La méthode de Monte-Carlo, qui tire son nom du fameux casino à Monaco, s'est développée du manière spectaculaire depuis 60 ans : elle figure parmi les 10 algorithmes ayant eu le plus d'influence sur le développement et la pratique de la science et de l'ingénierie au XXe siècle.
En fait, il n'existe pas une méthode de Monte-Carlo mais des méthodes de Monte-Carlo. La 1re partie de l'ouvrage dresse un panorama de l'existant, puis détaille les outils de bas pour la simulation de variables aléatoires, les résultats de convergence les plus courants et techniques d'accélération des méthodes de Monte-Carlo. Puis, la 2e partie aborde la simulation des équations différentielles stochastiques (processus à évolution linéaire dérivant du mouvement brownien), dont l’application en biologie, chimie, économie, finance, géophysique, mécanique des fluides, neuroscience etc. sont importantes. L'objectif principal est le calcul d'espérance de leurs trajectoires. Cela donne, via les formules de Feynman-Kac, des solutions probabilistes aux équation aux dérivées partielles : ce lien remarquable permet de résoudre, par simulations Monte-Carlo, ces équations en toute dimension. Enfin, la 3e partie, la plus originale, traite des processus stochastique ayant des évolutions non-linéaires (modélisant des interactions variées), comme les équations du contrôle stochastique, les diffusions branchantes, les équations stochastique de McKean-Vlasov, avec des applications fondamentales en plein développement. Nous présentons notamment quelques idées importantes d'apprentissage statistiques, dont le couplage aux méthodes de Monte-Carlo (via les régressions empirique) conduit à des algorithmes des plus performants.
Dans cet ouvrage, nous mettons en avant les grands principes de simulation efficace, avec une présentation exigeant le moins de préalables mathématiques. Le niveau prérequis à la lecture de ce cours est celui de Master 1, ou 2eannée d'écoles d'ingénieurs. Cet ouvrage intéressera aussi des étudiants plus avancés ou des enseignants-chercheurs, souhaitant dégager l'essentiel des outils sophistiqués pour la simulation de processus stochastique linéaires et non-linéaires.
|