Table des matières

I Bases théoriques 1
1 Bases probabilistes utiles 3
1.1 Introduction 3
1.2 L'incertitude 5
1.2.1 Aléa et variabilité naturelle 5
1.2.2 Incertitude par ignorance 7
1.2.3 Compléments 8
1.2.4 Événements incertains 10
1.3 Qu'est-ce qu'une probabilité? 13
1.3.1 La probabilité par l'exemple 13
1.3.2 Définition axiomatique et propriétés 15
1.3.3 Extension au cas où l'univers est infini dénombrable ou continu 16
1.3.4 La probabilité : une propriété de l'objet 17
1.3.5 La probabilité : une propriété du sujet 18
1.4 Probabilité conditionnelle et indépendance 19
1.4.1 Probabilité conditionnelle et statistique bayésienne 19
1.4.2 La probabilité conditionnelle par l'exemple 20
1.4.3 Définition, propriétés et applications 21
1.4.4 Indépendance stochastique 23
1.4.5 La clé de voûte de la statistique bayésienne : la formule de Bayes 25
1.4.6 Casse-têtes résolus par les probabilités conditionnelles 29
1.5 Variable aléatoire et loi de probabilité 35
1.5.1 Qu'est-ce qu'une variable aléatoire? 35
1.5.2 Variables aléatoires discrètes 38
1.5.3 Variables aléatoires continues 46
1.5.4 Comment simuler une variable aléatoire? 55
1.6 Couple de variables aléatoires 55
1.6.1 Qu'est-ce qu'un couple de v.a.? Définition et exemples 56
1.6.2 Couple de v.a. discrètes 58
1.6.3 Couple de v.a. continues 65
1.6.4 Modélisation d'un couple de v.a. 67
2 Modélisation probabiliste 71
2.1 Introduction 71
2.1.1 La construction d'un modèle 72
2.1.2 Les différents ingrédients d'un modèle probabiliste 73
2.2 Lois de probabilité usuelles 77
2.2.1 Loi de Bernoulli (et modèle d'urne) 77
2.2.2 Loi binomiale 78
2.2.3 Loi de Poisson 79
2.2.4 Lois géométrique et exponentielle 80
2.2.5 Loi normale 82
2.2.6 Loi bêta 84
2.2.7 Loi gamma 85
2.2.8 Loi binormale 87
3 Du classique au bayésien 89
3.1 Introduction 89
3.1.1 Propos 89
3.1.2 Exemple discret : un modèle binomial 90
3.1.3 Exemple continu : un modèle normal 90
3.1.4 Modèle probabiliste versus inférence statistique 91
3.2 Inférence statistique classique 92
3.2.1 Estimation 92
3.2.2 Propriétés des estimateurs 95
3.2.3 Tests et intervalles de confiance 95
3.3 Inférence statistique bayésienne 102
3.3.1 Généralités 102
3.3.2 Lois a priori et a posteriori 103
3.3.3 Démarche 110
3.3.4 Influence de la loi a priori et des données sur la loi a posteriori 111
3.3.5 Estimation et intervalle de confiance en bayésien? 113
3.4 Conclusion 114
3.4.1 Récapitulatif de la démarche bayésienne 115
3.4.2 Recommandations 115
3.4.3 Pourquoi préférer le bayésien? 116
4 La modélisation graphique 121
4.1 Introduction 121
4.2 Graphes et dépendances 121
4.2.1 Graphes et graphes orientés 121
4.2.2 Graphes acycliques orientés ou DAG 123
4.2.3 Indépendance conditionnelle 125
4.2.4 DAGs équivalents 127
4.2.5 Réseau bayésien 129
4.3 Corrélation n'est pas causalité 130
4.4 Vers les structures hiérarchiques 131
4.4.1 Un premier exemple simple 131
4.4.2 Un second exemple 133
4.4.3 Généralisation : la modélisation hiérarchique bayésienne 137
4.5 Propriétés mathématiques des DAGs 138
4.5.1 La factorisation de la loi jointe 138
4.5.2 L'inférence bayésienne 138
4.5.3 Loi conditionnelle complète dans un DAG 140
4.6 Modèles multidimensionnels traditionnels 142
4.6.1 Lois normales multidimensionnelles et GMRF 142
4.6.2 Loi a posteriori de la moyenne 143
4.6.3 Modèles normaux-Wishart 144
4.6.4 Modèles Dirichlet-multinomiaux ou Polya 146
4.7 Les logiciels 148
4.8 Conclusions 149
5 Méthodes numériques 151
5.1 Introduction : pourquoi utiliser des méthodes numériques? 151
5.2 Exemple d'illustration en épidémiologie spatiale 153
5.2.1 Modèle dynamique 154
5.2.2 Données et évaluation des lois a posteriori 156
5.2.3 Lois a priori 157
5.3 Méthode du ré-échantillonnage par importance 158
5.3.1 Principe 158
5.3.2 Application 159
5.3.3 Limites 160
5.3.4 Pour aller plus loin : échantillonnage séquentiel par importance 161
5.4 Algorithme de Monte Carlo par chaînes de Markov 163
5.4.1 Principe 163
5.4.2 Echantillonneur de Gibbs 164
5.4.3 Échantillonneur de Metropolis-Hastings 165
