Introduction

Cours donné a I’Université de Mascara en décembre 2005

Il existe de nombreux ouvrages, dont certains sont devenus incontournables, qui trai-
tent de la théorie des groupes et algebres de Lie, leurs représentations et leurs applica-
tions. Aujourd’hui il n’est plus nécessaire d’expliquer 1’intérét que suscitent ces objets,
puisqu’ils apparaissent, de maniere plus ou moins flagrante, dans de nombreux domaines
tels que la géométrie différentielle, I’analyse sur les variétés, la géométrie algébrique,
la géométrie arithmétique, la théorie des nombres, la géométrie non-commutative, les
systeémes dynamiques, la topologie, les équations différentielles, les probabilités, la phy-
sique, ... Et la liste est loin d’étre exhaustive.

Dans ce contexte, ces notes n’ont rien de révolutionnaires, en ce sens qu’elles n’ap-
portent rien, ni sur le fond ni sur la forme, qui ne soit déja connu des experts. Il s’agit
d’une introduction élémentaire et classique a la structure des algebres de Lie de dimen-
sion finie. Ces notes s’adressent donc en premier lieu aux étudiants de troisieme cycle,
et aux chercheurs qui souhaiteraient avoir une connaissance plus précise des algebres de
Lie.

Nous avons choisi d’entrer directement dans le vif du sujet, sans détours historiques ni
subtilités réthoriques. Les définitions sont systématiquement accompagnées d’exemples
et les démonstrations des théorémes sont rédigées dans le souci constant de les rendre
accessibles au lecteur. Il convient de noter que les preuves proposées sont standard et se
trouvent dans la majorité des ouvrages sur le sujet. De plus, pour le lecteur débutant, la
plupart des exemples nécessiteront une vérification qui sera, nous I’espérons, un exercice
utile. Enfin, nous proposons également un plan d’étude au lecteur désireux de poursuivre
son aventure dans le vaste monde des groupes de Lie.

La principale source d’inspiration de ces notes est I’excellent ouvrage d’Anthony
Knapp, Lie Groups, beyond an introduction, dont nous reprenons la plupart des preuves.
Il va sans dire que 1’auteur est conscient que le choix des références bibliographiques est
nécessairement restrictif et subjectif. De nombreux autres ouvrages et cours sur le sujet
mériteraient autant, si ce n’est plus, d’attention. Je prie leurs auteurs de me pardonner ce
silence, il est le fruit de ma seule ignorance.



Chapitre I : Définitions et exemples

Dans ce chapitre K est un corps arbitraire, en particulier sa caractéristique n’est pas
nécessairement nulle et il n’est pas nécessairement algébriquement clos. De plus, les es-
paces vectoriels que nous considérons seront, sauf mention du contraire, de dimension
finie sur K.

I.1 Algebres de Lie

Définition I.1.1. Une algébre de Lie g de dimension n sur K est un espace vectoriel de
dimension n sur K muni d’une application bilinéaire [ , ] : g X g — g, appelée crochet
de Lie, qui possede les propriétés :

(1) [X, X] = 0, pour tout X € g (antisymétrie),

() (X, [V, Z]| + [V, [Z, X]] + [Z,[X,Y]] = 0, pour tous X, Y et Z dans g (identité

de Jacobi).

Exemple 1.1.2. Tout espace vectoriel V sur K muni du crochet [X,Y] =0, X,Y € V,
est une algebre de Lie sur K.

Exemple1.1.3. Soit V un espace vectoriel sur K. L’algebre gl(V') des endomorphismes de
V munie du crochet [A, B] = Ao B— Bo A, est une algebre de Lie de dimension dim(V)?
sur K. Par exemple si V' = C" (resp. V = R", V = H"), alors gl(V') est I’algébre de Lie
gl(n, C) (resp. gl(n,R), gl(n, H)) des matrices carrées d’ordre n a coefficients complexes
(resp. réels, quaternioniques). Le crochet de Lie sur gl(n, R) (resp. gl(n, R), gl(n, H)) est
alors défini par le produit matriciel : [A, B] = AB — BA.

