Chapitre 1

FONCTIONS CONVEXES

Dans tout ce chapitre, I désigne un intervalle de \mathbb{R} contenant au moins deux points et f une fonction de I dans \mathbb{R} .

1.1 Barycentres et convexité

On suppose ici que le corps de base est \mathbb{R} .

Définition 1.1

Soit E un espace affine sur \mathbb{R} , a et b deux points de E. On appelle segment [a,b] l'ensemble des barycentres des points a et b affectés des coefficients t et 1-t pour $t \in [0,1]$. Autrement dit : $[a,b] = \{a+t \overrightarrow{ab} : t \in [0,1]\}$.

Définition 1.2

Soit E un espace affine sur \mathbb{R} et A une partie de E. On dit que A est convexe si :

 $\forall\, a,b\in A, \qquad [a,b]\subset A.$

Théorème 1.1

Une partie A de E est convexe si, et seulement si, tout barycentre à coefficients positifs d'une famille finie de points de A est encore dans A.

Soit A une partie de E, l'intersection de tous les convexes contenant A est encore une partie convexe contenant A, et elle est contenue dans toute partie convexe contenant A. On l'appelle enveloppe convexe de A, et on la note Conv(A).

Théorème 1.2

L'enveloppe convexe Conv(A) de A est l'ensemble des barycentres à coefficients positifs de points de A.

1.2 Fonctions convexes d'une variable réelle

Définition 1.3

La fonction f est convexe sur I si :

$$\forall (x,y) \in I^2, \quad \forall \lambda \in [0,1], \qquad f(\lambda x + (1-\lambda)y) \le \lambda f(x) + (1-\lambda)f(y).$$

La fonction f est concave si -f est convexe.

- f est convexe si, et seulement si, son épigraphe $E_f = \{(x, y) \in I \times \mathbb{R} : y \geq f(x)\}$ est une partie convexe du plan.
- Toute fonction affine est à la fois convexe et concave.

Proposition 1.1

Étant données une fonction f convexe sur I et une famille $(\alpha_i)_{1 \leq i \leq p}$ de réels positifs tels que $\alpha_1 + \alpha_2 + \cdots + \alpha_p = 1$, on a :

$$\forall (x_1, x_2, \dots, x_p) \in I^p, \qquad f\left(\sum_{k=1}^p \alpha_k x_k\right) \leq \sum_{k=1}^p \alpha_k f(x_k).$$

 $\triangleq f$ étant convexe sur I, si $\alpha_1, \alpha_2, \cdots, \alpha_p$ sont des réels positifs non tous nuls, on a :

$$\forall (x_1, x_2, \dots, x_p) \in I^p, \quad f\left(\frac{\alpha_1 x_1 + \dots + \alpha_p x_p}{\alpha_1 + \dots + \alpha_p}\right) \le \frac{\alpha_1 f(x_1) + \dots + \alpha_p f(x_p)}{\alpha_1 + \dots + \alpha_p}.$$

Proposition 1.2

Caractérisation en terme de pente

Soit $f:I\longrightarrow \mathbb{R}$ une fonction. Les propriétés suivantes sont équivalentes :

$$\checkmark f \text{ est convexe,}
\checkmark \forall (x, y, z) \in I^{3}, \qquad x < y < z \implies \frac{f(y) - f(x)}{y - x} \le \frac{f(z) - f(x)}{z - x},
\checkmark \forall (x, y, z) \in I^{3}, \qquad x < y < z \implies \frac{f(y) - f(x)}{y - x} \le \frac{f(z) - f(y)}{z - y},
\checkmark \forall (x, y, z) \in I^{3}, \qquad x < y < z \implies \frac{f(z) - f(x)}{z - x} \le \frac{f(z) - f(y)}{z - y}.$$

Proposition 1.3

Une fonction f définie sur un intervalle I est convexe si, et seulement si, pour tout $a \in I$, l'application :

$$\varphi_a: I \setminus \{a\} \longrightarrow \mathbb{R}, \qquad x \longmapsto \frac{f(x) - f(a)}{x - a}$$

est croissante.

 \triangle Si p et q sont deux réels, alors :

$$g: x \longmapsto f(x) - px - q$$
 est convexe \iff f est convexe.

En effet, les fonctions φ_a correspondants à f et à g diffèrent du réel p.

