
Introduction

Cours donné à l’Université de Mascara en décembre 2005

Il existe de nombreux ouvrages, dont certains sont devenus incontournables, qui trai-

tent de la théorie des groupes et algèbres de Lie, leurs représentations et leurs applica-

tions. Aujourd’hui il n’est plus nécessaire d’expliquer l’intérêt que suscitent ces objets,

puisqu’ils apparaissent, de manière plus ou moins flagrante, dans de nombreux domaines

tels que la géométrie différentielle, l’analyse sur les variétés, la géométrie algébrique,

la géométrie arithmétique, la théorie des nombres, la géométrie non-commutative, les

systèmes dynamiques, la topologie, les équations différentielles, les probabilités, la phy-

sique, ... Et la liste est loin d’être exhaustive.

Dans ce contexte, ces notes n’ont rien de révolutionnaires, en ce sens qu’elles n’ap-

portent rien, ni sur le fond ni sur la forme, qui ne soit déjà connu des experts. Il s’agit

d’une introduction élémentaire et classique à la structure des algèbres de Lie de dimen-

sion finie. Ces notes s’adressent donc en premier lieu aux étudiants de troisième cycle,

et aux chercheurs qui souhaiteraient avoir une connaissance plus précise des algèbres de

Lie.

Nous avons choisi d’entrer directement dans le vif du sujet, sans détours historiques ni

subtilités réthoriques. Les définitions sont systématiquement accompagnées d’exemples

et les démonstrations des théorèmes sont rédigées dans le souci constant de les rendre

accessibles au lecteur. Il convient de noter que les preuves proposées sont standard et se

trouvent dans la majorité des ouvrages sur le sujet. De plus, pour le lecteur débutant, la

plupart des exemples nécessiteront une vérification qui sera, nous l’espérons, un exercice

utile. Enfin, nous proposons également un plan d’étude au lecteur désireux de poursuivre

son aventure dans le vaste monde des groupes de Lie.

La principale source d’inspiration de ces notes est l’excellent ouvrage d’Anthony

Knapp, Lie Groups, beyond an introduction, dont nous reprenons la plupart des preuves.

Il va sans dire que l’auteur est conscient que le choix des références bibliographiques est

nécessairement restrictif et subjectif. De nombreux autres ouvrages et cours sur le sujet

mériteraient autant, si ce n’est plus, d’attention. Je prie leurs auteurs de me pardonner ce

silence, il est le fruit de ma seule ignorance.
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Chapitre I : Définitions et exemples

Dans ce chapitre K est un corps arbitraire, en particulier sa caractéristique n’est pas

nécessairement nulle et il n’est pas nécessairement algébriquement clos. De plus, les es-

paces vectoriels que nous considérons seront, sauf mention du contraire, de dimension

finie sur K.

I.1 Algèbres de Lie
Définition I.1.1. Une algèbre de Lie g de dimension n sur K est un espace vectoriel de

dimension n sur K muni d’une application bilinéaire [ , ] : g × g → g, appelée crochet
de Lie, qui possède les propriétés :

(i) [X,X] = 0, pour tout X ∈ g (antisymétrie),

(ii) [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0, pour tous X,Y et Z dans g (identité
de Jacobi).

Exemple I.1.2. Tout espace vectoriel V sur K muni du crochet [X,Y ] = 0, X,Y ∈ V ,

est une algèbre de Lie sur K.

Exemple I.1.3. Soit V un espace vectoriel sur K. L’algèbre gl(V ) des endomorphismes de

V munie du crochet [A,B] = A◦B−B◦A, est une algèbre de Lie de dimension dim(V )2

sur K. Par exemple si V = C
n (resp. V = R

n, V = H
n), alors gl(V ) est l’algèbre de Lie

gl(n,C) (resp. gl(n,R), gl(n,H)) des matrices carrées d’ordre n à coefficients complexes

(resp. réels, quaternioniques). Le crochet de Lie sur gl(n,R) (resp. gl(n,R), gl(n,H)) est

alors défini par le produit matriciel : [A,B] = AB −BA.

Remarque I.1.4 On rappelle que tout quaternion s’écrit sous la forme a+ ib+ jc+kd,
où a, b, c et d sont des nombres réels, avec i2 = j2 = k2 = −1, ij = k, ki = j, jk = i,
ji = −k, kj = −i et ik = −j. Le conjugué du quaternion x = a + ib + jc + kd est
le quaternion q = a − ib − jc − kd. En particulier, q = −q ⇔ a = 0, et on définit la
partie réelle de q par Re(q) = a. Un quaternion dont la partie réelle est nulle est appelé
un quaternion pur. Notons que Re(q1q2) = Re(q2q1) et Re(q1q2) = Re(q2q1) pour tous
q1 et q2 dans H.

