Chapitre 1
 Retour sur les suites

Résumé de cours

Le but de ce chapitre est de consolider les connaissances de $1^{\text {re }}$. La démonstration par récurrence est abordée en exercice dans le chapitre 2.

Notion de suite
Notation : u_{n} désigne le terme de rang n de la suite $\left(u_{n}\right)$.

Il existe principalement deux manières de définir une suite :

- Explicitement (par exemple : $u_{n}=2 n^{2}+\sin (n)$)

Tous les termes de la suite sont calculables directement.

- Par récurrence (par exemple : $u_{n+1}=2 u_{n}+5$ avec $u_{0}=2$).

Pour obtenir un terme de la suite, on a besoin des termes précédents.

Si u_{0} est le premier terme de la suite, u_{n} est le $n+1$ ième terme de la suite.

La suite (u_{n}) est arithmétique de raison r si $u_{n+1}=u_{n}+r$, pour tout entier naturel n.
Une suite (u_{n}) est arithmétique de raison r et de premier terme u_{0} si et seulement si $u_{n}=u_{0}+n r$.

Expression de u_{n} à partir d'un terme $u_{p}: u_{n}=u_{p}+(n-p) r$.
Somme des termes $=\left(\frac{\text { premier terme }+ \text { dernier terme }}{2}\right) \times$ nombre de termes .

4-Chapitre 1. Retour sur les suites
Cas particulier à connaître : la somme des entiers :

$$
1+2+3+\ldots \ldots \ldots+n=\frac{n(n+1)}{2}
$$

Suite géométrique

La suite (u_{n}) est géométrique de raison q si $u_{n+1}=q \cdot u_{n}$, pour tout n.
Une suite $\left(u_{n}\right)$ est géométrique de raison q et de premier terme u_{0} si et seulement si $u_{n}=u_{0} \cdot q^{n}$.
Expression de u_{n} à partir d'un terme $u_{p}: u_{n}=u_{p} \times q^{n-p}$.
Pour calculer une somme de termes, connaître par cœur :

$$
1+q+q^{2}+\ldots \ldots \ldots+q^{k}=\frac{1-q^{k+1}}{1-q} \quad(q \neq 1)
$$

Suite monotone
La suite (u_{n}) est croissante à partir du rang p si $u_{n+1} \geq u_{n}$ pour $n \geq p$. La suite $\left(u_{n}\right)$ est décroissante à partir du rang p si $u_{n+1} \leq u_{n}$ pour $n \geq p$.

Etudier la monotonie d'une suite, c'est chercher à savoir si elle est croissante ou si elle est décroissante.

Suite majorée, minorée, bornée \Rightarrow Ex. 7

La suite (u_{n}) est majorée s'il existe M tel que $u_{n} \leq M$ pour tout n.
La suite (u_{n}) est minorée s'il existe m tel que $m \leq u_{n}$ pour tout n.
Une suite qui est à la fois majorée et minorée est bornée.
Il existe donc deux réels m et M tels que $m \leq u_{n} \leq M$, pour tout n.

Énoncé des exercices

Exercice 1 -
On donne $u_{n+1}=u_{n}+2 n-1$ et $u_{0}=1$.

1) Calculer u_{1}, u_{2} et u_{3}.
2) Exprimer u_{n} en fonction de u_{n-1} et de n.
3) A l'aide du tableur de la calculatrice, donner la valeur de u_{10}.
4) Conjecturer l'expression de u_{n} en fonction de n.

Exercice 2 :)

 Notion de suite - suite géométriqueOn considère la fonction f définie par $f(x)=\frac{1}{2} x-1$ pour tout x.
1)
a. Quel est le terme général de la suite $\left(u_{n}\right)$ définie pour tout entier naturel n par $u_{n}=f(n)$?
b. Que vaut u_{4} ? Exprimer u_{n+1} en fonction de n.
2)
a. Quel est le terme général de la suite $\left(v_{n}\right)$ définie par $v_{n+1}=f\left(v_{n}\right)$ avec $v_{0}=\frac{1}{2}$? Que vaut v_{4} ?
b. On considère la suite $\left(w_{n}\right)$ définie par $w_{n}=\frac{5}{2^{n+1}}-2$ pour tout n. Prouver que $\frac{1}{2} w_{n}-1=w_{n+1}$ puis calculer w_{0}. Que peut-on en déduire?