1.3 Convexité et dérivabilité

Théorème 1.3

Soit $f: I \longrightarrow \mathbb{R}$ une fonction convexe. Alors, f est dérivable à droite et à gauche en tout point de \mathring{I} et, pour tout $(a,b,c) \in I^3$ tel que a < b < c on a:

$$\frac{f(b) - f(a)}{b - a} \leq f'_g(b) \leq f'_d(b) \leq \frac{f(c) - f(b)}{c - b}.$$

Corollaire

Si f est convexe sur l'intervalle I, alors f est continue sur \mathring{I} .

 \mathcal{F} Il se peut que f soit convexe sur l'intervalle [a,b] mais discontinue en a, ou continue en a et non dérivable en a. Exemples :

$$f:[0,1] \longrightarrow \mathbb{R}, \qquad x \longmapsto \begin{cases} 1 & \text{si } x \in \{0,1\} \\ 0 & \text{si } x \in]0,1[\end{cases}$$

ou

$$g:[-1,1]\longrightarrow \mathbb{R}, \qquad \qquad x\longmapsto 1-\sqrt{1-x^2}.$$

Soit $f:I\longrightarrow \mathbb{R}$ une fonction dérivable sur I. Pour que f soit convexe, il faut et il suffit que f' soit croissante sur I.

Corollaire

Soit $f:I\longrightarrow \mathbb{R}$ deux fois dérivable sur I. Alors, f est convexe si, et seulement si

Proposition 1.4

Position par rapport à la tangente

Si f est une fonction convexe et dérivable sur un intervalle I, alors on a :

$$\forall (x, a) \in I^2, \qquad f(x) \ge f(a) + (x - a)f'(a).$$

1.4 Quelques inégalités de convexité

- Pour tout $x \in \left[0, \frac{\pi}{2}\right]$ on a : $\frac{2}{\pi}x \le \sin x \le x$.

 Inégalité arithmético-géométrique : pour tous réels positifs x_1, x_2, \dots, x_n :

$$(x_1 x_2 \cdots x_n)^{\frac{1}{n}} \le \frac{x_1 + x_2 + \cdots + x_n}{n}$$

avec égalité si, et seulement si, tous les x_i sont égaux.

Inégalité de Hölder : soient p > 0, q > 0 deux réels tels que $\frac{1}{p} + \frac{1}{a} = 1$ et $n \in \mathbb{N}^*$. Pour tous réels positifs a_1, \dots, a_n et b_1, \dots, b_n on a :

$$\sum_{k=1}^{n} a_k b_k \leq \left(\sum_{k=1}^{n} a_k^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^{n} b_k^p\right)^{\frac{1}{q}}.$$

 $\operatorname{\mathbb{Z}}$ Inégalité de Minkowski : soient $p\geq 1$ un réel et $n\in\mathbb{N}^*$. Pour tous a_1,\cdots,a_n et b_1, \dots, b_n réels postifs on a :

$$\left(\sum_{k=1}^{n} (a_k + b_k)^p\right)^{\frac{1}{p}} \leq \left(\sum_{k=1}^{n} a_k^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{n} b_k^p\right)^{\frac{1}{p}}.$$

 $\operatorname{\mathbb{Z}}$ Inégalité de Jensen : Soient $\varphi:\mathbb{R}\longrightarrow\mathbb{R}$ une fonction convexe et $f:[0,1]\longrightarrow$ \mathbb{R} une fonction continue. Alors :

$$\varphi\left(\int_0^1 f(x) dx\right) \le \int_0^1 \varphi(f(x)) dx.$$

1.5 Exercices

1.5.1Exercices de base

Exercice 1.1

Vrai - Faux

Soient f et g deux fonctions convexes de \mathbb{R} dans \mathbb{R} .

1. La fonction $F: \mathbb{R} \longrightarrow \mathbb{R}, \ x \longmapsto \max(f(x), g(x))$ est convexe.

2. La fonction $G: \mathbb{R} \longrightarrow \mathbb{R}, x \longmapsto \min(f(x), g(x))$ est convexe.

1. Vrai. En effet, on a : $\operatorname{Epi}(F) = \operatorname{Epi}(f) \cap \operatorname{Epi}(g)$, et comme l'intersection de deux ensembles convexes est un ensemble convexe, alors on déduit que F est une fonction convexe.

