Une rotule interne peut être encastrée, c'est à dire soumise à des conditions aux limites. Sur le schéma ci-dessous, les membrures 1, 2 et 3 qui sont assemblées au point A ont des rotations indépendantes car il existe une rotule interne en A. Mais le point A a des déplacements nuls dans le repère de référence. Les membrures 4,5 et 6 ont la même rotation au point B dont les déplacements sont nuls.

Nom	Symbole possible	Restrictions	Actions de liaison
Encastrement		T_{x}, T_{y}, ϕ_{z}	R_{x}, R_{y}, M_{z}
Rotule		T_{x} et T_{y}	R_{x}, R_{y}
Appui		T_{x} et T_{y}	R_{x} et R_{y}
Appui glissant		T_{x} ou T_{y} selon l'orientation de la liaison	R_{x} ou R_{y}
Pivot glissant		T_{x} ou T_{y} selon l'orientation de la liaison	R_{x} ou R_{y}
Glissière		T_{x}, ϕ_{z} ou T_{y}, ϕ_{z} selon l'orientation de la liaison	$\begin{gathered} R_{x}, M_{Z} \\ \text { ou } \\ R_{y}, M_{Z} \end{gathered}$

4 - STATICITE DES STRUCTURES

Soit un système en équilibre dont toutes les liaisons sont parfaites. Il existe N_{L} inconnues de liaison. Ce sont des inconnues principales, il n'existe pas d'inconnues secondaires. Le principe fondamental de la statique fournit N_{S} équations scalaires, six en général et trois dans le cas particulier mais fréquent des problèmes plans.

- Si $\mathrm{N}_{\mathrm{L}}<\mathrm{N}_{\mathrm{S}}$, le système est dit hypostatique.

