Chapitre 1 Retour sur les suites

Résumé de cours

Le but de ce chapitre est de consolider les connaissances de 1^{re}. La démonstration par récurrence est abordée en exercice dans le chapitre 2.

Notion de suite

🛏 Ex. 1 - 2

Notation : u_n désigne le terme de rang *n* de la suite (u_n) .

Il existe principalement deux manières de définir une suite :

- Explicitement (par exemple : $u_n = 2n^2 + \sin(n)$) Tous les termes de la suite sont calculables directement.
- Par récurrence (par exemple : $u_{n+1} = 2u_n + 5$ avec $u_0 = 2$). Pour obtenir un terme de la suite, on a besoin des termes précédents.

Si u_0 est le premier terme de la suite, u_n est le n+1 ième terme de la suite.

Suite arithmétique	🛏 Ex. 3 - 8
Suite arithmétique	₩ Ex. 3 - 8

La suite (u_n) est arithmétique de raison r si $u_{n+1} = u_n + r$, pour tout entier naturel n.

Une suite (u_n) est arithmétique de raison r et de premier terme u_0 si et seulement si $u_n = u_0 + nr$.

Expression de u_n à partir d'un terme u_p : $u_n = u_p + (n-p)r$.

Somme des termes= $(\frac{\text{premier terme+dernier terme}}{2}) \times \text{nombre de termes}$.

4 • Chapitre 1. Retour sur les suites

Cas particulier à connaître : la somme des entiers :

$$1+2+3+\ldots+n=\frac{n(n+1)}{2}$$
.

Suite géométrique

➡ Ex. <u>4</u> - 9

La suite (u_n) est géométrique de raison q si $u_{n+1} = q.u_n$, pour tout n. Une suite (u_n) est géométrique de raison q et de premier terme u_0 si et seulement si $u_n = u_0.q^n$.

Expression de u_n à partir d'un terme u_p : $u_n = u_p \times q^{n-p}$. Pour calculer une somme de termes, connaître par cœur :

$$1+q+q^2+\dots+q^k=\frac{1-q^{k+1}}{1-q} \ (q \neq 1)$$

Suite monotone

🛏 Ex. 5 - 6

La suite (u_n) est croissante à partir du rang p si $u_{n+1} \ge u_n$ pour $n \ge p$. La suite (u_n) est décroissante à partir du rang p si $u_{n+1} \le u_n$ pour $n \ge p$.

Etudier la monotonie d'une suite, c'est chercher à savoir si elle est croissante ou si elle est décroissante.

La suite (u_n) est majorée s'il existe M tel que $u_n \le M$ pour tout n. La suite (u_n) est minorée s'il existe m tel que $m \le u_n$ pour tout n.

Une suite qui est à la fois majorée et minorée est bornée. Il existe donc deux réels *m* et *M* tels que $m \le u_n \le M$, pour tout *n*.

Chapitre 1. Retour sur les suites • 5

Énoncé des exercices

Exercice 1 😳 Notion de suite

On donne $u_{n+1} = u_n + 2n - 1$ et $u_0 = 1$.

- 1) Calculer u_1, u_2 et u_3 .
- 2) Exprimer u_n en fonction de u_{n-1} et de n.
- 3) A l'aide du tableur de la calculatrice, donner la valeur de u_{10} .
- 4) Conjecturer l'expression de u_n en fonction de n.

Exercice 2 😳

Notion de suite - suite géométrique

On considère la fonction *f* définie par $f(x) = \frac{1}{2}x - 1$ pour tout *x*.

- 1)
- a. Quel est le terme général de la suite (u_n) définie pour tout entier naturel *n* par $u_n = f(n)$?
- b. Que vaut u_4 ? Exprimer u_{n+1} en fonction de n.

2)

a. Quel est le terme général de la suite (v_n) définie par $v_{n+1} = f(v_n)$ avec $v_0 = \frac{1}{2}$? Que vaut v_4 ?

b. On considère la suite (w_n) définie par $w_n = \frac{5}{2^{n+1}} - 2$ pour tout

n. Prouver que $\frac{1}{2}w_n - 1 = w_{n+1}$ puis calculer w_0 . Que peut-on en déduire ?