Remarque 1.1.4 On rappelle que tout quaternion s’écrit sous la forme a +1b+ jc+ kd,

oit a, b, c et d sont des nombres réels, avec i’ = j?> = k? = —1,ij =k, ki = j, jk =1,
ji = —k, kj = —i et itk = —j. Le conjugué du quaternion x = a + ib + jc + kd est
le quaternion ¢ = a — ib — jc — kd. En particulier, ¢ = —q < a = 0, et on définit la

partie réelle de q par Re(q) = a. Un quaternion dont la partie réelle est nulle est appelé
un quaternion pur. Notons que Re(q1q2) = Re(qaq1) et Re(q1qz) = Re(q2qy) pour tous
q1 et qo dans H.

Exemple 1.1.5. Lalgebre de Lie Aff(R) des transformations affines de la droite réelle

est I’espace vectoriel réel de dimension 2 engendré par les matrices X = ((1) 8) et

0 0

Exemple1.1.6. Soient R;, R, et R, les “rotations infinitésimales” de R? autour des axes
x, y et z respectivement, i.e

Y = (O 1) muni du crochet [X,Y] =Y.

00 0 0 0 1 0 -1 0
R,=10 0 -1],R, =10 0 O)JetR, =11 0 O0].En utilisant le
01 0 -1 0 O 0 0 0
crochet défini par le produit matriciel, on vérifie que [R,, Ry] = R., [Ry,R.] = R,
et [R., R;] = R,. Ainsi I'espace vectoriel réel de dimension 3 engendré par les trois

matrices I7,, I?y et R, est une algebre de Lie réelle de dimension 3, appelée I’algebre de
Lie des “rotations infinitésimales” de I’espace, et notée o0(3).
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Exemple1.1.7. Les éléments H = (é 0 ),X = (8 (1)) ety = ((1) 8) engendrent

-1
I’algébre de Lie (de dimension 3) sl(2,R) et satisfont les relations de commutation :
[H,X]=2X,[H,Y]=-2Yet[X,Y]=H.

Exemple 1.1.8. L’espace vectoriel sl(n, K) des matrices carrées d’ordre n, a coefficients
réels et de trace nulle est muni du crochet [X,Y] = XY — Y X, est une algébre de Lie
sur K de dimension n? — 1.

Exemple 1.1.9. Les exemples précédents sont des cas particuliers de la situation générale
suivante. Soit .4 une algebre associative sur K. Le produit dans .4, noté X - Y, induit un
crochetsur A: [X,Y] =X -Y —Y - X, de sorte que .A possede une structure d’algebre
de Lie sur K.

Exemple 1.1.10. Soit M une variété de classe C°°. Tout champ de vecteur X sur M induit
une dérivation Dy définie par Dy f(z) = T, f(X(z)), ou T, f désigne la différentielle
de f en x. On définit alors le crochet de deux champs de vecteurs X et Y sur M par :
[X,Y] = Dx o Dy — Dy o Dx. Ainsi I’espace vectroriel réel des champs de vec-
teurs de classe C'>° sur M possede une structure d’algebre de Lie réelle. En fait un cal-
cul simple permet de calculer localement le crochet de deux champs de vecteurs. Soit
(U, ¢) une Carte de M avec ¢ = (z1,- -+ ,Ty), ol m désigne la dimension de M. Alors

ob;
[Zz 1a’28:v ’Zj 1 Jaa: ]:Zznj 1(a’J8z

Définition I.1.11. Une algebre de Lie g est abélienne si [X, Y] = 0 pour tous X et YV’
dans g.
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Exemple 1.1.12. Tout espace vectoriel V' sur K est muni d’une structure d’algebre de Lie
abélienne sur K.

Exemple 1.1.13. Toute algebre de Lie de dimension 1 sur K est abélienne.

I.2 Constantes de structure

Soit g une algebre de Lie de dimension n sur K. Soit { X }1<,<, une base de g, en tant

qu’espace vectoriel sur K. Nous avons donc [X;, Xi] = >0 | ikX ol cjk € K. Par
blllnearlte la structure d’algebre de Lie de g est completement déterminée par la valeur
dest ,1 <4, 5,k <n. Notonsquec”—()etc :—cgk.

Définition 1.2.1. Les scalaires c{ k, 1 <4,3,k < n, sont appelés les constantes de struc-
ture de g relativement a la base { X }1<j<n.