Exemple I.1.5. L’algèbre de Lie Aff(R) des transformations affines de la droite réelle

est l’espace vectoriel réel de dimension 2 engendré par les matrices X =
(

1 0
0 0

)
et

Y =
(

0 1
0 0

)
muni du crochet [X,Y ] = Y .

Exemple I.1.6. Soient Rx, Ry et Rz les “rotations infinitésimales” de R
3 autour des axes

x, y et z respectivement, i.e

Rx =

⎛
⎝0 0 0

0 0 −1
0 1 0

⎞
⎠, Ry =

⎛
⎝ 0 0 1

0 0 0
−1 0 0

⎞
⎠ et Rz =

⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠. En utilisant le

crochet défini par le produit matriciel, on vérifie que [Rx, Ry] = Rz , [Ry, Rz] = Rx

et [Rz, Rx] = Ry . Ainsi l’espace vectoriel réel de dimension 3 engendré par les trois

matrices Rx, Ry et Rz est une algèbre de Lie réelle de dimension 3, appelée l’algèbre de

Lie des “rotations infinitésimales” de l’espace, et notée o(3).
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Exemple I.1.7. Les élémentsH =
(

1 0
0 −1

)
,X =

(
0 1
0 0

)
et Y =

(
0 0
1 0

)
engendrent

l’algèbre de Lie (de dimension 3) sl(2,R) et satisfont les relations de commutation :

[H,X] = 2X , [H,Y ] = −2Y et [X,Y ] = H .

Exemple I.1.8. L’espace vectoriel sl(n,K) des matrices carrées d’ordre n, à coefficients

réels et de trace nulle est muni du crochet [X,Y ] = XY − Y X , est une algèbre de Lie

sur K de dimension n2 − 1.

Exemple I.1.9. Les exemples précédents sont des cas particuliers de la situation générale

suivante. Soit A une algèbre associative sur K. Le produit dans A, noté X · Y , induit un

crochet sur A : [X,Y ] = X · Y − Y ·X , de sorte que A possède une structure d’algèbre

de Lie sur K.

Exemple I.1.10. SoitM une variété de classeC∞. Tout champ de vecteurX surM induit

une dérivation DX définie par DXf(x) = Txf(X(x)), où Txf désigne la différentielle

de f en x. On définit alors le crochet de deux champs de vecteurs X et Y sur M par :

[X,Y ] = DX ◦ DY − DY ◦ DX . Ainsi l’espace vectroriel réel des champs de vec-

teurs de classe C∞ sur M possède une structure d’algèbre de Lie réelle. En fait un cal-

cul simple permet de calculer localement le crochet de deux champs de vecteurs. Soit

(U, φ) une carte de M avec φ = (x1, · · · , xm), où m désigne la dimension de M . Alors

[
∑m

i=1 ai
∂

∂xi
,
∑m

j=1 bj
∂

∂xj
] =

∑m
i,j=1(aj

∂bi

∂xj
− bj ∂ai

∂xj
) ∂

∂xi
.

Définition I.1.11. Une algèbre de Lie g est abélienne si [X,Y ] = 0 pour tous X et Y
dans g.

Exemple I.1.12. Tout espace vectoriel V sur K est muni d’une structure d’algèbre de Lie

abélienne sur K.

Exemple I.1.13. Toute algèbre de Lie de dimension 1 sur K est abélienne.

I.2 Constantes de structure
Soit g une algèbre de Lie de dimension n sur K. Soit {Xj}1≤j≤n une base de g, en tant

qu’espace vectoriel sur K. Nous avons donc [Xj , Xk] =
∑n

i=1 c
jk
i Xi, où cjk

i ∈ K. Par

bilinéarité, la structure d’algèbre de Lie de g est complétement déterminée par la valeur

des cjk
i , 1 ≤ i, j, k ≤ n. Notons que cjj

i = 0 et ckj
i = −cjk

i .

Définition I.2.1. Les scalaires cjk
i , 1 ≤ i, j, k ≤ n, sont appelés les constantes de struc-

ture de g relativement à la base {Xj}1≤j≤n.

Exemple I.2.2. Si g est une algèbre de Lie abélienne, alors ses coefficients de structure

sont tous nuls relativement à toute base de g.