On peut aussi montrer ce résultat par des calculs directs. Comme f et g convexes, alors pour tout $\lambda \in [0,1]$:

$$f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y) \leq \lambda F(x) + (1 - \lambda)F(y),$$

$$g(\lambda x + (1 - \lambda)y) \leq \lambda g(x) + (1 - \lambda)g(y) \leq \lambda F(x) + (1 - \lambda)F(y),$$

par conséquent :

$$F(\lambda x + (1 - \lambda)y) = \max(f(\lambda x + (1 - \lambda)y), g(\lambda x + (1 - \lambda)y)) \le \lambda F(x) + (1 - \lambda)F(y).$$

2. Faux. Considérons les fonctions f et g définies par f(x) = x et g(x) = -x, alors : $G\left(\frac{-1+1}{2}\right)=0$ et $\frac{G(-1)+G(1)}{2}=-1$. La fonction G n'est pas convexe.

Exercice 1.2

Soient $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction convexe et a < b deux nombres réels.

1. Montrer que :
$$f(a) < f(b) \implies \lim_{\substack{x \to +\infty}} f(x) = +\infty$$
.
2. Montrer que : $f(a) > f(b) \implies \lim_{\substack{x \to -\infty}} f(x) = +\infty$.

Considérons la fonction τ_a définie sur $\mathbb{R} \setminus \{a\}$ par :

$$\tau_a(x) = \frac{f(x) - f(a)}{x - a}.$$

Comme f est convexe, alors τ_a est croissante. Par hypothèse, on a : $\tau_a(b) > 0$, soit x > b alors $\tau_a(x) \ge \tau_a(b) > 0$ et par suite :

$$f(x) \geq f(a) + (x-a)\tau_a(b).$$

En conclusion, on a : $\lim_{x \to +\infty} f(x) = +\infty$.

2. On fait un raisonnement similaire à celui de la première question avec cette fois ci $]-\infty,b[$ au lieu de $]b,+\infty[$ et en utilisant le fait que $\tau_a(b)<0.$

Remarque : si $f: \mathbb{R}_+ \longrightarrow \mathbb{R}$ est une fonction convexe et bornée, alors elle est décroissante.

Exercice 1.3

Inégalités des moyennes arithmétique, géométrique et harmonique

Soient x_1, x_2, \dots, x_n des nombres réels positifs. On note A_n, G_n, H_n les moyennes arithmétique, géométrique et harmonique définies par :

$$A_n = \frac{x_1 + x_2 + \dots + x_n}{n}$$
, $G_n = \sqrt[n]{x_1 x_2 \dots x_n}$, $H_n = \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}}$.

Montrer que:

$$A_n \geq G_n \geq H_n.$$

Montrons tout d'abord que $A_n \geq G_n$. Si l'un des x_i est nul alors le résultat est évident. Sinon, on pose $x_i = e^{y_i}$ et par convexité de la fonction $x \longmapsto e^x$ on a :

$$e^{\frac{y_1+\dots+y_n}{n}} \le \frac{e^{y_1}+\dots+e^{y_n}}{n}.$$

D'où, il découle que :

$$\frac{x_1 + x_2 + \dots + x_n}{n} \ge \sqrt[n]{x_1 x_2 \cdots x_n}.$$

En remplaçant x_i par $\frac{1}{x_i}$ dans l'inégalité ci-dessus, alors on obtient :

$$\sqrt[n]{x_1 x_2 \cdots x_n} \ge \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \cdots + \frac{1}{x_n}}.$$

En conclusion, on a montré que : $A_n \ge G_n \ge H_n$.

Exercice 1.4

Soit $g:[-1,1] \longrightarrow \mathbb{R}$ une fonction continue. Pour tout $x \in \mathbb{R}$, on pose $h(x) = g(\cos x)$. Donner une condition nécessaire et suffisante sur g pour que h soit une fonction convexe sur \mathbb{R} .

Il est clair que la fonction h est 2π -périodique et $h(0) = h(2\pi) = h(4\pi)$. Par le lemme des pentes, on a pour tout $x \in [0, 2\pi]$ différent de 2π :

$$0 = \frac{h(2\pi) - h(0)}{2\pi} \le \frac{h(2\pi) - h(x)}{2\pi - x} \le \frac{h(4\pi) - h(2\pi)}{2\pi} = 0.$$

Donc, h est constante sur $[0, 2\pi]$, et par conséquent sur \mathbb{R} tout entier. Finalement, comme $g(x) = h(\arccos x)$ pour tout $x \in [-1, 1]$, on conclut que g est aussi constante. Réciproquement, si g est constante alors h est convexe sur \mathbb{R} .