Exemple 1.2.2. Si g est une algebre de Lie abélienne, alors ses coefficients de structure
sont tous nuls relativement a toute base de g.

Exemple 1.2.3. Pour I’algebre de Lie Aff(R), notons X; = X et Xy = Y. Alors les
constantes de structure cette algebre, relativement & la base { X1, X5}, sont données par :
12 _ 12 _

ci“=0etcy;* = 1.

Exemple 1.2.4. Reprenons I’algebre de Lie o(3) considérée dans I’exemple I.1.6 et posons
Xy = R;, Xo = Ry et X3 = RR,. Les constantes de structure de 0(3) relativement a la
base { X1, X2, X3} sont données par : ¢} = ¢33 = ¢3! = 1.

Exemple 1.2.5. Soit E;; la matrice carrée d’ordre n dont tous les coefficients sont nuls
sauf le coefficient situé a la i eéme ligne et j éme colonne, lequel vaut 1. L’ensemble
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{Eij }i<i,j<n forme évidemment une base de I’algebre de Lie gl(n,R), des matrices

carrées d’ordre n a coefficients réels. Un calcul direct montre que [Eij, Ey = ik —
01 Ey;, ot 6,5 désigne le symbole de Kronecker, i.e §,; = 1sir = s et d,s = 0 sinon. En
notant [E;;, Ey) = > ¥ E,, nous obtenons que cﬁkl = ;1 et c”kl = —§;.

.3 Centre d’une algebre de Lie

Définition 1.3.1. Soit g une algebre de Lie sur K. Le centre de g est
Z(g)={Xeg|[X,Y]=0, VY € g}.

Exemple 1.3.2. Si g est une algebre de Lie abélienne, alors Z(g) = g.

Exemple 1.3.3. Le centre de I’algébre de Lie o(3) est trivial. Il en est de méme pour le
centre de Aff(R).

Exemple 1.3.4. Le centre de gl(n, K) est I'’ensemble des matrices scalaires, i.e
Z(gl(n,K)) ~ K.

Exemple 1.3.5. Le centre de sl(n, K) est trivial.

Exemple 1.3.6. Considérons I’algebre de Lie =( M) des champs de vecteurs de classe C>°
sur une variété M définie dans 1I’exemple 1.1.10. En utilisant la formule du crochet donné
dans I’exemple 1.1.10, on trouve que le centre de Z(M) est trivial.

1.4 Centralisateurs et normalisateurs

Définition I.4.1. Soit £ un sous-ensemble d’une algebre de Lie g. Le normalisateur (resp.
centralisateur) Ny (E) (resp. Z4(F)) de E dans g est défini par {X € g | [X,E] C E}
(resp. {X € g | [X, E] = O}).

En particulier si E est un sous-espace vectoriel de g alors Z,(E) C Ny(E).

Exemple 14.2. Si E = {0} ousi E = g alors Ng(E) = g. Quant au centralisateur, il est
égalagsi E = {0} etaucentrede gsi £ = g.

Exemple 1.4.3. Si F est le sous-espace vectoriel de g = gl(2, K) engendre par la matrice
K)

(8 0>,alorsZg(E) = { (g b) | a, beK} E)( C) |a,b,ceK}.
((

Exemple 1.4.4. Si E est un sous-espace vectoriel de g = s 2, engendre par la matrice

{ (o
(8 0>,alorsZg(E):{<8 (b))beK};éN (0 >|abeK}

Exemple1.4.5. Si E est un sous-espace vectoriel de g = s[(2, K) engendrée par la matrice

Ry e

I.5 Idéaux dans les algebres de Lie

Définition I.5.1. Un sous-espace vectoriel s d’une algebre de Lie g est un idéal de g si
g,8] C s

Exemple 1.5.2. L’algebre de Lie sl(n, R) est un idéal de gl(n,R).



Exemple 1.5.3. L’espace vectoriel des matrices triangulaires supérieures (resp. inférieu-
res) dont tous les termes diagonaux sont nuls est un idéal de 1’algebre de Lie matrices
triangulaires supérieures (resp. inférieures).