Exemple I.2.3. Pour l’algèbre de Lie Aff(R), notons X1 = X et X2 = Y . Alors les

constantes de structure cette algèbre, relativement à la base {X1, X2}, sont données par :

c121 = 0 et c122 = 1.

Exemple I.2.4. Reprenons l’algèbre de Lie o(3) considérée dans l’exemple I.1.6 et posons

X1 = Rx, X2 = Ry et X3 = Rz . Les constantes de structure de o(3) relativement à la

base {X1, X2, X3} sont données par : c123 = c231 = c312 = 1.

Exemple I.2.5. Soit Eij la matrice carrée d’ordre n dont tous les coefficients sont nuls

sauf le coefficient situé à la i ème ligne et j ème colonne, lequel vaut 1. L’ensemble
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{Eij}1≤i,j≤n forme évidemment une base de l’algèbre de Lie gl(n,R), des matrices

carrées d’ordre n à coefficients réels. Un calcul direct montre que [Eij , Ekl] = δjkEil −
δilEkj , où δrs désigne le symbole de Kronecker, i.e δrs = 1 si r = s et δrs = 0 sinon. En

notant [Eij , Ekl] =
∑
cijkl
rs Ers, nous obtenons que cijkl

il = δjk et cijkl
kj = −δil.

I.3 Centre d’une algèbre de Lie
Définition I.3.1. Soit g une algèbre de Lie sur K. Le centre de g est

Z(g) = {X ∈ g | [X,Y ] = 0, ∀Y ∈ g}.
Exemple I.3.2. Si g est une algèbre de Lie abélienne, alors Z(g) = g.

Exemple I.3.3. Le centre de l’algèbre de Lie o(3) est trivial. Il en est de même pour le

centre de Aff(R).

Exemple I.3.4. Le centre de gl(n,K) est l’ensemble des matrices scalaires, i.e

Z(gl(n,K)) � K.

Exemple I.3.5. Le centre de sl(n,K) est trivial.

Exemple I.3.6. Considérons l’algèbre de Lie Ξ(M) des champs de vecteurs de classe C∞

sur une variété M définie dans l’exemple I.1.10. En utilisant la formule du crochet donné

dans l’exemple I.1.10, on trouve que le centre de Ξ(M) est trivial.

I.4 Centralisateurs et normalisateurs
Définition I.4.1. SoitE un sous-ensemble d’une algèbre de Lie g. Le normalisateur (resp.

centralisateur) Ng(E) (resp. Zg(E)) de E dans g est défini par {X ∈ g | [X,E] ⊂ E}
(resp. {X ∈ g | [X,E] = 0}).
En particulier si E est un sous-espace vectoriel de g alors Zg(E) ⊂ Ng(E).

Exemple I.4.2. Si E = {0} ou si E = g alors Ng(E) = g. Quant au centralisateur, il est

égal à g si E = {0} et au centre de g si E = g.

Exemple I.4.3. Si E est le sous-espace vectoriel de g = gl(2,K) engendré par la matrice(
0 1
0 0

)
, alors Zg(E) =

{(
a b
0 a

)
| a, b ∈ K

}

= Ng(E) =

{(
a b
0 c

)
| a, b, c ∈ K

}
.

Exemple I.4.4. Si E est un sous-espace vectoriel de g = sl(2,K) engendré par la matrice(
0 1
0 0

)
, alors Zg(E) =

{(
0 b
0 0

)
| b ∈ K

}

= Ng(E) =

{(
a b
0 −a

)
| a, b ∈ K

}
.

Exemple I.4.5. SiE est un sous-espace vectoriel de g = sl(2,K) engendrée par la matrice(
1 0
0 −1

)
, alors Zg(E) = Ng(E) =

{(
α 0
0 −α

)
| α ∈ K

}
.

I.5 Idéaux dans les algèbres de Lie
Définition I.5.1. Un sous-espace vectoriel s d’une algèbre de Lie g est un idéal de g si

[g, s] ⊂ s.

Exemple I.5.2. L’algèbre de Lie sl(n,R) est un idéal de gl(n,R).
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Exemple I.5.3. L’espace vectoriel des matrices triangulaires supérieures (resp. inférieu-

res) dont tous les termes diagonaux sont nuls est un idéal de l’algèbre de Lie matrices

triangulaires supérieures (resp. inférieures).

Exemple I.5.4. Le sous-espace vectoriel [g, g] engendré par les crochets [X,Y ], X ∈
g, Y ∈ g, est un idéal de g, appelé commutant de g ou idéal dérivé de g. En particulier

l’algèbre de Lie quotient g/[g, g] est abélienne.