Exercice 3 ©

Suite arithmétique

 La suite (u_n) est une suite arithmétique telle que u₄ = 2 et u₉ = 17. Exprimer u_n en fonction de *n* et étudier le sens de variation de cette suite.

6 • Chapitre 1. Retour sur les suites

2) Prouver que la suite définie pour tout *n* par $v_n = \frac{4-5n}{7}$ est une suite arithmétique dont on donnera le premier terme et la raison.

3) On considère la suite (w_n) définie par $\begin{cases} w_{n+1} = w_n + \frac{2}{3} \\ w_1 = -1 \end{cases}$

Que vaut w_{100} ?

Exercice 4 ©©

Suite géométrique

1)

- a. Combien existe-t-il de suites géométriques (u_n) vérifiant $u_3 = \frac{8}{3}$ et $u_5 = \frac{32}{27}$?
 - b. Etudier leur sens de variation .

2) La suite (v_n) est définie pour tout n par $v_n = 2^n + \frac{3}{2}n^2 - \frac{1}{2}n$.

- a. Calculer v_0, v_1 et v_2 .
- b. Que peut-on émettre comme hypothèse quant à la nature de la suite ? Prouver que cette conjecture est fausse.

Exercice 5 ©©

Sens de variation

De deux manières différentes, déterminer le sens de variation des suites définies sur $\mathbb N$ par :

1)
$$u_n = 2n^2 - 5n + 1$$
.
2) $u_n = n - \frac{5}{n+1}$.

Exercice 6 ©©

Sens de variation

Déterminer le sens de variation des suites définies sur ${\mathbb N}\,$ par :

1)
$$u_n = -2 \times 3^n$$
.
2) $u_n = \frac{n+2}{2^n}$.

Exercice 7 \odot \odot Suite majorée ou minorée 1) Démontrer que la suite définie pour tout entier naturel *n* par $u_n = \frac{n^2}{n^2 + 3}$ est majorée par 1. Pourquoi est-elle bornée ? 2) Prouver que la suite définie par $u_n = \frac{\sin(n) + 3}{4}$ est bornée. **Exercice 8** \odot Somme de termes

La suite (u_n) est arithmétique de raison -3 et de premier terme $u_0 = 1$.

1) Calculer la somme des 30 premiers termes de cette suite.

2) A partir de quel entier n, la somme des termes de cette suite estelle inférieure à -5000 ?

Exercice 9 😳

Somme de termes

1) Calculer $3^4 + 3^5 + \dots + 3^n$ en fonction de *n*.

2) Même question pour $s_n = \sum_{k=2}^{k=n} u_k$ avec $u_n = -2 \times 0.6^n$.

Correction des exercices

Exercice 1

On a $u_{n+1} = u_n + 2n - 1$ avec $u_0 = 1$.

1) $u_1 = u_{0+1}$, nous utilisons la définition de la suite en prenant n = 0. C'est une petite source d'erreur au début, il s'agit de faire attention, ce n'est pas parce que l'on veut calculer u_1 qu'on remplace n par 1, la preuve, ici, n prend la valeur 0.

 $u_1 = u_0 + 2 \times 0 = 1 - 1 = 0.$ Pour le calcul de u_2 , nous prendrons n = 1. $u_2 = u_1 + 2 \times 1 - 1 = 0 + 2 - 1 = 1.$ 8 • Chapitre 1. Retour sur les suites

Pour
$$u_3$$
, on prend $n=2$.

$$u_3 = u_2 + 2 \times 2 - 1 = 1 + 4 - 1 = 4$$
.

2) Pour exprimer u_n en fonction de u_{n-1} , il s'agit de remplacer n par n-1 dans la formule définissant la suite. On avait : $u_{n+1} = u_n + 2n - 1$. En remplaçant n par n-1 : $u_{(n-1)+1} = u_{(n-1)} + 2(n-1) - 1$. On obtient alors : $u_n = u_{n-1} + 2n - 2 - 1$

Soit :

$$u_n = u_{n-1} + 2n - 3$$
.

3) Voici la grille donnant les valeurs de la suite jusqu'au terme de rang 10 :

	А	В
1	п	\mathcal{U}_n
2	0	1
3	1	0
4	2	1
5	3	4
6	4	9
7	5	16
8	6	25
9	7	36
10	8	49
11	9	64
12	10	81

Remarque : dans la cellule B3, on entre la formule =B2+2*A2-1 ensuite on colle cette formule dans les autres cellules de la colonne.