5.4.4 Application 1 : échantillonnage complet 165
5.4.5 Application 2 : échantillonnage incomplet temporellement 168
5.4.6 Application 3 : échantillonnage incomplet spatialement et tem- porellement 169
5.4.7 Limites 171
5.4.8 Pour aller plus loin : algorithmes MCMC en interaction 171
5.5 Calcul bayésien approché ou ABC 173
5.5.1 Principe 173
5.5.2 Limites 174
5.6 Conclusion 175
5.7 Annexe 176
6 Évaluation de modèles 179
6.1 Introduction 179
6.2 Prédiction de la teneur en protéines du blé 180
6.3 Analyse de sensibilité 181
6.4 Qualité des prédictions a posteriori 182
6.5 Validation croisée 185
6.6 Facteur de Bayes 187
6.7 Paradoxe de Lindley-Bartlett 189
6.7.1 Test classique d'une hypothèse nulle 189
6.7.2 Paradoxe de Lindley 190
6.7.3 Paradoxe de Bartlett 191
6.7.4 Mises en garde 191
6.8 Critères de vraisemblance pénalisée 192
6.9 Combinaison de modèles 193
6.10 Conclusion 195
7 Distributions a priori et élicitation 197
7.1 Introduction 197
7.2 Lois a priori conjuguées 198
7.3 Lois a priori non informatives 201
7.3.1 Lois a priori dispersées 204
7.3.2 Lois a priori de Jeffreys 207
7.3.3 Lois a priori de référence 210
7.4 Élicitation de dires d'expert 213
7.4.1 Introduction 213
7.4.2 Le questionnement de l'expert 214
7.4.3 La traduction des réponses en loi a priori 223
II Cas d'études 229
8 Modèle binomial et Listeria 231
8.1 Études complètement comparables 232
8.2 Variabilité inter-études 237
8.3 Deux sous-populations? 240
9 Régression pour la processionnaire du pin 247
9.1 Dispositif expérimental 247
9.2 Modèle de régression linéaire multiple 250
9.2.1 Modèle 250
9.2.2 Écriture matricielle et vraisemblance 251
9.2.3 Lois a priori classiques pour l'inférence bayésienne 252
9.2.4 Prendre des lois a priori conjuguées simplifie l'inférence bayé- sienne 252
9.2.5 Loi a priori de Zellner pour le modèle linéaire 254
9.3 Mise en pratique de la régression linéaire multiple 256
9.3.1 Régression linéaire multiple sur la variable sans transformation 257
9.3.2 Régression linéaire multiple sur la variable $\log (N b N i d s)$ 258
9.3.3 Vérifier les hypothèses du modèle linéaire 258
9.3.4 Estimation des paramètres et tests sur les paramètres 263
9.4 Sélection de variables explicatives 264
9.4.1 Contexte 264
9.4.2 Principe de l'algorithme 264
9.4.3 Lois a priori 265
9.4.4 Résultats 267
10 Modèle hiérarchique normal 271
10.1 Introduction 271
10.2 Les données de Potthoff et Roy 272
10.2.1 Des mesures longitudinales entachées d'erreurs 272
10.2.2 Objectifs de l'analyse statistique des données 274
10.3 ANCOVA 274
10.3.1 Modèle normal de vraisemblance 274
10.3.2 Lois a priori 275
10.3.3 Inférence 276
10.3.4 Mise en œuvre sous WinBugs 277
10.4 Modèle à effet aléatoire 279
10.4.1 Construction 279
10.5 Discussion 283
10.5.1 Mise en évidence le dimorphisme sexuel 283
10.5.2 Traiter facilement les données manquantes 283
10.5.3 Borrowing strength 284
10.5.4 Conclusions générales 284
11 ABC et histoire démographique de bovins 287
11.1 Contexte et objectif 287
11.2 Les données microsatellites 288
11.3 Implémentation du calcul bayésien approché 289
11.3.1 Simulation de jeux de données 289
11.3.2 Lois a priori pour les paramètres θ 292
11.3.3 Choix des statistiques descriptives 292
11.4 Pré-évaluation des lois a priori 292
11.5 Estimation des lois a posteriori approchées 293
11.6 Évaluation du modèle 296
11.7 Conclusions 296
12 Cas d'étude à explorer 299
12.1 La catastrophe de Montroc 299
12.1.1 Rappel des faits 299
12.1.2 Le problème décisionnel 299
12.1.3 Objectif 300
12.1.4 Questions 300
12.1.5 Solution 302
12.2 Invertébrés épibenthiques du Golfe du St Laurent 302
12.2.1 Contexte 302
12.2.2 Objectif 302
12.2.3 Données 303
12.2.4 Questions 304
12.3 Courbes de croissance de poulets 306
12.3.1 Contexte 306
12.3.2 Objectif 306
12.3.3 Données 306
12.3.4 Questions 306
12.4 Risques de pollution de l'eau par les nitrates 308
12.4.1 Contexte 308
12.4.2 Objectif 309
12.4.3 Données 309
12.4.4 Questions 309
12.5 Nombre de copies d'ADN 311
12.5.1 Introduction 311
12.5.2 Données 311
12.5.3 Questions 313