Exemple I.5.5. Le centre Z(g) d’une algèbre de Lie g est un idéal abélien de g.

Remarque I.5.6 Il est facile de voir que si s et s′ sont deux idéaux d’une algèbre de Lie
g, il en est de même de s + s′, s ∩ s′ et [s, s′].

I.6 Sous-algèbres de Lie
Définition I.6.1. Une sous-algèbre de Lie d’une algèbre de Lie g est un sous-espace

vectoriel s de g stable par le crochet de Lie de g, i.e [s, s] ⊂ s.

Exemple I.6.2. Tout idéal d’une algèbre de Lie g est une sous-algèbre de g. En particulier

l’idéal [g, g] est une sous-algèbre de Lie de g, appelée l’algèbre de Lie dérivée.

Exemple I.6.3. Le centralisateur d’un sous-ensemble de g est une sous-algèbre de Lie de

g.

Exemple I.6.4. Le normalisateur d’une sous-algèbre de Lie s de g est une sous-algèbre de

Lie de g qui contient s comme idéal.

Exemple I.6.5. L’algèbre de Lie Aff(R) est une sous-algèbre de Lie de gl(2,R).

Exemple I.6.6. L’algèbre de Lie o(3) des “rotations infinitésimales” de l’espace est en fait

une sous-algèbre de Lie de gl(3,R).

Exemple I.6.7. L’algèbre de Lie sl(n,K) est une sous-algèbre de Lie de gl(n,K).

Exemple I.6.8. L’espace vectoriel réel des matrices carrées d’ordre n triangulaires supéri-

eures (ou inférieures) est une sous-algèbre de Lie de gl(n,R).

I.7 Morphismes d’algèbres de Lie, représentations et
représentation adjointe

Définition I.7.1. Un morphisme d’algèbres de Lie est une application linéaire T qui res-

pecte les crochets de Lie, i.e T ([·, ·]) = [T (·), T (·)].
Il est clair que le noyau (resp. l’image) d’un morphisme g → h d’algèbres de Lie est un

idéal (resp. une sous-algèbre de Lie) de g (resp. h).

Exemple I.7.2. SoientM etN deux variétés différentiables de classe C∞, et f : M → N
un difféomorphisme. Soit Ξ(M) (resp. Ξ(N)) l’algèbre de Lie des champs de vecteurs

de classe C∞ sur M (resp. N ). Alors l’application f� : Ξ(M) → Ξ(N), définie par

(f�X)(f(x)) = Txf(X(x)), est un isomorphisme d’algèbres de Lie.

Soit g une algèbre de Lie sur K. Nous avons vu à l’exemple I.1.3 que si V est un espace

vectoriel complexe alors l’algèbre gl(V ) des endomorphismes de V est naturellement

munie d’une structure d’algèbre de Lie.
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Définition I.7.3. Une représentation de g dans un espace vectoriel complexe V est un

morphisme d’algèbres de Lie φ : g → gl(V ). La dimension de cette représentation est

la dimension de V sur K. La représentation (φ, V ) est fidèle si φ est injective. De plus

la représentation (φ, V ) est irréductible si les seuls sous-espaces vectoriels de V qui sont

invariants par g sont {0} et V lui même, i.e V est irréductible si φ(g)W ⊆ W ⇔ W =
{0} ou W = V .

Si plusieurs représentations interviennent, nous préciserons l’action, i.e nous écrirons

(φ, V ) au lieu de V .

Définition I.7.4. La somme directe de deux représentations (φ1, V1) et (φ2, V2) de g
est la représentation (φ1 ⊕ φ2, V1 ⊕ V2) de g définie par (φ1 ⊕ φ2)(X)(v1 + v2) =
φ1(X)v1 + φ2(X)v2 pour tous X ∈ g, v1 ∈ V1 et v2 ∈ V2.

Définition I.7.5. Le produit tensoriel de deux représentations (φ1, V1) et (φ2, V2) de g
est la représentation (φ1 ⊗ φ2, V1 ⊗ V2) de g définie par (φ1 ⊗ φ2)(X)(v1 ⊗ v2) =
(φ1(X)v1)⊗ v2 + v1 ⊗ (φ2(X)v2) pour tous X ∈ g, v1 ∈ V1 et v2 ∈ V2.

Exemple I.7.6. Toute représentation de dimension 1 est irréductible.