Exemple 1.5.4. Le sous-espace vectoriel [g, g] engendré par les crochets [X,Y], X €
g, Y € g, estun idéal de g, appelé commutant de g ou idéal dérivé de g. En particulier
I’algebre de Lie quotient g/[g, g] est abélienne.

Exemple 1.5.5. Le centre Z(g) d’une algebre de Lie g est un idéal abélien de g.

Remarque L.5.6 1l est facile de voir que si s et 5’ sont deux idéaux d’une algébre de Lie
g il en estde mémedes +s', s Ns' et [s,5'].

I.6 Sous-algebres de Lie

Définition 1.6.1. Une sous-algébre de Lie d’une algebre de Lie g est un sous-espace
vectoriel s de g stable par le crochet de Lie de g, i.e [s,5] C s.

Exemple 1.6.2. Tout idéal d’une algebre de Lie g est une sous-algebre de g. En particulier
I’idéal [g, g] est une sous-algebre de Lie de g, appelée [’algebre de Lie dérivée.

Exemple 1.6.3. Le centralisateur d’un sous-ensemble de g est une sous-algebre de Lie de
g.

Exemple 1.6.4. Le normalisateur d’une sous-algebre de Lie s de g est une sous-algebre de
Lie de g qui contient s comme idéal.

Exemple 1.6.5. L algebre de Lie Aff(R) est une sous-algebre de Lie de gl(2,R).

Exemple 1.6.6. L’algebre de Lie 0(3) des “rotations infinitésimales” de 1’espace est en fait
une sous-algebre de Lie de gl(3,R).
Exemple 1.6.7. L algebre de Lie s((n, K) est une sous-algebre de Lie de gl(n, K).

Exemple 1.6.8. L’espace vectoriel réel des matrices carrées d’ordre n triangulaires supéri-
eures (ou inférieures) est une sous-algebre de Lie de gl(n, R).

1.7 Morphismes d’algebres de Lie, représentations et
représentation adjointe

Définition 1.7.1. Un morphisme d’algébres de Lie est une application linéaire T" qui res-
pecte les crochets de Lie, i.e T([-,-]) = [T'(-), T(-)].

Il est clair que le noyau (resp. I’'image) d’un morphisme g — h d’algebres de Lie est un
idéal (resp. une sous-algebre de Lie) de g (resp. h).
Exemple 1.7.2. Soient M et N deux variétés différentiables de classe C*°,et f : M — N
un difféomorphisme. Soit Z(M) (resp. Z(NN)) I’algebre de Lie des champs de vecteurs
de classe C* sur M (resp. V). Alors I'application f, : E(M) — Z(N), définie par
(f+X)(f(xz)) = Tof(X(z)), est un isomorphisme d’algebres de Lie.

Soit g une algebre de Lie sur K. Nous avons vu a ’exemple I.1.3 que si V est un espace

vectoriel complexe alors I’algeébre gl(V') des endomorphismes de V' est naturellement
munie d’une structure d’algebre de Lie.
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Définition 1.7.3. Une représentation de g dans un espace vectoriel complexe V' est un
morphisme d’algebres de Lie ¢ : g — gl(V'). La dimension de cette représentation est
la dimension de V' sur K. La représentation (¢, V') est fidele si ¢ est injective. De plus
la représentation (¢, V') est irréductible si les seuls sous-espaces vectoriels de V' qui sont
invariants par g sont {0} et V' lui méme, i.e V est irréductible si ¢(g)W C W < W =
{0}ouW =V.

Si plusieurs représentations interviennent, nous préciserons 1’action, i.e nous écrirons
(¢, V) aulieude V.

Définition 1.7.4. La somme directe de deux représentations (¢1,V7) et (¢2, Vo) de g
est la représentation (¢1 @ ¢2, V1 @ V2) de g définie par (¢1 @ ¢2)(X)(v1 + v2) =
&1 (X)v1 + ¢2(X)vg pour tous X € g, v; € Vj etvg € Va.

Définition 1.7.5. Le produit tensoriel de deux représentations (¢1, V1) et (¢2, V) de g
est la représentation (¢1 ® ¢2, V1 ® Va) de g définie par (1 ® ¢2)(X)(v1 ® va) =
(¢1(X)’U1) R vy +v1 X (¢2(X)U2) pour tous X € g, V1 € Vietvy € Vs

Exemple 1.7.6. Toute représentation de dimension 1 est irréductible.