Exercice 3 -

1) La suite (u_{n}) est une suite arithmétique telle que $u_{4}=2$ et $u_{9}=17$. Exprimer u_{n} en fonction de n et étudier le sens de variation de cette suite.
2) Prouver que la suite définie pour tout n par $v_{n}=\frac{4-5 n}{7}$ est une suite arithmétique dont on donnera le premier terme et la raison.
3) On considère la suite $\left(w_{n}\right)$ définie par $\left\{\begin{array}{l}w_{n+1}=w_{n}+\frac{2}{3} \\ w_{1}=-1\end{array}\right.$.

Que vaut w_{100} ?

Exercice 4 © $)^{-()}$
1)
a. Combien existe-t-il de suites géométriques $\left(u_{n}\right)$ vérifiant $u_{3}=\frac{8}{3}$ et $u_{5}=\frac{32}{27}$?
b. Etudier leur sens de variation .
2) La suite (v_{n}) est définie pour tout n par $v_{n}=2^{n}+\frac{3}{2} n^{2}-\frac{1}{2} n$.
a. Calculer v_{0}, v_{1} et v_{2}.
b. Que peut-on émettre comme hypothèse quant à la nature de la suite ? Prouver que cette conjecture est fausse.

Exercice 5 ©
Sens de variation
De deux manières différentes, déterminer le sens de variation des suites définies sur \mathbb{N} par:

1) $u_{n}=2 n^{2}-5 n+1$.
2) $u_{n}=n-\frac{5}{n+1}$.

Exercice 6 ©
Déterminer le sens de variation des suites définies sur \mathbb{N} par :

1) $u_{n}=-2 \times 3^{n}$.
2) $u_{n}=\frac{n+2}{2^{n}}$.
3) Démontrer que la suite définie pour tout entier naturel n par $u_{n}=\frac{n^{2}}{n^{2}+3}$ est majorée par 1. Pourquoi est-elle bornée ?
4) Prouver que la suite définie par $u_{n}=\frac{\sin (n)+3}{4}$ est bornée.

Exercice 8 ©
La suite (u_{n}) est arithmétique de raison -3 et de premier terme $u_{0}=1$.

1) Calculer la somme des 30 premiers termes de cette suite.
2) A partir de quel entier n, la somme des termes de cette suite estelle inférieure à -5000 ?

Exercice 9 :)

1) Calculer $3^{4}+3^{5}+\ldots .+3^{n}$ en fonction de n.
2) Même question pour $s_{n}=\sum_{k=2}^{k=n} u_{k}$ avec $u_{n}=-2 \times 0,6^{n}$.

Correction des exercices

Exercice 1

On a $u_{n+1}=u_{n}+2 n-1$ avec $u_{0}=1$.

1) $u_{1}=u_{0+1}$, nous utilisons la définition de la suite en prenant $n=0$.

C'est une petite source d'erreur au début, il s'agit de faire attention, ce n'est pas parce que l'on veut calculer u_{1} qu'on remplace n par 1 , la preuve, ici, n prend la valeur 0 .

$$
u_{1}=u_{0}+2 \times 0=1-1=0 .
$$

Pour le calcul de u_{2}, nous prendrons $n=1$.

$$
u_{2}=u_{1}+2 \times 1-1=0+2-1=1 .
$$

8 - Chapitre 1. Retour sur les suites

Pour u_{3}, on prend $n=2$.

$$
u_{3}=u_{2}+2 \times 2-1=1+4-1=4 .
$$

2) Pour exprimer u_{n} en fonction de u_{n-1}, il s'agit de remplacer n par $n-1$ dans la formule définissant la suite.
On avait: $u_{n+1}=u_{n}+2 n-1$.
En remplaçant n par $n-1: u_{(n-1)+1}=u_{(n-1)}+2(n-1)-1$.
On obtient alors :

$$
u_{n}=u_{n-1}+2 n-2-1
$$

Soit :

$$
u_{n}=u_{n-1}+2 n-3 .
$$

3) Voici la grille donnant les valeurs de la suite jusqu'au terme de rang 10 :

	A	B
1	n	u_{n}
2	0	1
3	1	0
4	2	1
5	3	4
6	4	9
7	5	16
8	6	25
9	7	36
10	8	49
11	9	64
12	10	81

Remarque : dans la cellule B3, on entre la formule $=\mathrm{B} 2+2 * \mathrm{~A} 2-1$ ensuite on colle cette formule dans les autres cellules de la colonne.
4) On peut conjecturer que pour tout entier naturel n différent de 0 , on a : $u_{n}=(n-1)^{2}$.
Remarque : ceci se démontre par récurrence.