Exemple I.7.7. L’algèbre de Lie gl(n,R) agit naturellement sur l’espace vectoriel R
n

(action d’une matrice réelle carrée d’ordre n sur un vecteur de R
n).

Exemple I.7.8. L’algèbre de Lie gl(n,R) agit sur le produit tensoriel R
n⊗R

n : X · (v1⊗
v2) = X · v1 ⊗ v2 + v1 ⊗X · v2 où X · vi désigne l’action naturelle d’une matrice réelle

carrée d’ordre n sur un vecteur de R
n.

Parmi les représentations de g, il y en a une qui se distingue par son rôle crucial dans

l’étude de la structure de g.

Définition I.7.9. Le morphisme d’algèbres de Lie g → gl(g) défini par X �→ [X, ·] est

appelé la représentation adjointe de g et est noté ad.

Exemple I.7.10. Pour l’algèbre de Lie Aff(R) nous avons ad(X) =
(

0 0
0 1

)
et ad(Y ) =(

0 0
−1 0

)
.

Exemple I.7.11. Considérons l’algèbre de Lie o(3) des “rotations infinitésimales” de l’es-

pace. Nous avons, dans les notations de l’exemple I.1.6, ad(Rx) = Rx, ad(Ry) = Ry et

ad(Rz) = Rz .

I.8 Forme de Killing
Soit V un espace vectoriel sur K. Nous désignons par V � le dual vectoriel de V , i.e

l’espace vectoriel des formes linéaires sur V . Soient b : V × V → K une application

bilinéaire et U un sous-espace vectoriel de V .

Définition I.8.1. Le radical de b est le sous-espace vectoriel de V :

rad(b) = {v ∈ V | b(v, v′) = 0, ∀v′ ∈ V }.
Nous dirons que b est non-dégénérée (resp. dégénérée) si le radical de b est trivial (resp.

non trivial).
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Définition I.8.2. L’orthogonal de U dans V est le sous-espace vectoriel de V :

U⊥ = {v ∈ V | b(v, v′) = 0, ∀v′ ∈ U}.

Nous noterons b |U×U la restriction de b à U × U .

Proposition I.8.3

(i) rad(b |U×U ) = U ∩ U⊥. Si, de plus, b est non-dégénérée alors
(ii) dim(U) + dim(U⊥) = dim(V ),
(iii) U ⊕ U⊥ = V ⇔ b |U×U est non-dégénérée.

Preuve : L’assertion (i) est une simple reformulation des définitions. La preuve de

(ii) est standard, nous la rappelons pour le plaisir. Considérons les applications linéaires

φ : V → V � et ψ : V → U� définies par v �→ b(v, ·). En particulier, ker(ψ) = U⊥, et

φ est un isomorphisme si, et seulement si, b est non-dégénérée. Soit U ′ un sous-espace

vectoriel de V tel que V = U ⊕ U ′. Tout élément u� de U� définit un élément v� de

V � tel que v� |U= u� et v� |U ′= 0. Puisque φ est un isomorphisme, alors il existe

v dans V tel que φ(v) = v�, de sorte que ψ(v) = u�, i.e ψ est surjective, et donc

dim(V ) = dim(im(ψ)) + dim(ker(ψ)) = dim(U) + dim(U⊥). L’assertion (iii) est

maintenant une conséquence directe de (i) et (ii). �

Remarque I.8.4 Il se peut que b soit non-dégénérée mais que sa restriction à U ×U soit
dégénérée. L’exemple classique d’une telle situation est le suivant : K = R, V = R

2,
U = {(x, y) ∈ R

2 | x = y}, b((x, y), (x′, y′)) = xx′ − yy′ et U⊥ = {(x, y) ∈ R
2 |

xt− yt = 0, ∀t ∈ R} = U .

Considérons le cas où V est une algèbre de Lie g sur K. Alors il est facile de montrer

que l’application κ définie par κ : g× g→ K, (X,Y ) �→ Tr(ad(X) ◦ ad(Y )) est :

(i) bilinéaire,

(ii) symétrique,

(iii) ad-invariante, i.e κ(ad(X)(Y ), Z) + κ(Y, ad(X)(Z)) = 0 pour tous X , Y et Z
dans g, avec

(iv) κ(X,Y ) = 1
2

(
κ(X + Y,X + Y )− κ(X,X)− κ(Y, Y )

)
pour tous X et Y dans g.

Définition I.8.5. L’application bilinéaire κ est appelée la forme de Killing de g.

Dorénavant les espaces orthogonaux que nous considérons seront toujours relatifs à une

forme de Killing (que nous préciserons si plusieurs algèbres de Lie interviennent).