Exemple 1.7.7. L algebre de Lie gl(n,R) agit naturellement sur 1’espace vectoriel R"
(action d’une matrice réelle carrée d’ordre n sur un vecteur de R"™).

Exemple 1.7.8. L’algebre de Lie gl(n, R) agit sur le produit tensoriel R" @ R : X - (v1 ®
vy) =X -v1 ®v2 +v1 ® X - v9 o0t X - v; désigne I’action naturelle d’une matrice réelle
carrée d’ordre n sur un vecteur de R".

Parmi les représentations de g, il y en a une qui se distingue par son role crucial dans
I’étude de la structure de g.

Définition 1.7.9. Le morphisme d’algebres de Lie g — gl(g) défini par X — [X, ] est
appelé la représentation adjointe de g et est noté ad.

Exemple 1.7.10. Pour ’algebre de Lie Aff(R) nous avons ad(X) = <8 (1)) etad(Y) =

(50)

Exemple1.7.11. Considérons I’algebre de Lie 0(3) des “rotations infinitésimales” de I’es-
pace. Nous avons, dans les notations de I’exemple I.1.6, ad(R,) = R,, ad(R,) = R, et
ad(R,) = R,.

I.8 Forme de Killing

Soit V' un espace vectoriel sur K. Nous désignons par V* le dual vectoriel de V, i.e
I’espace vectoriel des formes linéaires sur V. Soient b : V' x V' — K une application
bilinéaire et U un sous-espace vectoriel de V.

Définition 1.8.1. Le radical de b est le sous-espace vectoriel de V' :
rad(b) = {v € V | b(v,0") =0, Vo' € V}.

Nous dirons que b est non-dégénérée (resp. dégénérée) si le radical de b est trivial (resp.
non trivial).
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Définition 1.8.2. L’orthogonal de U dans V est le sous-espace vectoriel de V' :
Ut ={veV|bw)=0, W €U}
Nous noterons b |y« la restrictionde ba U x U.

Proposition 1.8.3

(i) rad(b |y xv) = U NU™L. Si, de plus, b est non-dégénérée alors
(ii) dim(U) + dim(U+) = dim(V),
(iii) U @ U+ =V < b |pxu est non-dégénérée.

Preuve : L’assertion (i) est une simple reformulation des définitions. La preuve de
(ii) est standard, nous la rappelons pour le plaisir. Considérons les applications linéaires
¢:V — V*ett: V — U* définies par v — b(v,-). En particulier, ker(y)) = U=, et
¢ est un isomorphisme si, et seulement si, b est non-dégénérée. Soit U’ un sous-espace
vectoriel de V tel que V. = U @ U’. Tout élément u* de U* définit un élément v* de
V* tel que v* |y= u* et v* |yr= 0. Puisque ¢ est un isomorphisme, alors il existe
v dans V tel que ¢(v) = v*, de sorte que ¥(v) = u*, i.e 9 est surjective, et donc
dim(V) = dim(im(¢))) + dim(ker(¢))) = dim(U) + dim(U~). L'assertion (iii) est
maintenant une conséquence directe de (i) et (ii). O

Remarque 1.8.4 1 se peut que b soit non-dégénérée mais que sa restriction a U X U soit
dégénérée. L’exemple classique d’une telle situation est le suivant : K = R, V = R,
U= {(w.y) € R | & = y}, b((w,y), (¢',y))) = 22’ — gy et UL = {(2,y) € R’
xt—yt=0,Vie R} =U.

Considérons le cas ou V' est une algebre de Lie g sur K. Alors il est facile de montrer
que I’application x définie par x : g x g — K, (X,Y) — Tr(ad(X) o ad(Y)) est :

(i) bilinéaire,
(i1) symétrique,

(iii) ad-invariante, i.e x(ad(X)(Y),Z) + x(Y,ad(X)(Z)) = 0 pour tous X, Y et Z
dans g, avec

(iv) K(X,Y) =L3(k(X+Y,X+Y) —k(X,X)—x(Y,Y)) pour tous X et Y dans g.
Définition 1.8.5. L application bilinéaire x est appelée la forme de Killing de g.