4) On peut conjecturer que pour tout entier naturel *n* différent de 0, on a : $u_n = (n-1)^2$.

Remarque : ceci se démontre par récurrence.

Exercice 2

La fonction *f* est définie pour tout réel *x* par $f(x) = \frac{1}{2}x - 1$. 1)

a. Si la suite (u_n) est définie pour tout entier naturel n par u_n = f(n) alors c'est une suite définie explicitement, c'est-à-dire que l'on peut calculer directement tous les termes de la suite en fonction de n : u_n = ¹/₂n-1. Dans ce cas, u₄ = f(4) = ¹/₂×4-1=1.
b. u_{n+1} = f(n+1) = ¹/₂(n+1)-1 = ¹/₂n + ¹/₂-1, donc u_{n+1} = ¹/₂n - ¹/₂.

2)

a. La suite (v_n) est définie dans cette question par $v_{n+1} = f(v_n)$, la suite est donc définie par récurrence. Cette fois pour calculer un terme, il est nécessaire de connaître les termes précédents.

On a :
$$v_{n+1} = \frac{1}{2}v_n - 1$$
.

Pour le calcul de v_4 , on calcule d'abord v_1 , v_2 et v_3 .

$$v_{1} = f(v_{0}) = f(\frac{1}{2}) = \frac{1}{2} \times \frac{1}{2} - 1 = -\frac{3}{4}$$
$$v_{2} = f(v_{1}) = f(-\frac{3}{4}) = \frac{1}{2} \times \frac{-3}{4} - 1 = -\frac{11}{8}$$
$$v_{3} = f(v_{2}) = f(-\frac{11}{8}) = \frac{1}{2} \times \frac{-11}{8} - 1 = -\frac{27}{16}$$

Et enfin :

$$v_4 = f(v_3) = f(-\frac{27}{16}) = \frac{1}{2} \times \frac{-27}{16} - 1 = -\frac{59}{32}.$$

b. On a $w_n = \frac{5}{2^{n+1}} - 2$, donc $w_{n+1} = \frac{5}{2^{n+2}} - 1$.
Par ailleurs $\frac{1}{2}w_n - 1 = \frac{1}{2} \times \left(\frac{5}{2^{n+1}} - 2\right) - 1 = \frac{5}{2^{n+2}} - 2 = w_{n+1}$
De plus $w_0 = \frac{5}{2^{0+1}} - 2 = \frac{5}{2} - 2 = \frac{1}{2} = v_0.$

La formule de récurrence vérifiée par la suite (w_n) est la même que celle de la suite (v_n) et leurs termes initiaux sont égaux. Les deux suites sont donc égales. Conclusion : pour tout entier naturel n, $v_n = w_n$.

1) Il existe diverses manières d'aborder le problème, nous reviendrons pour notre part à la définition. La suite étant arithmétique, on peut écrire $u_n = u_0 + nr$ où r désigne la raison. De ce fait, $u_4 = u_0 + 4r = 2$ et $u_9 = u_0 + 9r = 17$. Nous résolvons le système :

$$L_1 \begin{cases} u_0 + 4r = 2\\ u_0 + 9r = 17. \end{cases}$$

En soustrayant membre à membre par $L_2 - L_1$:

$$\begin{cases} 5r = 15\\ u_0 = 2 - 4r. \end{cases}$$

D'où r = 3 et $u_0 = -10$.

Nous en déduisons l'expression de u_n en fonction de n :

$$u_n = -10 + 3n$$

Sens de variation : $u_{n+1} - u_n = r = 3$ car la suite est arithmétique de raison 3. De ce fait, $u_{n+1} - u_n \ge 0$, la suite (u_n) est donc croissante.

2) Une suite est arithmétique si et seulement la différence entre 2 termes consécutifs est constante. Pour cela, nous calculons $v_{n+1} - v_n$.

$$v_{n+1} - v_n = \frac{4 - 5(n+1)}{7} - \frac{4 - 5n}{7}$$

Simplifions :

$$v_{n+1} - v_n = \frac{4 - 5n - 5 - 4 + 5n}{7} = -\frac{5}{7}.$$

La suite est donc arithmétique de raison $-\frac{5}{7}$.