Proposition I.8.6 Soient g une algèbre de Lie sur K et κ sa forme de Killing. Si s est un
idéal de g alors :

(i) l’orthogonal s⊥ de s est un idéal de g,
(ii) la forme de Killing κs de s est la restriction à s de la forme de Killing de g,
i.e κs = κ |s×s,
(iii) si de plus κ est non-dégénérée, alors κs est non-dégénérée,
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Preuve : (i) découle de la ad-invariance de κ qui implique que :

κ([A,B], C) = κ(A, [B,C]) = 0 pour tous A ∈ s⊥, B ∈ g et C ∈ s.

Pour (ii), soit V un sous-espace vectoriel de g tel que g = s ⊕ V . Alors, pour tous X et

Y dans s, nous avons : (ad(X) ◦ ad(Y ))(s) ⊂ s et (ad(X) ◦ ad(Y ))(V ) ⊂ s, de sorte

que Tr(ad(X) ◦ ad(Y ) |s×s) = Tr(ad(X) ◦ ad(Y )). Finalement, soit X ∈ s tel que

κs(X,Y ) = κ(X,Y ) = 0 pour tout Y ∈ s. Rappelons que, d’après (ii), κs = κ |s×s. Par

ad-invariance de la forme de Killing, cela implique que κ(X, [Y,W ]) = κ([X,Y ],W ) =
0 pour tout W ∈ g. Ainsi, puisque κ est non-dégénérée, nous obtenons que [X,Y ] = 0
pour tout Y ∈ s. L’endomorphisme

(
ad(X) ◦ ad(W )

)2
de g est trivial pour tout W ∈ g.

En effet, nous avons :
(
ad(X) ◦ ad(W )

)
(A) = 0 si A ∈ s et

(
ad(X) ◦ ad(W )

)
(A) ∈ s

si A ∈ V . Autrement dit,
(
ad(X) ◦ ad(W )

)
est un endomorphisme nilpotent de g et donc

Tr
(
ad(X) ◦ ad(W )

)
= 0. Cela entraine que κ(X,W ) = 0 pour tout W ∈ g, soit X = 0

puisque κ est non-dégénérée. �

Exemple I.8.7. Pour tous A et M dans gl(n,R), nous avons ad(A)2(M) = A2M −
2AMA−MA2 de sorte que κ(A,A) = 2nTr(A2)− 2Tr(A)2.

Exemple I.8.8. En utilisant l’exemple précédent, nous trouvons que κ(A,A) = 2nTr(A2)
pour tout A dans l’algèbre de Lie sl(n,R).

Exemple I.8.9. Pour l’algèbre de Lie Aff(R), nous avons, dans les notations de l’exemple

I.1.5, κ(X,X) = 1, κ(X,Y ) = 0 et κ(Y, Y ) = 0.

Exemple I.8.10. Considérons l’algèbre de Lie o(3) des “rotations infinitésimales” de l’es-

pace. Nous avons, dans les notations de l’exemple I.1.6, κ(X,X) = −2(a2 + b2 + c2)
pour tout X = aRx + bRy + cRz .

Exemple I.8.11. Le radical de la forme de Killing de Aff(R) est trivial, donc κ est

dégénérée.

Exemple I.8.12. Le radical de la forme de Killing de gl(n,R) n’est pas trivial, donc κ est

dégénérée. En effet, rad(κ) contient les matrices scalaires.

I.9 Dérivations, sommes directes et sommes semidirectes
d’algèbres de Lie

Définition I.9.1. Une dérivation de g est un endomorphismeD de g tel queD([X,Y ]) =
[D(X), Y ] + [X,D(Y )] pour tous X et Y dans g. On notera DerK(g) l’ensemble des

dérivations de g.

Exemple I.9.2. Si g = V est un espace vectoriel muni d’une structure d’algèbre de Lie

abélienne, alors DerK(g) est l’espace vectoriel de tous les endomorphismes de V .

Exemple I.9.3. D’après l’identité de Jacobi, l’endomorphisme ad(W ) est une dérivation

de g pour tout W ∈ g.

Définition I.9.4. Une dérivationD de g est dite intérieure siD = ad(X) pour un élément

X de g.

Remarque I.9.5 Réciproquement, si V est un espace vectoriel muni d’une application
bilinéaire antisymétrique β telle que A �→ β(W,A) soit une dérivation de V , pour tout
W ∈ V , alors V est une algèbre de Lie et β est un crochet de Lie.
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