Dorénavant les espaces orthogonaux que nous considérons seront toujours relatifs a une
forme de Killing (que nous préciserons si plusieurs algebres de Lie interviennent).

Proposition 1.8.6 Soient g une algébre de Lie sur K et k sa forme de Killing. Si s est un
idéal de g alors :

(i) lorthogonal s de s est un idéal de g,

(ii) la forme de Killing ks de s est la restriction a s de la forme de Killing de g,

i.e ks =K |sxs

(iii) si de plus k est non-dégénérée, alors ks est non-dégénérée,
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Preuve : (i) découle de la ad-invariance de « qui implique que :

k([A, B],C) = k(A,[B,C]) = 0pourtous A € s, B get C € s.
Pour (ii), soit V' un sous-espace vectoriel de g tel que g = s & V. Alors, pour tous X et
Y dans s, nous avons : (ad(X) o ad(Y))(s) C s et (ad(X) oad(Y))(V) C s, de sorte
que Tr(ad(X) o ad(Y) |sxs) = Tr(ad(X) o ad(Y")). Finalement, soit X € s tel que
ks(X,Y) = k(X,Y) = 0 pourtout Y € s. Rappelons que, d’aprés (ii), ks = &k |sxs. Par
ad-invariance de la forme de Killing, cela implique que (X, [Y, W]) = x([X, Y], W) =
0 pour tout W € g. Ainsi, puisque ~ est non-dégénérée, nous obtenons que [X,Y] = 0
pour tout Y € s. L’endomorphisme (ad(X) o ad(VV))2 de g est trivial pour tout W € g.
En effet, nous avons : (ad(X) o ad(W))(A) = 0si A € set (ad(X) o ad(W))(A) € s
si A € V. Autrement dit, (ad(X) o ad(1/')) est un endomorphisme nilpotent de g et donc
Tr(ad(X) o ad(W)) = 0. Cela entraine que (X, W) = 0 pour tout W € g, soit X = 0
puisque ~ est non-dégénérée. O
Exemple 1.8.7. Pour tous A et M dans gl(n,R), nous avons ad(A)?(M) = A2M —
2AM A — M A? de sorte que k(A, A) = 2nTr(A?) — 2Tr(A)%
Exemple 1.8.8. En utilisant I’exemple précédent, nous trouvons que x (A, A) = 2nTr(A?)
pour tout A dans I’algebre de Lie sl(n,R).
Exemple 1.8.9. Pour ’algebre de Lie Aff(R), nous avons, dans les notations de I’exemple
L15, k(X, X) =1, 8(X,Y) =0et(Y,Y) = 0.

Exemple 1.8.10. Considérons I’algebre de Lie 0(3) des “rotations infinitésimales” de I’es-
pace. Nous avons, dans les notations de I’exemple 1.1.6, x(X, X) = —2(a? + b2 + ¢?)
pour tout X = aR, + bR, + cR..

Exemple 1.8.11. Le radical de la forme de Killing de Aff(R) est trivial, donc x est
dégénérée.

Exemple 1.8.12. Le radical de la forme de Killing de gl(n, R) n’est pas trivial, donc  est
dégénérée. En effet, rad(x) contient les matrices scalaires.

1.9 Dérivations, sommes directes et sommes semidirectes
d’algebres de Lie
Définition 1.9.1. Une dérivation de g est un endomorphisme D de g tel que D([X,Y]) =

[D(X),Y] + [X,D(Y)] pour tous X et Y dans g. On notera Derg (g) I’ensemble des
dérivations de g.

Exemple 1.9.2. Si g = V est un espace vectoriel muni d’une structure d’algebre de Lie
abélienne, alors Derg (g) est I’espace vectoriel de tous les endomorphismes de V.
Exemple 1.9.3. D’apres I’identité de Jacobi, I’endomorphisme ad(W) est une dérivation

de g pour tout W € g.

Définition 1.9.4. Une dérivation D de g est dite intérieure si D = ad(X') pour un élément
X deg.

Remarque 1.9.5 Réciproquement, si V est un espace vectoriel muni d’une application
bilinéaire antisymétrique (3 telle que A — (W, A) soit une dérivation de V', pour tout
W €V, alors V est une algebre de Lie et 3 est un crochet de Lie.

13