Exercice 2

La fonction f est définie pour tout réel x par $f(x)=\frac{1}{2} x-1$.
1)
a. Si la suite $\left(u_{n}\right)$ est définie pour tout entier naturel n par $u_{n}=f(n)$ alors c'est une suite définie explicitement, c'est-àdire que l'on peut calculer directement tous les termes de la suite en fonction de $n: u_{n}=\frac{1}{2} n-1$.
Dans ce cas, $u_{4}=f(4)=\frac{1}{2} \times 4-1=1$.
b. $u_{n+1}=f(n+1)=\frac{1}{2}(n+1)-1=\frac{1}{2} n+\frac{1}{2}-1$, donc $u_{n+1}=\frac{1}{2} n-\frac{1}{2}$.
2)
a. La suite $\left(v_{n}\right)$ est définie dans cette question par $v_{n+1}=f\left(v_{n}\right)$, la suite est donc définie par récurrence. Cette fois pour calculer un terme, il est nécessaire de connaître les termes précédents.
On a : $v_{n+1}=\frac{1}{2} v_{n}-1$.
Pour le calcul de v_{4}, on calcule d'abord v_{1}, v_{2} et v_{3}.

$$
\begin{gathered}
v_{1}=f\left(v_{0}\right)=f\left(\frac{1}{2}\right)=\frac{1}{2} \times \frac{1}{2}-1=-\frac{3}{4} \\
v_{2}=f\left(v_{1}\right)=f\left(-\frac{3}{4}\right)=\frac{1}{2} \times \frac{-3}{4}-1=-\frac{11}{8} \\
v_{3}=f\left(v_{2}\right)=f\left(-\frac{11}{8}\right)=\frac{1}{2} \times \frac{-11}{8}-1=-\frac{27}{16}
\end{gathered}
$$

Et enfin :

$$
v_{4}=f\left(v_{3}\right)=f\left(-\frac{27}{16}\right)=\frac{1}{2} \times \frac{-27}{16}-1=-\frac{59}{32} .
$$

b. On a $w_{n}=\frac{5}{2^{n+1}}-2$, donc $w_{n+1}=\frac{5}{2^{n+2}}-1$.

Par ailleurs $\frac{1}{2} w_{n}-1=\frac{1}{2} \times\left(\frac{5}{2^{n+1}}-2\right)-1=\frac{5}{2^{n+2}}-2=w_{n+1}$.
De plus $w_{0}=\frac{5}{2^{0+1}}-2=\frac{5}{2}-2=\frac{1}{2}=v_{0}$.

La formule de récurrence vérifiée par la suite $\left(w_{n}\right)$ est la même que celle de la suite (v_{n}) et leurs termes initiaux sont égaux. Les deux suites sont donc égales.
Conclusion : pour tout entier naturel $n, v_{n}=w_{n}$.

Exercice 3

1) Il existe diverses manières d'aborder le problème, nous reviendrons pour notre part à la définition. La suite étant arithmétique, on peut écrire $u_{n}=u_{0}+n r$ où r désigne la raison.
De ce fait, $u_{4}=u_{0}+4 r=2$ et $u_{9}=u_{0}+9 r=17$.
Nous résolvons le système :

En soustrayant membre à membre par $L_{2}-L_{1}$:

$$
\left\{\begin{array}{l}
5 r=15 \\
u_{0}=2-4 r .
\end{array}\right.
$$

D'où $r=3$ et $u_{0}=-10$.
Nous en déduisons l'expression de u_{n} en fonction de n :

$$
u_{n}=-10+3 n .
$$

Sens de variation : $u_{n+1}-u_{n}=r=3$ car la suite est arithmétique de raison 3. De ce fait, $u_{n+1}-u_{n} \geq 0$, la suite $\left(u_{n}\right)$ est donc croissante.
2) Une suite est arithmétique si et seulement la différence entre 2 termes consécutifs est constante. Pour cela, nous calculons $v_{n+1}-v_{n}$.

$$
v_{n+1}-v_{n}=\frac{4-5(n+1)}{7}-\frac{4-5 n}{7} .
$$

Simplifions :
$v_{n+1}-v_{n}=\frac{4-5 n-5-4+5 n}{7}=-\frac{5}{7}$.
La suite est donc arithmétique de raison $-\frac{5}{7}$.