1.5.2 Exercices d'assimilation

Exercice 1.5 🛎

Inégalités de Hölder, de Minkowski

1. Soient p et q deux nombres réels strictement positifs et tels que $\frac{1}{p} + \frac{1}{q} = 1$, et x, y deux éléments de \mathbb{R}_+^* . Montrer que

$$xy \le \frac{x^p}{p} + \frac{y^q}{q}.$$

Soient $a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_n$, 2n réels strictement positifs. Montrer l'inégalité de Hölder :

$$\sum_{i=1}^n a_i b_i \leq \left(\sum_{i=1}^n a_i^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^n b_i^q\right)^{\frac{1}{q}}.$$

2. Soient $a_1,a_2,\cdots,a_n,b_1,b_2,\cdots,b_n,\ 2n$ réels strictement positifs et $p\geq 1$. Montrer l'inégalité de Minkowski :

$$\left(\sum_{i=1}^{n} (a_i + b_i)^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1}^{n} a_i^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} b_i^p\right)^{\frac{1}{p}}.$$

1. On utilise l'exercice 1.3 avec n=2, $a_1=\frac{1}{p}$, $a_2=\frac{1}{q}$ et on pose $x_1^{a_1}=x$ et $x_2^{a_2}=y$, alors on obtient $xy\leq \frac{x^p}{p}+\frac{y^q}{q}$. Soient $\alpha=\left(\sum_{i=1}^n a_i^p\right)^{\frac{1}{p}}$ et $\beta=\left(\sum_{i=1}^n b_i^q\right)^{\frac{1}{q}}$. En prenant $\frac{a_i}{\alpha}$ pour x et $\frac{b_i}{\beta}$ pour y, alors on a $\frac{a_ib_i}{\alpha\beta}\leq \frac{1}{p}\frac{a_i^p}{\alpha^p}+\frac{1}{q}\frac{b_i^q}{\beta^q}$ et en sommant de 1 à n on

obtient

$$\frac{1}{\alpha\beta} \sum_{i=1}^{n} a_i b_i \leq \frac{1}{p} + \frac{1}{q} = 1,$$

ce qui termine la démonstration.

2. On a d'après l'inégalité triangulaire :

$$\sum_{i=1}^{n} |a_i + b_i|^p \leq \sum_{i=1}^{n} |a_i| |a_i + b_i|^{p-1} + \sum_{i=1}^{n} |b_i| |a_i + b_i|^{p-1}.$$
 (1)

Cette inégalité donne en fait celle de Minkowski pour p=1. Supposons maintenant que p>1. D'après l'inégalité de Hölder on a :

$$\sum_{i=1}^{n} |a_i| |a_i + b_i|^{p-1} \leq \left(\sum_{i=1}^{n} |a_i|^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} |a_i + b_i|^p\right)^{\frac{p-1}{p}},$$

$$\sum_{i=1}^{n} |b_i| |a_i + b_i|^{p-1} \leq \left(\sum_{i=1}^{n} |b_i|^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} |a_i + b_i|^p\right)^{\frac{p-1}{p}}.$$

L'inégalité (1) devient alors :

$$\sum_{i=1}^{n} |a_i + b_i|^p \leq \left(\sum_{i=1}^{n} |a_i|^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} |a_i + b_i|^p\right)^{\frac{p-1}{p}} + \left(\sum_{i=1}^{n} |b_i|^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} |a_i + b_i|^p\right)^{\frac{p-1}{p}}.$$

Or, si $\left(\sum_{i=1}^{n} (a_i + b_i)^p\right)^{\frac{1}{p}} = 0$, alors l'inégalité de Minkowski est vraie, supposons donc

ce terme non nul et divisons l'inégalité ci-dessus par $\left(\sum_{i=1}^n |a_i + b_i|^p\right)^{\frac{p-1}{p}}$, on arrive alors à :

$$\left(\sum_{i=1}^{n} (a_i + b_i)^p\right)^{\frac{1}{p}} \leq \left(\sum_{i=1}^{n} a_i^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} b_i^p\right)^{\frac{1}{p}}.$$

Exercice 1.6 🛎

1. Montrer que :

$$\begin{cases} f & \text{convexe,} \\ g & \text{convexe croissante,} \end{cases} \implies g \circ f \quad \text{est convexe}$$

- $\bf 2.$ Montrer que le résultat tombe en défaut si g n'est plus supposée croissante.
- 1. f est convexe, donc:

$$f((1-\lambda)x + \lambda y) \leq (1-\lambda)f(x) + \lambda f(y),$$